Narrowing operators on template abstract domains

Gianluca Amato

Università di Chieti–Pescara Pescara, Italy

20th International Symposium on Formal Methods FM 2015

(joint work with S. Di Nardo Di Maio, M. C. Meo and F. Scozzari)

Overview

Context

Data-flow analysis Abstract interpretation Analysis of numerical properties Interval domain (and other template domains)

Topic

Under which conditions narrowing may be avoided.

Plan of the talk

- Two-phase (widening/narrowing based) analysis.
- ② Narrowing with integer bounds.
- In the second second
- Onclusions and future work.

Overview

Context

Data-flow analysis Abstract interpretation Analysis of numerical properties Interval domain (and other template domains)

Topic

Under which conditions narrowing may be avoided.

Plan of the talk

- Two-phase (widening/narrowing based) analysis.
- Narrowing with integer bounds.
- In the second second
- Onclusions and future work.

Overview

Context

Data-flow analysis Abstract interpretation Analysis of numerical properties Interval domain (and other template domains)

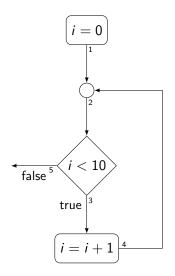
Topic

Under which conditions narrowing may be avoided.

Plan of the talk

- Two-phase (widening/narrowing based) analysis.
- In Narrowing with integer bounds.
- Sarrowing with rational bounds.
- Onclusions and future work.

An example: interval analysis



$$\begin{split} x_1 &= [0,0] \\ x_2 &= x_1 \lor x_4 \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{split}$$

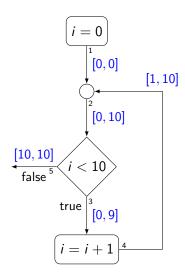
where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 3 / 24

∃ >

An example: interval analysis



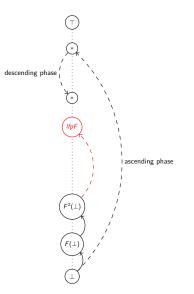
 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_1 \lor x_4 \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 3 / 24

Two phase analysis



• A standard chaotic iteration might non terminate

• Introduce widening: accelerate convergence ensuring termination. Replace

$$x_i = \exp(x_i)$$

$$x_i = x_i \nabla expr$$

- Standard widening on intervals:
 - When a bound is increased, it goes to infinite

•
$$\emptyset \bigtriangledown [l, r] = [l, r]$$

•
$$[1,2] \triangledown [1,3] = [1,+\infty]$$

- A standard chaotic iteration might non terminate
- Introduce widening: accelerate convergence ensuring termination. Replace

$$x_i = \exp r$$

$$x_i = x_i \nabla expr$$

- Standard widening on intervals:
 - When a bound is increased, it goes to infinite

•
$$\emptyset \bigtriangledown [l, r] = [l, r]$$

•
$$[1,2] \triangledown [1,3] = [1,+\infty]$$

- A standard chaotic iteration might non terminate
- Introduce widening: accelerate convergence ensuring termination. Replace

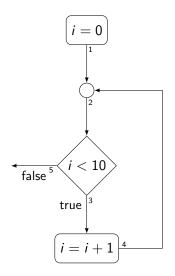
$$x_i = \exp r$$

$$x_i = x_i \nabla \exp r$$

- Standard widening on intervals:
 - When a bound is increased, it goes to infinite
 - $\emptyset \bigtriangledown [l, r] = [l, r]$

•
$$[1,2] \triangledown [1,3] = [1,+\infty]$$

An example: introducing widening



 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_2 \ \nabla \ (x_1 \lor x_4) \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

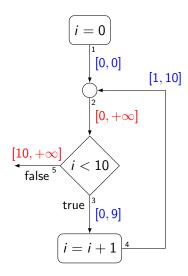
where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 6 / 24

∃ >

An example: introducing widening



 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_2 \ \nabla \ (x_1 \lor x_4) \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

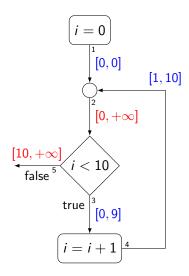
where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 6 / 24

< ∃ ►

An example: descending chain



 $\begin{array}{l} x_1 = [0,0] \\ x_2 = x_1 \lor x_4 \\ x_3 = x_2 \land [-\infty,9] \\ x_4 = x_3 + [1,1] \\ x_5 = x_3 \land [10,+\infty] \end{array}$

