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Abstract

We propose a new numerical abstract domain for inferring linear invariants
based on parallelotopes. The domain may encode any linear constraint, as
the polyhedra abstract domain, while maintaining the efficiency of weakly re-
lational abstract domains, such as intervals and octagons. We provide the full
set of abstract operators, define a reduced product with intervals and present
an experimental comparison with polyhedra and octagons. According to these
experiments, the reduced product we propose is much more precise than both
polyhedra and octagons in inferring interval constraints.

Keywords: Static analysis, abstract interpretation, numerical abstract
domain, linear invariant, parallelotopes.

1. Introduction

In the field of static analysis by abstract interpretation, much effort has
been devoted in designing domains for inferring numerical properties such as
“the value of the variable x in program point p is between 0 and 10”. In this pa-
per we are mainly interested in linear invariants, which are typically expressed
as linear inequalities such as 2x+3y ≤ 42. The polyhedra domain by Cousot and
Halbwachs [1] is able to express any such invariant, but its computational com-
plexity makes it difficult to use it in practice. Many other numerical domains
have been proposed to gain efficiency. One of the simplest one is the Cousot and
Cousot’s interval domain [2], a non-relational abstract domain which can rep-
resent only constraints involving a single variable such as 0 ≤ x ≤ 10. Analyses
using the interval domain are not very precise, since it cannot represent rela-
tionships between variables. Many weakly relational domains, more expressive
than intervals but less expressive than polyhedra, have been proposed in the last
years, such as octagons [3], octahedra [4], logahedra [5] and TVPI [6]. Weakly
relational domains have proved to be quite efficient, but the invariants that can
be inferred using these domains are seriously limited by syntactic restrictions,
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since expressivity is bartered for efficiency. For instance, the octagons abstract
domain can only deal with inequalities involving two variables whose coefficients
are {−1, 0, 1}, such as x− y ≤ 5, while TVPI can only express inequalities with
two variables, such as 5x+ 2y ≤ 8.

In order to handle more expressive constraints, Sankaranarayanan et al. have
proposed a different approach called template polyhedra [7]. For each pro-
gram, they fix a constraint matrix A and consider all the polyhedra of the form
{x ∈ Rn | Ax ≤ b}, where x is the vector of program variables. The a pri-
ori choice of the matrix differentiates template polyhedra from other domains,
where the matrix is fixed for all the programs (such as intervals or octagons) or
varies freely (such as polyhedra). Template polyhedra generalize most weakly
relational domains, with the difference that its abstract operators are defined
by means of linear programming. Along the same direction there are the pro-
posals of generalized template polyhedra [8], which combine template polyhedra
and bilinear forms, and template parallelotopes [9, 10], which are a special case
of template polyhedra. A parallelotope is a polyhedron defined by at most n
linearly independent constraints, where n is the number of variables. Any par-
allelotope can be described as the set of points {x ∈ Rn | b1 ≤ Ax ≤ b2}, where
x is the vector of program variables and the constraint matrix A is square and
invertible. In the special case of template parallelotopes, it is possible to derive
efficient abstract operators, without resorting to linear programming tools. In
general, when using templates, the result of the analyses greatly varies depend-
ing on the choice of the matrix A, and finding such matrices is a hard and still
open problem. We are aware of only two proposals for generating templates,
one in Sankaranarayanan et al. original paper [7] based on a syntactic inspec-
tion of the program, and another one based on the statistical analysis of partial
execution traces [9, 10].

Here we propose a different approach which does not use templates and does
not restrict the syntactic shape of constraints, still maintaining efficiency. We
propose a domain whose abstract objects are parallelotopes, namely we only
limit the number of constraints to n (the number of variables) and we require
the constraints to be linearly independent.

While our abstract objects are parallelotopes as in [9, 10], there is the fun-
damental difference that the constraint matrix is not fixed a priori but may
freely change during the analysis, as for the polyhedra domain. The domain
of parallelotopes so defined can encode any linear constraints, does not require
templates and can be equipped with very efficient abstract operations, whose
complexity is comparable to that of octagons. The key to scalability is the re-
striction to n linearly independent constraints. This allows the use of algorithms
adapted from linear equation solving which are simpler and more efficient than
those used in the theory of polyhedra. For instance, minimizing a linear form on
a parallelotope is cubic, since it essentially amounts to solving a linear equation
system, while the corresponding operation on polyhedra and even on template
polyhedra requires the use of the simplex algorithm.