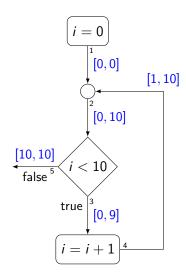
where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 7 / 24

★ ∃ ►

An example: descending chain



 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_1 \lor x_4 \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 7 / 24

< ∃ > <

• A standard downward chaotic iteration might non terminate

- Either perform a few steps and terminate...
- ... or introduce narrowing: kind of dual of widening

 $x_i = \exp r$

$$x_i = x_i \bigtriangleup expr$$

- Standard narrowing on intervals:
 - only improves infinite bounds

•
$$[-\infty, +\infty] \bigtriangleup [l, r] = [l, r]$$

•
$$[1, +\infty] \bigtriangleup [2, 4] = [1, 4]$$

- A standard downward chaotic iteration might non terminate
- Either perform a few steps and terminate...
- ... or introduce narrowing: kind of dual of widening

 $x_i = \exp r$

$$x_i = x_i \bigtriangleup expr$$

- Standard narrowing on intervals:
 - only improves infinite bounds

•
$$[-\infty, +\infty] \bigtriangleup [l, r] = [l, r]$$

•
$$[1, +\infty] \bigtriangleup [2, 4] = [1, 4]$$

- A standard downward chaotic iteration might non terminate
- Either perform a few steps and terminate...
- ... or introduce narrowing: kind of dual of widening

 $x_i = \exp r$

$$x_i = x_i \bigtriangleup expr$$

- Standard narrowing on intervals:
 - only improves infinite bounds

•
$$[-\infty, +\infty] \bigtriangleup [l, r] = [l, r]$$

•
$$[1, +\infty] riangleq [2, 4] = [1, 4]$$

- A standard downward chaotic iteration might non terminate
- Either perform a few steps and terminate...
- ... or introduce narrowing: kind of dual of widening

 $x_i = \exp r$

with

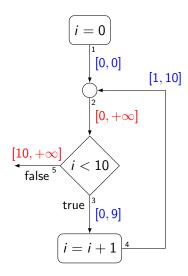
$$x_i = x_i \bigtriangleup expr$$

- Standard narrowing on intervals:
 - only improves infinite bounds

•
$$[-\infty, +\infty] \bigtriangleup [l, r] = [l, r]$$

• $[1, +\infty] riangleq [2, 4] = [1, 4]$

An example: introducing narrowing



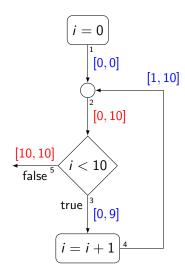
 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_2 \bigtriangleup (x_1 \lor x_4) \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 9 / 24

An example: introducing narrowing



 $\begin{aligned} x_1 &= [0,0] \\ x_2 &= x_2 \bigtriangleup (x_1 \lor x_4) \\ x_3 &= x_2 \land [-\infty,9] \\ x_4 &= x_3 + [1,1] \\ x_5 &= x_3 \land [10,+\infty] \end{aligned}$

where

[I, r] is an interval in \mathbb{Z} \lor is convex hull \land is intersection + is pointwise sum

FM 2015 9 / 24

∃ >

• This is the classical example used to explain widening and narrowing

- …nonetheless
 - narrowing is not needed in this case
 - descending chain terminates after a single iteration
- how common is this scenario?
- We try to answer this question using
 - Alice benchmarks collection of linear transition systems (called models) [http://alice.cri.ensmp.fr/]
 - Jandom

abstract interpretation based analyzer we are developing
[https://github.com/jandom-devel/Jandom]

- This is the classical example used to explain widening and narrowing
- ...nonetheless
 - narrowing is not needed in this case
 - descending chain terminates after a single iteration
- how common is this scenario?
- We try to answer this question using
 - Alice benchmarks collection of linear transition systems (called models) [http://alice.cri.ensmp.fr/]
 - Jandom

abstract interpretation based analyzer we are developing
[https://github.com/jandom-devel/Jandom]

- This is the classical example used to explain widening and narrowing
- ...nonetheless
 - narrowing is not needed in this case
 - descending chain terminates after a single iteration

• how common is this scenario?