Since many concrete operations are not closed with respect to parallelotopes,
in most cases there is not a unique best parallelotope which approximates the
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result of the concrete operation. The careful design of suitable abstract oper-
ators is then a key point in the parallelotope domain. In some cases, as for
the abstract union operator, we propose different operators, and in general we
resort to appropriate heuristics in order to ensure good precision in the overall
analysis.

We also propose a combination of the domain of parallelotopes and intervals,
and we experimentally show that it compares well with respect to polyhedra and
octagons. Finally, we show that, if we are interested in inferring precise interval
constraints, then the combination of parallelotopes and intervals is far more
precise than both polyhedra and octagons.

Preliminary results on the domain of parallelotopes appeared in [11]. We
provide here a new comprehensive presentation of the domain, containing several
novelties such as new abstract operators on parallelotopes, the reduced product
of parallelotopes and intervals, experimental evaluations, and proofs (which are
in the Appendix).

2. Notation

2.1. Linear Algebra
We denote by R̄ the set of real numbers extended with +∞ and −∞. Ad-

dition and multiplication are partially extended, when possible, to R̄ in the
obvious way. We avoid the use of indeterminate forms, with the exception of
0 times ±∞ which we define to be 0. We use boldface for elements v of R̄n.
Any vector v ∈ R̄n is intended as a column vector, and vT is the correspond-
ing row vector. We denote by u · v the dot product of u and v and we use
it indifferently for both row and column vectors. Given u,v ∈ R̄n, and a re-
lation ./ ∈ {<,>,≤,≥,=}, we write u ./ v if and only if ui ./ vi for each
i ∈ {1, . . . , n}. Given u ∈ Rn and i ∈ {1, . . . , n}, we write u[i 7→ x] to denote a
vector v such that vi = x and vj = uj for j 6= i.

If A = (aij) is a matrix, we denote by AT its transpose. If A is invertible,
A−1 denotes its inverse, and GL(n) is the group of n × n invertible matrices.
The identity matrix in GL(n) is denoted by In and the standard basis of Rn is
denoted by {e1, . . . , en}. Clearly, any 1×n-matrix can be viewed as a vector: in
particular, we denote by ai∗ the row vector given by the i-th row of any matrix
A, and by a∗i the column vector given by the i-th column of A.

More generally, if J is a set of indexes, then AJ∗ is the submatrix of A
composed of the rows in J and A∗J the submatrix composed of the columns
in J . We use A−J∗ for the submatrix of A composed of the rows of A whose
indexes are not in J .

In the rest of the paper, when talking about the computational complexity of
matrix and vector operations, we always assume to use a dense representation,
which is the one adopted in our implementation.

2.2. Convex sets
A set C ⊆ Rn is convex when, given x,y ∈ C, for each λ ∈ [0, 1] we have

that λx + (1 − λ)y ∈ C. A ray in C is a non-null vector v ∈ Rn such that for
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each x ∈ C and α ≥ 0, x + αv ∈ C. A convex set C is bounded iff it has no
rays. A line in C is a vector v ∈ Rn such that both v and −v are rays. The
lines in C form a vector space, called the linearity space of C, denote by lin(C).
Given a vector space V , we denote by V ⊥ its orthogonal complement.

A set of vectors S = {v1, . . . , vm} is affinely dependent if there are λ1, . . . , λm ∈
R such that they are not all zero, λ1 + · · ·+λm = 0 and λ1v1 + · · ·+λmvm = 0.
The affine hull of S is the set aff.hull(S) = {λ1v1+ · · ·+λmvm | λ1+ · · ·+λm =
1}.

A flat F is a set of points of the form a + H where H is a vector space.
Given a flat, H is uniquely determined. Therefore, we call the dimension of
F the dimension of the corresponding vector space H. By convention, the
dimension of the empty set is −1. The dimension of a set S is the dimension of
the smallest flat containing S, and it is denoted by dim(S).

2.3. Polyhedra and constraints
An (affine) constraint over a vector of n variables is a syntactic object a ·x ≤

b, where a ∈ Rn and b ∈ R. We use l ≤ a ·x ≤ u as a short form for the pair of
constraints a ·x ≤ u and −a ·x ≤ −l. If C = {a1 ·x ≤ b1, . . . ,am ·x ≤ bm} is a
finite set of constraints, its solution set is {x ∈ Rn | a1 ·x ≤ b1, . . . ,am ·x ≤ bm}.
Given a constraint c ∈ C, we say that c is redundant for C when the solution sets
of C and C \ {c} coincide. Equivalently, a constraint c ≡ a ·x ≤ b is redundant
iff there is a family of constraints {ci}i∈I ⊆ C \ {c} with ci ≡ ai · x ≤ bi and a
family of positive numbers {λi}i∈I such that a =

∑
i∈I λiai and b ≥

∑
i∈I λibi.