- We try to answer this question using
 - Alice benchmarks collection of linear transition systems (called models) [http://alice.cri.ensmp.fr/]
 - Jandom

abstract interpretation based analyzer we are developing
[https://github.com/jandom-devel/Jandom]

< ∃ > < ∃

- This is the classical example used to explain widening and narrowing
- ...nonetheless
 - narrowing is not needed in this case
 - descending chain terminates after a single iteration
- how common is this scenario?
- We try to answer this question using
 - Alice benchmarks collection of linear transition systems (called models) [http://alice.cri.ensmp.fr/]
 - Jandom

abstract interpretation based analyzer we are developing
[https://github.com/jandom-devel/Jandom]

• The two phase analysis with no narrowing:

- terminates for all the models;
- during the descending phase, each loop head is evaluated at most 3 times.
- The same is true for the Octagon domain ...
 - octagons are generalization of intervals with constraint of the kind ±x ± y ≤ c instead of x ≤ c;
 - octagons and intervals are example of template domains.
- ... but not for the Polyhedra domain
 - the analysis of some models does not terminate;
 - the analysis of some models terminates but gives origin to very long descending chains (more than 100 iterations).

• The two phase analysis with no narrowing:

- terminates for all the models;
- during the descending phase, each loop head is evaluated at most 3 times.
- The same is true for the Octagon domain ...
 - octagons are generalization of intervals with constraint of the kind ±x ± y ≤ c instead of x ≤ c;
 - octagons and intervals are example of template domains.
- ... but not for the Polyhedra domain
 - the analysis of some models does not terminate;
 - the analysis of some models terminates but gives origin to very long descending chains (more than 100 iterations).

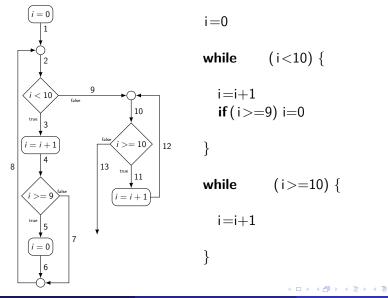
• The two phase analysis with no narrowing:

- terminates for all the models;
- during the descending phase, each loop head is evaluated at most 3 times.
- The same is true for the Octagon domain ...
 - octagons are generalization of intervals with constraint of the kind ±x ± y ≤ c instead of x ≤ c;
 - octagons and intervals are example of template domains.
- ... but not for the Polyhedra domain
 - the analysis of some models does not terminate;
 - the analysis of some models terminates but gives origin to very long descending chains (more than 100 iterations).

- The two phase analysis with no narrowing:
 - terminates for all the models;
 - during the descending phase, each loop head is evaluated at most 3 times.
- The same is true for the Octagon domain ...
 - octagons are generalization of intervals with constraint of the kind ±x ± y ≤ c instead of x ≤ c;
 - octagons and intervals are example of template domains.
- ... but not for the Polyhedra domain
 - the analysis of some models does not terminate;
 - the analysis of some models terminates but gives origin to very long descending chains (more than 100 iterations).

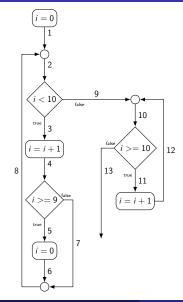
- The two phase analysis with no narrowing:
 - terminates for all the models;
 - during the descending phase, each loop head is evaluated at most 3 times.
- The same is true for the Octagon domain ...
 - octagons are generalization of intervals with constraint of the kind ±x ± y ≤ c instead of x ≤ c;
 - octagons and intervals are example of template domains.
- ... but not for the Polyhedra domain
 - the analysis of some models does not terminate;
 - the analysis of some models terminates but gives origin to very long descending chains (more than 100 iterations).

Example program



★ ■ ▶ ■ の Q G FM 2015 12 / 24

Example program



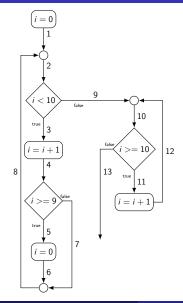
i = 0 $[x_1]$ while [x₂] (i<10) { $[X_3]$ i=i+1**if**(i>=9) i=0 $[x_8]$ $[x_9]$ while $[x_{10}]$ (i>=10) { $[x_{11}]$ i=i+1 $[x_{12}]$ }

Gianluca Amato

FM 2015 12 / 24

(3)