Informally, this means that c is implied by a positive linear combinations of the
ci’s. This characterization of redundant constraints is known as Farkas’ Lemma.

A set P ⊆ Rn is a polyhedron when there exists an m × n matrix A and a
vector u ∈ Rn such that

P = {x ∈ Rn | Ax ≤ u} .

For each i ∈ {1, . . . ,m}, ai∗ ·x ≤ ui is a constraint, therefore P may be viewed
as the solution set of a finite set of constraints.

The Fourier-Motzkin elimination [12, Chapter 12.2] is a method to eliminate
a variable from a set of affine constraints. Given two constraints c1 ≡ a · x ≤ b
and c2 ≡ d · x ≤ e such that a1 < 0 and d1 > 0, we may combine c1 and c2
into a new constraint c3 ≡ (d1a− a1d) · x ≤ d1b− a1e where the coefficient of
the variable x1 is zero. Given a set of constraints C, we partition C into C+,
C− and C0 according to the sign of the coefficient of x1. Then, we denote by
C+− the set of all the constraints obtained combining a constraint in C− and
one in C+ as shown above. The set C+− ∪ C0 is a set of constraints over the
variables x2, . . . , xn, and has the property that a point (x2, . . . , xn) ∈ Rn−1 is
in the solution set of C+− ∪ C0 if and only if there exists x1 ∈ R such that
(x1, . . . , xn) is in the solution set of C.

2.4. Abstract interpretation
In this paper we adopt a framework for abstract interpretation which is

weaker than the common one based on Galois connections (see [13, Section 7]).
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Figure 1: Parallelotopes.

Given a partially-ordered set (C,≤C) — the concrete domain — and a pre-
ordered set (A,≤A) — the abstract domain — we establish an abstraction–
concretization relationship between them with the use of a concretization map,
which is a monotone function γ : A → C. We say that a ∈ A is a correct
approximation of c ∈ C when c ≤C γ(a). Given c ∈ C, there are many correct
abstractions. The most interesting ones are those which are minimal w.r.t. the
preorder ≤A.

A function fα : A → A is a correct abstraction of f : C → C when it
preserves correctness of approximation, i.e. when c ≤C γ(a) implies f(c) ≤C
γ(fα(a)). It is γ-complete when γ ◦ fα = f ◦ γ. It is minimal when, for any
a, a′ ∈ A, if f(γ(a)) ≤C γ(a′) ≤C γ(fα(a)), then γ(a′) = γ(fα(a)), i.e., when
fα(a) is a minimal correct approximation of f(γ(a)).

When ≤A is a partial order and γ has a left adjoint, i.e., there exists a
monotone function α : C → A such that, ∀a ∈ A∀c ∈ C (α(c) ≤ a ⇐⇒ c ≤
γ(a)), we say that α and γ form a Galois connection. The function α maps each
c ∈ C to its best correct approximation α(c), i.e., the least correct abstraction
according to ≤A. For each f : C → C it is possible to define its best correct
abstraction as fα = α ◦ f ◦ γ. When γ is injective, we say that α and γ form a
Galois insertion.

3. Parallelotopes and their representation

A set P ⊆ Rn is a parallelotope when there is an invertible matrix A ∈ GL(n)
and vectors l,u ∈ R̄n such that

P = {x ∈ Rn | l ≤ Ax ≤ u} . (1)

A parallelotope is a closed convex set. The matrix A is called the constraint
matrix, while l and u are the lower and upper bounds respectively. While in the
mathematical literature a parallelotope is generally considered to be bounded,
we are also considering unbounded ones. We call box a parallelotope whose
constraint matrix is the identity matrix. Examples of parallelotopes are given
in Figure 1.

In this section we define the abstract domain of parallelotopes and its rela-
tionship with the concrete domain of subsets of Rn.
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3.1. Representation of parallelotopes
First of all, we need a finite representation for parallelotopes. Non-empty

parallelotopes are represented with a constraint matrix and corresponding lower
and upper bounds, while a special symbol ε is used for empty parallelotopes.

Definition 1 (Representations of parallelotopes). A representation P of
a parallelotope is either the symbol ε or a tuple 〈A, l,u〉 with A ∈ GL(n),
l,u ∈ R̄n subject to the following additional conditions:

• l ≤ u;

• for all i ∈ {1, . . . , n} li 6= +∞ and ui 6= −∞.

We denote by Parn the set of all the representations for parallelotopes in Rn.
We simply use Par when n is not relevant.