Ascending chain



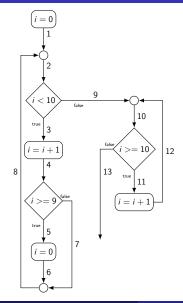
i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \to 0 \le i]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow 10 \leq i]$ while $[x_{10} \rightarrow 10 \le i]$ (i>=10) { $[x_{11} \rightarrow 10 \le i]$ i=i+1 $[x_{12} \rightarrow 11 \leq i]$ }

Gianluca Amato

FM 2015 12 / 24

• • = • • = •

Descending chain 1st loop



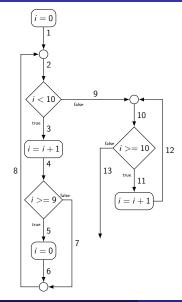
i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow \emptyset]$ while $[x_{10} \rightarrow 10 \le i]$ (i>=10) { $[x_{11} \rightarrow 10 < i]$ i=i+1 $[x_{12} \rightarrow 11 \leq i]$

Gianluca Amato

FM 2015 12 / 24

- * E > * E

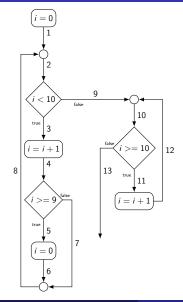
Descending chain 1st loop



i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 With narrowing we would stop here $[x_9 \rightarrow \emptyset]$ while $[x_{10} \rightarrow 10 \le i]$ (i>=10) { $[x_{11} \rightarrow 10 < i]$ i=i+1 $[x_{12} \rightarrow 11 \leq i]$

Gianluca Amato

Descending chain 2nd loop 1st iteration

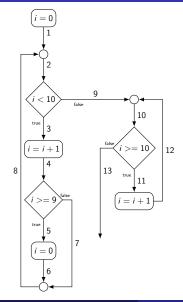


i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow \emptyset]$ while $[x_{10} \rightarrow 11 \le i]$ (i>=10) { $[x_{11} \rightarrow 11 < i]$ i=i+1 $[x_{12} \rightarrow 12 \leq i]$

Gianluca Amato

• • = • • =

Descending chain 2nd loop 2nd iteration



i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow \emptyset]$ while $[x_{10} \rightarrow 12 \le i]$ (i>=10) { $[x_{11} \rightarrow 12 \le i]$ i=i+1 $[x_{12} \rightarrow 13 \leq i]$

Gianluca Amato

FM 2015 12 / 24

.

Narrowing and infinite descending chains

• x_{10} follows an infinite descending chain, whose limit is \emptyset :

$$[10, +\infty], [11, +\infty], [12, +\infty], \dots$$

• there are only two kinds of infinite descending chains for intervals with integer bounds:

$$[n_0, +\infty], [n_1, +\infty], [n_2, +\infty], \ldots$$

$$[-\infty,-n_0],[-\infty,-n_1],[-\infty,-n_2],\ldots$$

with $n_0 < n_1 < n^2 < \dots$

• infinite descending chains may only happen:

- in presence of unreachable code;
- when unreachability is detected during the descending phase.

Narrowing and infinite descending chains

• x_{10} follows an infinite descending chain, whose limit is \emptyset :

```
[10, +\infty], [11, +\infty], [12, +\infty], \dots
```

• there are only two kinds of infinite descending chains for intervals with integer bounds:

$$[n_0, +\infty], [n_1, +\infty], [n_2, +\infty], \dots$$

 $[-\infty, -n_0], [-\infty, -n_1], [-\infty, -n_2], \dots$

with $n_0 < n_1 < n_2 < \dots$

• infinite descending chains may only happen:

- in presence of unreachable code;
- when unreachability is detected during the descending phase.

(4) (3) (4) (4) (4)

Narrowing and infinite descending chains

• x_{10} follows an infinite descending chain, whose limit is \emptyset :

```
[10, +\infty], [11, +\infty], [12, +\infty], \dots
```

• there are only two kinds of infinite descending chains for intervals with integer bounds:

$$[n_0, +\infty], [n_1, +\infty], [n_2, +\infty], \dots$$

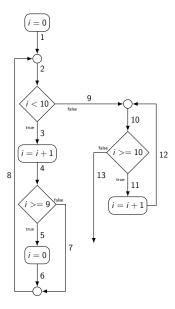
 $[-\infty, -n_0], [-\infty, -n_1], [-\infty, -n_2], \dots$

with $n_0 < n_1 < n_2 < \dots$

- infinite descending chains may only happen:
 - in presence of unreachable code;
 - when unreachability is detected during the descending phase.