The last two conditions in Definition 1, together with the fact that A is
invertible, ensure that 〈A, l,u〉 represents a non-empty parallelotope. We prefer
to keep a different representation for the empty case, since this simplifies the
definition of the abstract operators. The relationship between parallelotopes
and their representations is formalized by the following concretization map.

Definition 2 (Concretization map). We define a concretization map γ :
Parn → P(Rn) from representations of parallelotopes to paralletopes as fol-
lows:

γ(ε) = ∅,
γ(〈A, l,u〉) = {x ∈ Rn | l ≤ Ax ≤ u}.

Theorem 1. For every parallelotope P there is a representation P such that
γ(P) = P .

In the following, when this does not cause any ambiguities, we use a represen-
tation P in place of the parallelotope γ(P). Moreover, we refer to representations
of parallelotopes simply as parallelotopes.

3.2. Some properties of parallelotopes
We want to study the connection between the properties of a parallelotope as

a convex set (rays, boundedness, etc. . . ) and its representation. Most of these
results may be found in standard textbooks with slightly different notations.
We provide the proofs in the appendix for clarity of presentation.

Definition 3 (Constrained, unconstrained and equality rows). A row ai∗
of a representation P = 〈A, l,u〉 is said to be: (1) constrained when li ∈ R or
ui ∈ R; (2) unconstrained when li = −∞ and ui = +∞; (3) equality when
li = ui. We denote by U(P) (resp. E(P)) the set of indexes of the uncon-
strained rows (resp. equality rows) in P.
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Theorem 2 (Parallelotopes and Representations). If P = 〈A, l,u〉 is a repre-
sentation of a parallelotope in Rn, the following holds:

1. dim(P) is equal to n− |E(P)|; 1

2. v 6= 0 is a ray in P iff for each i ∈ {1, . . . , n}, li ∈ R implies ai∗ · v ≥ 0
and ui ∈ R implies ai∗ · v ≤ 0;

3. P is bounded iff all the bounds are finite;
4. v 6= 0 is a line in P iff it is orthogonal to all the constrained rows.

Corollary 3. The linearity space of a parallelotope P is V ⊥ where V is the
linear space generated by all the constrained rows of P. It is generated by the
orthogonal projections of the unconstrained rows onto V ⊥.

3.3. Minimization and maximization over a parallelotope
One of the basic operations on abstract domains is computing the minimum

and maximum values of a linear form over the points in an abstract object. If P
is a parallelotope and c ∈ Rn, this means computing infx∈P c·x and supx∈P c·x.

The minimization and maximization operator for parallelotopes may be ob-
tained by viewing a parallelotope as a box over a non-canonical coordinate
system. Given a box B = 〈In, l,u〉 and a vector c ∈ Rn, it is well known that

inf
x∈B

c · x = inf
l≤x≤u

c · x = c · v where vi =

{
li if ci ≥ 0

ui otherwise.

The computational complexity of this operation is O(n).

Theorem 4. Given the representation P = 〈A, l,u〉 and a vector c ∈ Rn, we
have that

inf
x∈P

c · x = inf
l≤y≤u

cTA−1y.

The computational complexity of the minimization operation is O(n3).

The same properties hold for the maximization operator.

3.4. Parallelotopes over a fixed constraint matrix
We say that the parallelotope P is definable over A ∈ GL(n) if it is empty

or there is a representation for P with A as the constraint matrix. We denote
by ParAn the subset of Parn comprised of ε and the non-empty representations
with A as the constraint matrix. Hence, P is definable over A if there is a
representation for it in ParAn .

1As an example of the problems which arise in considering representations with l 6≤ u, this
property is false in that case, since P is empty and dim(P) = −1 regardless of the number of
equality rows.
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The abstract domain of parallelotopes with a fixed constraint matrix has
been thoroughly studied in [10]. Here we recall some results which are relevant
to our paper, adapting the notations of [10] to the ones we are using here.

First of all, it is possible to define on ParAn a partial order as follows:

〈A, l,u〉 ≤ 〈A, l′,u′〉 iff l′ ≤ l and u′ ≥ u,

extended with the proviso that ε ≤ 〈A, l,u〉 for each l,u ∈ R̄n. With respect
to this ordering, ParAn is a complete lattice and γ is a complete join-morphism,
hence it has left adjoint αA : P(Rn) → ParAn such that αA(∅) = ε and, for
C 6= ∅, αA(C) = 〈A, l,u〉 with li = infx∈C ai∗x and ui = supx∈C ai∗x. Maps
αA and γ form a Galois connection. Since γ is injective, it is actually a Galois
insertion.

In particular, this means that for each C ⊆ P(Rn), αA(C) gives the least
parallelotope which contains C and is definable over A. As a particular case, it
is interesting, given a parallelotope P in Rn and a matrix A′ ∈ GL(n), to find
out the least parallelotope containing P and definable over A′.

Definition 4. Given a parallelotope 〈A, l,u〉 and a matrix A′ ∈ GL(n), the
operator rotA′ is defined as

rotA′(〈A, l,u〉) = 〈A′, l′,u′〉

where
B = A′A−1 , l′i = inf

l≤x≤u
bi∗x , u′i = sup

l≤x≤u
bi∗x .

This is extended to the empty parallelotope as rotA′(ε) = ε.

Example 1. Given the parallelotope

P = {x ∈ Rn | 0 ≤ −x1 + 3x2 ≤ 2, 3 ≤ x1 + 2x2 ≤ 8}

depicted in gray in Figure 2, and given the matrix A =
(

1 1
−1 1

)
, rotA(P ) is the

dotted parallelotope.

Theorem 5. Given a parallelotope P and A′ ∈ GL(n), rotA′(P) is the least
parallelotope definable over A′ which contains P, i.e., rotA′(P) = αA′(γ(P)).
The computational complexity of rotA′ is O(n3).

3.5. Parallelotopes over arbitrary constraint matrices
Given a set C ⊆ Rn, we are interested in approximating C with a paral-

lelotope P ⊇ C. In general, there is not a least parallelotope P which contains
C, but there are several (possibly infinitely many) minimal parallelotopes with
such a property. In particular, for each A ∈ GL(n), γ(αA(C)) is a minimal
parallelotope containing C.

It is possible to define a pre-order over parallelotopes in such a way that
P ≤ P ′ iff γ(P) ⊆ γ(P ′). The idea is that if γ(P) ⊆ γ(〈A, l,u〉), then γ(〈A, l,u〉)
contains the least parallelotope definable over A which contains γ(P).
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Figure 2: The rot operator (see Example 1).

Definition 5. Given two representations of parallelotopes P = 〈A, l,u〉 and
P ′ = 〈A′, l′,u′〉, we say P ≤ P ′ iff l′ ≤ l′′ and u′′ ≤ u′, where 〈A′, l′′,u′′〉 =
rotA′(P). Moreover, ε ≤ P for each representation P.

Note that there is no ambiguity in using the same symbol ≤ as for the
ordering over ParnA. If A = A′, then rotA′(〈A, l,u〉) = 〈A, l,u〉 and the two
definitions coincide.

Theorem 6. Given two representations P and P ′, we have that P ≤ P ′ iff
γ(P) ⊆ γ(P ′). Moreover, ≤ is a pre-order. The computational complexity of
deciding ≤ is O(n3).

Theorem 6 allows us to state the precise abstract framework we use in this
paper. The concrete domain is the powerset of Rn, ordered by set inclusion,
while the abstract domain is the set Parn of all the representations of paral-
lelotopes, according to Definition 1, ordered by ≤ from Definition 5. The two
domains are related by the monotonic concretization map γ of Definition 2.

3.6. On inverse matrices and factorizations
Most of the operations for parallelotopes require either computing the inverse

of the constraint matrix A or solving a system of linear equations. In our
implementation we use Gaussian elimination in both cases,

Solving systems of linear equations may be done more efficiently if we know a
factorization (such as LU or QR) of the constraint matrix. Therefore, memoiz-
ing this factorization may be useful to improve efficiency. Moreover, it could be
investigated whether it is possible to redefine the abstract operators in order to
incrementally and automatically keep track of a factorization for the constraint
matrix. This is left for future work.

4. Operators on parallelotopes

In this section we consider the operations on P(Rn) commonly used when
defining the collecting semantics of imperative programming languages, and
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for each of them we introduce a correct approximation on parallelotopes. The
main difficulty in defining the abstract operations on parallelotopes is that,
in the general case, a subset of Rn has not a best correct abstraction in Parn.
Different constraint matrices give rise to minimal but incomparable abstractions.
Therefore, defining the abstract operations on parallelotopes essentially amounts
to:

1. choosing a resulting constraint matrix A;
2. computing bounds l and u to get a correct approximation of the result.

Once A is fixed, computing the tightest bounds is quite easy. In practice, the
two steps of determining A and l,u will be carried out at the same time, for
the sake of efficiency. However, there are generally several possible alterna-
tives for A, which lead to results which are set-theoretically incomparable. The
choice between different matrices may only be done under the basis of heuristic
considerations, and validation requires extensive tests.