イロト 不得 トイヨト イヨト

Detecting infinite descending chains



• edge 9 dominates the second loop • 9 unreachable \rightarrow 10 unreachable • ... but $x_{10} = x_9 \lor x_{12}$ • ... and $x_9 = \emptyset \not\rightarrow x_{10} = \emptyset$

• replace \lor with a left-strict variant

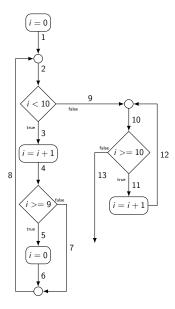
$$l_1 \vee^{\emptyset} l_2 = \begin{cases} \emptyset & \text{if } l_1 = \emptyset, \\ l_1 \vee l_2 & \text{otherwise.} \end{cases}$$

•
$$x_{10} = x_9 \vee^{\emptyset} x_{12}$$

Gianluca Amato

FM 2015 14 / 24

Detecting infinite descending chains



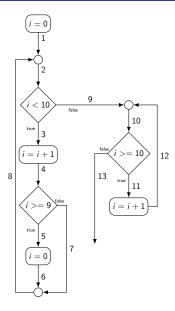
• edge 9 dominates the second loop • 9 unreachable \rightarrow 10 unreachable • ... but $x_{10} = x_9 \lor x_{12}$ • ... and $x_9 = \emptyset \not\rightarrow x_{10} = \emptyset$

replace ∨ with a left-strict variant

$$I_1 \vee^{\emptyset} I_2 = \begin{cases} \emptyset & \text{if } I_1 = \emptyset, \\ I_1 \vee I_2 & \text{otherwise.} \end{cases}$$

• $x_{10} = x_9 \vee^{\emptyset} x_{12}$

Detecting infinite descending chains



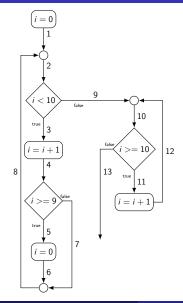
- edge 9 dominates the second loop • 9 unreachable \rightarrow 10 unreachable • ... but $x_{10} = x_9 \lor x_{12}$ • ... and $x_9 = \emptyset \not\rightarrow x_{10} = \emptyset$
- replace \lor with a left-strict variant

$$I_1 \vee^{\emptyset} I_2 = \begin{cases} \emptyset & \text{if } I_1 = \emptyset, \\ I_1 \vee I_2 & \text{otherwise.} \end{cases}$$

•
$$x_{10} = x_9 \vee^{\emptyset} x_{12}$$

When narrowing is needed

Descending chain 1st loop



i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow \emptyset]$ while $[x_{10} \rightarrow 10 \le i]$ (i>=10) { $[x_{11} \rightarrow 10 < i]$ i=i+1 $[x_{12} \rightarrow 11 \leq i]$ }

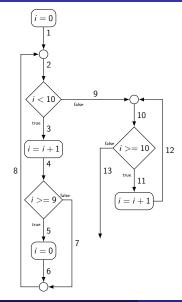
Gianluca Amato

FM 2015 15 / 24

.

When narrowing is needed

Descending step with strict join



i=0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 9]$ (i<10) { $[x_3 \rightarrow 0 \le i \le 9]$ i=i+1**if**(i>=9) i=0 $[x_8 \rightarrow 1 \leq i \leq 9]$ $[x_9 \rightarrow \emptyset]$ while $[x_{10} \to \emptyset]$ (i>=10) { $[x_{11} \rightarrow \emptyset]$ i=i+1 $[x_{12} \rightarrow \emptyset]$

Gianluca Amato

FM 2015 15 / 24

Theorem

The set of data-flow equations corresponding to a reducible flow-chart may be analyzed without narrowing if we replace \lor in join nodes with \lor^{\emptyset} .

- Are we proposing to replace narrowing for a non controlled descending chain?
- Not necessarily, because descending chains may be finite but very long
 - exponentially long in the size of the program

Theorem

The set of data-flow equations corresponding to a reducible flow-chart may be analyzed without narrowing if we replace \lor in join nodes with \lor^{\emptyset} .