From a theoretical perspective, in evaluating the precision of an abstract
operator we look for the following properties, in order of preference:

1. γ-completeness, if possible, i.e. when the result of the concrete operator is
a parallelotope;

2. minimality, i.e. we compute one of the minimal parallelotopes which ap-
proximate the concrete result;

3. relative optimality, i.e. we fix a matrix A and compute the least parallelo-
tope definable over A which approximates the concrete result.

It is easy to check that γ-completeness implies minimality which, in turn, implies
relative optimality.

In general, our abstract operators will not be monotone. Given two inputs
P ≤ P ′, different choices of the constraint matrix of the corresponding results
may lead to non-monotonicity. However, abstract operators are monotone when
they are γ-complete.

4.1. Invertible linear assignment
Linear assignment are used to analyze the behavior of the statement xi =

c1x1 + . . .+ cnxn + b. The concrete linear assignment operation assign(i, c, b) :
P(Rn)→P(Rn) is defined as

assign(i, c, b)(X) = {x[i 7→ c · x + b] | x ∈ X}.

If ci 6= 0, then assign(i, c, b) is invertible and, most importantly, maps a paral-
lelotope to a parallelotope. In this special case, it is possible to implement the
abstract operator along the line of [1]. Intuitively, the operation assign(i, c, b)
corresponds to the assignment x′i = c ·x+b, where x′i is the value of xi after the
assignment. From this equation, it is possible to recover xi as a function of x′i
and the other elements of x, namely xi = (x′i−

∑
j 6=i cjxj−b)/ci. Replacing the

variable xi in l ≤ Ax ≤ u with the latter definition, we obtain a representation
for the result of the assignment.
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Definition 6. Given c ∈ Rn such that ci 6= 0 and b ∈ R, we define the abstract
linear assignment assignα(i, c, b) : Parn → Parn as

assignα(i, c, b)(ε) = ε

assignα(i, c, b)(〈A, l,u〉) = 〈A− 1

ci
a∗i(c− ei)T , l +

b

ci
a∗i,u +

b

ci
a∗i〉 .

Theorem 7. The operation assignα(i, c, b) is correct and γ-complete. The com-
putational complexity is O(mn) where m is the number of non-zero components
in c.

The case when ci = 0 will be treated after the non-deterministic assignment.

4.2. Non-deterministic assignment
Consider the non-deterministic assignment operation forget(i) : P(Rn) →

P(Rn), corresponding to the statement xi = ? and defined as

forget(i)(X) = {x[i 7→ v] | x ∈ X, v ∈ R} .

Note that, even if P is a parallelotope, forget(i)(P ) may not be parallelotope.

Example 2. Consider the parallelotope P given by the inequalities −1 ≤ x1 +
x2 + x3 ≤ 1, −1 ≤ x1 + x2 − x3 ≤ 1 and −1 ≤ x1 − x2 + x3 ≤ 1. The set
forget(1)(P ) is a polyhedron whose constraints may be obtained by Fourier-
Motzkin elimination:

forget(1)(P ) = {x ∈ R3 | −1 ≤ x2 ≤ 1,−1 ≤ x3 ≤ 1,−1 ≤ x2 − x3 ≤ 1}.

Although P is a parallelotope, forget(1)(P ) is not.

Given a matrix A, we can characterize in a syntactic way the parallelotopes
definable over A which approximate the set forget(i)(P ). A parallelotope ap-
proximates forget(i)(P ) iff it approximates P and any constraint containing the
variable xi is unbounded.

Proposition 8. Given two parallelotopes 〈A, l,u〉 ≤ 〈A′, l′,u′〉, we have that

forget(i)(γ(〈A, l,u〉)) ⊆ γ(〈A′, l′,u′〉) iff ∀j(a′ji 6= 0→ (l′j = −∞∧ u′j = +∞)).

The above proposition suggests that, in order to compute forgetα(i)(P), we
need to find a parallelotope 〈A′, l′,u′〉 ≥ P such that each row of A′ which
contains a non-zero entry in the i-th position must be unconstrained. A naive
definition of forgetα(i)(〈A, l,u〉) would replace the bounds of the rows j such
that aji 6= 0 with −∞ and +∞. However, this generally yields a gross over
approximation.
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Example 3. Consider the parallelotope given by the inequalities 0 ≤ x1+x2 ≤
0 and 0 ≤ x1 − x2 ≤ 0, which consists of a single point {(0, 0)}. After a
non-deterministic assignment to x2, if we apply the naive procedure described
above, we get −∞ ≤ x1 + x2 ≤ +∞ and −∞ ≤ x1 − x2 ≤ +∞ which is the
entire space. However, by adding the two original inequalities, we get the new
constraint 0 ≤ 2x1 ≤ 0, which does not contain x2 and thus is preserved by the
non-deterministic assignment.

Therefore, we need to make explicit the constraints hidden in P which do
not contain the variable xi we want to forget. The problem is that, in general,
there are more entailed constraints than we can represent with a parallelotope.
We need a way to choose between competing constraints.

Example 4. Consider the parallelotope P in Example 2. When computing
forget(1)(P ) we get the implicit constraints −1 ≤ x2 ≤ 1, −1 ≤ x3 ≤ 1 and
−1 ≤ x2 − x3 ≤ 1. The problem is that the linear forms x2, x3 and x2 − x3
are not linearly independent, hence we cannot keep all of them in the result.
Note that although x2 − x3 is a linear combination of x2 and x3, the constraint
−1 ≤ x2 − x3 ≤ 1 is not implied by the other two: we lose precision when we
omit one of them.

In order to deal with the above problems, we propose the following approach,
which is detailed in Algorithm 1. First note that we may ignore the rows in
P which are unconstrained or whose i-th entry is zero: the first ones remain
unconstrained, while the second ones are not affected by the assignment. Thus,
in the following, we focus on the remaining rows only, whose indexes are in
J = {j | aji 6= 0, lj 6= −∞ ∨ uj 6= +∞}. The idea is to transform the rows in
J in such a way that they remain linearly independent and there is exactly one
row whose i-th entry is not zero. Thus, we choose a row r ∈ J and consider the
linear combinations R = {ajiar∗ − ariaj∗ | j ∈ J \ {r}} ∪ {ar∗}. Vectors in R
are linearly independent: any of its linear combination has the form∑

j∈J\{r}

λj(ajiar∗ − ariaj∗) + λrar∗ =

∑
j∈J\{r}

−ariλjaj∗ +

λr +
∑

j∈J\{r}

λjaji

ar∗ .

Since ari 6= 0, this linear combination is zero only if all λj with j ∈ J are zero.
Thus, R is a set of |J | linearly independent vectors. Moreover, all the vectors
in R are independent from the rows of A not in J . Combining them together,
we get the resulting matrix A′. The last step is to ensure that P ′ ≥ P, by
computing the new bounds (with the exception of ar∗ which must become an
unconstrained row).

The main question is how to choose the index r in J . Our intuition is that it
is better to choose an index r such that both lr and ur are finite, possibly equal,

12



Algorithm 1 The forgetα(i) abstract operator
Require: 〈A, l,u〉 ∈ Parn, i ∈ {1, . . . , n}
1: J = {j | aji 6= 0, lj 6= −∞∨ uj 6= +∞}
2: if J = ∅ then
3: return 〈A, l,u〉
4: end if
5: 〈A′, l′,u′〉 ← 〈A, l,u〉
6: J0 ← {j ∈ J | lj = uj ∈ R}
7: J1 ← {j ∈ J | lj , uj ∈ R}
8: if J0 6= ∅ then
9: r ← an element in J0

10: else if J1 6= ∅ then
11: r ← an element in J1
12: else
13: r ← an element in J
14: end if
15: for all j ∈ J \ {r} do
16: a′j∗ ← ajiar∗ − ariaj∗
17: (mr,Mr)← if aji < 0 then (ur, lr) else (lr, ur)
18: (mj ,Mj)← if −ari < 0 then (uj , lj) else (lj , uj)
19: l′j ← ajimr − arimj

20: u′j ← ajiMr − ariMj

21: end for
22: return 〈A′, l′[r 7→ −∞],u′[r 7→ +∞]〉

since we get better bounds in P ′. In fact, we prove later that when we choose
a row r whose lower and upper bounds coincide, then forgetα(i) is γ-complete.

Theorem 9. The operator forgetα(i) described in Algorithm 1 is correct and
relatively optimal. The computational complexity is O(n2).

Given a parallelotope P = γ(P), note that either forget(i)(P ) is equal to
P or its linearity space is the sum of the linearity space of P plus ei. In both
cases, it is easy to check that the linearity space of γ(forgetα(i)(P)) is the same
as the linearity space of forget(i)(P ).

Although in the general case the result of forget(i)(P ) is not a parallelotope,
in the particular case that J0 6= ∅ in Algorithm 1, forgetα(i)(P) is γ-complete.
The same holds if ei is a line in P , i.e., J = ∅ in Algorithm 1.