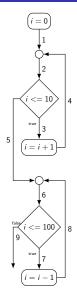
- Are we proposing to replace narrowing for a non controlled descending chain?
- Not necessarily, because descending chains may be finite but very long
 - exponentially long in the size of the program

Theorem

The set of data-flow equations corresponding to a reducible flow-chart may be analyzed without narrowing if we replace \lor in join nodes with \lor^{\emptyset} .

- Are we proposing to replace narrowing for a non controlled descending chain?
- Not necessarily, because descending chains may be finite but very long
 - exponentially long in the size of the program

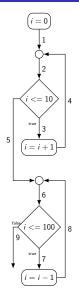
Very long descending chains Example program



i = 0 $[x_1]$ while $[x_2]$ (i<=10) { $[x_3]$ i = i + 1 $[x_4]$ $[x_5]$ while [x₆] (i<=100) { $[x_7]$ i=i-1 $[x_8]$

(4) (5) (4) (5)

Very long descending chains Ascending chain



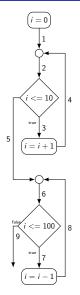
i = 0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i]$ (i<=10) { $[x_3 \rightarrow 0 \leq i \leq 10]$ i=i+1 $[x_4 \rightarrow 1 \le i \le 11]$ $[x_5 \rightarrow 11 \leq i]$ while $[x_6 \rightarrow \mathbb{R}]$ (i<=100) { $[x_7 \rightarrow i < 100]$ i=i-1 $[x_8 \rightarrow i \leq 99]$

Gianluca Amato

▲ ■ ► ■ シへの FM 2015 17 / 24

.

Descending chain 1st loop



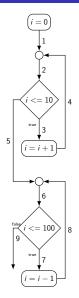
i = 0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 10]$ (i <=10) { $[x_3 \rightarrow 0 \le i \le 10]$ i = i + 1 $[x_4 \rightarrow 1 \le i \le 11]$ $[x_5 \rightarrow i = 11]$ while $[x_6 \rightarrow \mathbb{R}]$ (i<=100) { $[x_7 \rightarrow i < 100]$ i=i-1 $[x_8 \rightarrow i \leq 99]$

Gianluca Amato

FM 2015 17 / 24

• < = • < = •

Descending chain 2nd loop 1st iteration



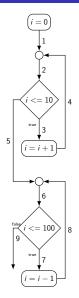
i = 0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 10]$ (i <=10) { $[x_3 \rightarrow 0 \le i \le 10]$ i = i + 1 $[x_4 \rightarrow 1 \le i \le 11]$ $[x_5 \rightarrow i = 11]$ while $[x_6 \rightarrow i \le 99]$ (i <= 100) { $[x_7 \rightarrow i < 99]$ i=i-1 $[x_8 \rightarrow i \leq 98]$

Gianluca Amato

FM 2015 17 / 24

.

Descending chain 2nd loop 2nd iteration



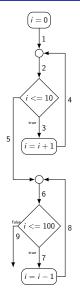
i = 0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 10]$ (i<=10) { $[x_3 \rightarrow 0 \le i \le 10]$ i = i + 1 $[x_4 \rightarrow 1 \le i \le 11]$ $[x_5 \rightarrow i = 11]$ while $[x_6 \rightarrow i < 98]$ (i<=100) { $[x_7 \rightarrow i < 98]$ i=i-1 $[x_8 \rightarrow i \leq 97]$

Gianluca Amato

FM 2015 17 / 24

.

Descending chain 2nd loop



i = 0 $[x_1 \rightarrow i = 0]$ while $[x_2 \rightarrow 0 \le i \le 10]$ (i <=10) { $[x_3 \rightarrow 0 \le i \le 10]$ i = i + 1 $[x_4 \rightarrow 1 \le i \le 11]$ $[x_5 \rightarrow i = 11]$ while $[x_6 \rightarrow i \le 11]$ (i <= 100) { $[x_7 \rightarrow i < 11]$ i=i-1 $x_8 \rightarrow i \leq 10$

Gianluca Amato

FM 2015 17 / 24

• < = • < = •

When rational bounds are allowed, infinite descending chains may be generated in different ways.

When rational bounds are allowed, infinite descending chains may be generated in different ways.

$$i=0$$

while(i <= 10) {
 $i=(i+2)/2$ }

Infinite descending chains with rational bounds Example program

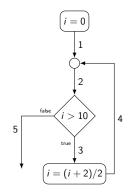
 $\begin{bmatrix} i = 0 \\ 1 \\ 2 \\ \vdots = 10 \\ \vdots = (i + 2)/2 \end{bmatrix} 4$

i=0 [x₁] while [x₂] (x<=10) { [x₃] i=(i+2)/2 [x₄] }

∃ >

Infinite descending chains with rational bounds Ascending chain

. .



$$\begin{array}{l} i = 0 \\ [x_1 \rightarrow i = 0] \\ \text{while } [x_2 \rightarrow 0 \le i] \quad (x <= 10) \\ [x_3 \rightarrow 0 \le i \le 10] \\ i = (i+2)/2 \\ [x_4 \rightarrow 1 \le i \le 6] \\ \end{array}$$

Infinite descending chains with rational bounds

Descending chain 1st iteration

i = 0 1 2 5 i > 10 irrue 3 i = (i + 2)/2

$$i=0 [x_1 \rightarrow i = 0] while [x_2 \rightarrow 0 \le i \le 6] (x<=10) { [x_3 \rightarrow 0 \le i \le 6] i=(i+2)/2 [x_4 \rightarrow 1 \le i \le 4] }$$

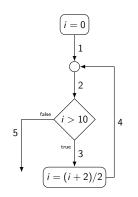
Infinite descending chains with rational bounds Descending chain limit

 $\begin{bmatrix} i = 0 \\ 1 \\ 2 \\ 5 \\ true \\ 3 \\ (i = (i+2)/2 \end{bmatrix} 4$

$$i=0 [x_1 \rightarrow i = 0] while [x_2 \rightarrow 0 \le i \le 4] (x<=10) { [x_3 \rightarrow 0 \le i \le 4] i=(i+2)/2 [x_4 \rightarrow 1 \le i \le 3] }$$

Infinite descending chains with rational bounds

: 0



$$\begin{array}{l} x_{1} = 0 \\ [x_{1} \rightarrow i = 0] \\ \text{while } [x_{2} \rightarrow 0 \leq i \leq 4] \\ [x_{3} \rightarrow 0 \leq i \leq 4] \\ i = (i+2)/2 \\ [x_{4} \rightarrow 1 \leq i \leq 3] \\ \end{array}$$

x₂ descending chain:

 $[0, 6], [0, 4], [0, 3], [0, 5/2], [0, 9/4], \ldots$

whose limit is [0,2]

- We may define new narrowings which are much more precise by exploiting what we have seen for integer bounds.
- For example \triangle^1 is like intersection but we replace bounds with their integer values:

$$I \bigtriangleup^{1} \emptyset = \emptyset$$
$$[l_{1}, u_{1}] \bigtriangleup^{1} [l_{2}, u_{2}] = [l_{1}, u_{1}] \land [\lfloor l_{2} \rfloor, \lceil r_{2} \rceil]$$

- $[0,2] \bigtriangleup^1 [0,1.75] = [0,2]$, but $[0,2] \bigtriangleup^1 [0,0.75] = [0,1]$.
- With \triangle^1 narrowing, in the example before we stop at [0,3].
- Other narrowings are defined in the paper.

- We may define new narrowings which are much more precise by exploiting what we have seen for integer bounds.
- For example \triangle^1 is like intersection but we replace bounds with their integer values:

$$I \bigtriangleup^{1} \emptyset = \emptyset$$
$$[I_{1}, u_{1}] \bigtriangleup^{1} [I_{2}, u_{2}] = [I_{1}, u_{1}] \land [\lfloor I_{2} \rfloor, \lceil r_{2} \rceil]$$

- $[0,2] \bigtriangleup^1 [0,1.75] = [0,2]$, but $[0,2] \bigtriangleup^1 [0,0.75] = [0,1]$.
- With \triangle^1 narrowing, in the example before we stop at [0,3].
- Other narrowings are defined in the paper.

- We may define new narrowings which are much more precise by exploiting what we have seen for integer bounds.
- For example \triangle^1 is like intersection but we replace bounds with their integer values:

$$I \bigtriangleup^{1} \emptyset = \emptyset$$
$$[I_{1}, u_{1}] \bigtriangleup^{1} [I_{2}, u_{2}] = [I_{1}, u_{1}] \land [\lfloor I_{2} \rfloor, \lceil r_{2} \rceil]$$

- $[0,2] \bigtriangleup^1 [0,1.75] = [0,2]$, but $[0,2] \bigtriangleup^1 [0,0.75] = [0,1]$.
- With \triangle^1 narrowing, in the example before we stop at [0,3].
- Other narrowings are defined in the paper.

- We may define new narrowings which are much more precise by exploiting what we have seen for integer bounds.
- For example \triangle^1 is like intersection but we replace bounds with their integer values:

$$I \bigtriangleup^{1} \emptyset = \emptyset$$
$$[I_{1}, u_{1}] \bigtriangleup^{1} [I_{2}, u_{2}] = [I_{1}, u_{1}] \land [\lfloor I_{2} \rfloor, \lceil r_{2} \rceil]$$

- $[0,2] \bigtriangleup^1 [0,1.75] = [0,2]$, but $[0,2] \bigtriangleup^1 [0,0.75] = [0,1]$.
- With \triangle^1 narrowing, in the example before we stop at [0,3].
- Other narrowings are defined in the paper.

- We may define new narrowings which are much more precise by exploiting what we have seen for integer bounds.
- For example \triangle^1 is like intersection but we replace bounds with their integer values:

$$I \bigtriangleup^{1} \emptyset = \emptyset$$
$$[I_{1}, u_{1}] \bigtriangleup^{1} [I_{2}, u_{2}] = [I_{1}, u_{1}] \land [\lfloor I_{2} \rfloor, \lceil r_{2} \rceil]$$

- $[0,2] \bigtriangleup^1 [0,1.75] = [0,2]$, but $[0,2] \bigtriangleup^1 [0,0.75] = [0,1]$.
- With \triangle^1 narrowing, in the example before we stop at [0,3].
- Other narrowings are defined in the paper.

• infinite descending chains exist but are rare

- very long descending chains exist but are rare
- if you only care about termination and you can afford very long descending chains:
 - use \vee^{\emptyset} on loops;
 - use \triangle^1 when bounds are rational numbers.
- if you want to avoid long descending chains, fix maximum number of descending steps

- infinite descending chains exist but are rare
- very long descending chains exist but are rare
- if you only care about termination and you can afford very long descending chains:
 - use \vee^{\emptyset} on loops;
 - use \triangle^1 when bounds are rational numbers.
- if you want to avoid long descending chains, fix maximum number of descending steps

- infinite descending chains exist but are rare
- very long descending chains exist but are rare
- if you only care about termination and you can afford very long descending chains:
 - use \vee^{\emptyset} on loops;
 - use $riangle^1$ when bounds are rational numbers.
- if you want to avoid long descending chains, fix maximum number of descending steps

- infinite descending chains exist but are rare
- very long descending chains exist but are rare
- if you only care about termination and you can afford very long descending chains:
 - use \vee^{\emptyset} on loops;
 - use \triangle^1 when bounds are rational numbers.
- if you want to avoid long descending chains, fix maximum number of descending steps

- Perform further experiments on real programs instead of linear transition systems.
- Not only non-terminating descending chains are rare, but also the number of descending steps is generally quite low. Why?

• What about backward analysis?

- Perform further experiments on real programs instead of linear transition systems.
- Not only non-terminating descending chains are rare, but also the number of descending steps is generally quite low. Why?

• What about backward analysis?

- Perform further experiments on real programs instead of linear transition systems.
- Not only non-terminating descending chains are rare, but also the number of descending steps is generally quite low. Why?
- What about backward analysis?

Thank You!

Gianluca Amato

Narrowing operators

FM 2015 23 / 24

< □ > < 同 > < 回 > < 回 > < 回 >

- performing descending chains without narrowing is common
 - termination ensured by fixing a limit on the number of descending steps;
 - we prove this limit may be removed most of the time.
- the same effect of ∨[∅] may be realized using *localized narrowing with restart* [SAS '13]
 - localized narrowing has a much greater impact on performance and precision;
 - requires many more changes to existing analyzers.

• = • •

- performing descending chains without narrowing is common
 - termination ensured by fixing a limit on the number of descending steps;
 - we prove this limit may be removed most of the time.
- the same effect of ∨[∅] may be realized using *localized narrowing with restart* [SAS '13]
 - localized narrowing has a much greater impact on performance and precision;
 - requires many more changes to existing analyzers.