Theorem 10. If ei is a line in P or J0 6= ∅, then it holds that γ(forgetα(i)(P)) =
forget(i)(γ(P)).

In the general case, we can prove that the forgetα(i) operator is minimal
using the Fourier-Motzkin elimination method [12, Chapter 12.2].
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(c) Assigning x1 = 3 to P

Figure 3: Non-invertible assignment

Proposition 11. Given a parallelotope 〈A, l,u〉 and a column index i, assume
that lj < uj for each constrained row j such that aji 6= 0. Consider the polyhe-
dron obtained by Fourier-Motzkin elimination of the i-th variable. None of its
constraints with finite bounds is redundant.

Theorem 12. The operator forgetα(i) is minimal.

It is possible to think of other heuristics for selecting the implied constraints
which appear in the result. For example, sparse constraints might be preferred
to dense ones. This would require further investigations.

4.3. Non-invertible assignment
We consider the assignment operator assign(i, c, b) when ci = 0. In this

case, all the constraints involving the variable xi need to be removed after the
assignment, possibly replaced with other implied constraints. Note that if ci = 0
we have assign(i, c, b) = assign(i, c, b)◦forget(i). This suggests to use the abstract
forget operation to make implied constraints explicit.

Example 5. Given the parallelotope

P = {x ∈ Rn | 0 ≤ −x1 + x2 ≤ 2, 3 ≤ x1 + 2x2 ≤ 8}

depicted in Figure 3(a), the parallelotope forgetα(x1)(P) is depicted in
Figure 3(b). The result of the non-invertible assignment x1 = 3 to the par-
allelotope P is in Figure 3(c).

The procedure is shown in Algorithm 2. Given a parallelotope P, we first
compute 〈A′, l′,u′〉 = forgetα(i)(P) and choose a row j in A′ with a′ji 6= 0,
which is certainly unconstrained. Lines 3–5 ensure that a′j∗ is the unique line
with a non-zero i-th element. They do not change the parallelotope, since they
operate on unconstrained rows. Then, we may replace a′j∗ with ei − c , and
both lj , uj with b. Since the j-th row of A′ is unconstrained, we do not lose
precision when we replace it. Since the steps 3–5 ensure that all the other rows
in A′ have a zero in the i-th column, then ei − c is linearly independent from
them and the final matrix A′ is invertible.
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Algorithm 2 The non-invertible assignα(i, c, b) abstract operator
Require: 〈A, l,u〉 ∈ Parn, i ∈ {1, . . . , n}, c ∈ Rn, b ∈ R, ci = 0
1: 〈A′, l′,u′〉 ← forgetα(i)(〈A, l,u〉)
2: choose an index j with a′ji 6= 0
3: for all s such that a′si 6= 0 and s 6= j do
4: a′s∗ ← a′s∗ − a′si/a′jia′j∗
5: end for
6: a′j∗ ← ei − c

7: l′j ← b
8: u′j ← b

9: return 〈A′, l′,u′〉

Theorem 13. The operator assignα(i, c, b) described in Algorithm 2 is correct.
The computational complexity is O(n2).

Note that non-invertible assignment is γ-complete exactly in the same hy-
pothesis under which non-deterministic assignment is γ-complete.

Theorem 14. Consider c ∈ Rn, b ∈ R and ci = 0. If P is a parallelotope in
Rn and ei is a line in P or J0 6= ∅ in Algorithm 1 then γ(assignα(i, c, b)(P)) =
assign(i, c, b)(γ(P)).

Theorem 15. The operator assignα(i, c, b) with ci = 0 is minimal.

Even for non-invertible assignments, heuristics can be used to improve the
result of the analysis. For example, it is possible that, in order to gain more
benefits from the result of assignα(i, c, b), it is better to tweak forgetα(i) in order
to get the best possible bounds for the row c. However, we have not investigated
this idea in details.

4.4. Refinement by linear inequality
Given c ∈ Rn and b ∈ R, consider the operation over P(Rn) defined by

refine(c, b)(X) = {x | x ∈ X ∧ c · x ≤ b} ,

which we call linear refinement, corresponding to the conditional statement “ if
c · x ≤ b then”. In general, the linear refinement of a parallelotope is not a
parallelotope.

Consider Algorithm 3. Given a parallelotope P = 〈A, l,u〉, we first check
if there exists an unconstrained row of A such that, if we replace that row
with c, the matrix is still invertible. This amounts to computing a vector
y ∈ Rn such that ATy = c and look for an index j ∈ U(P) such that yj 6= 0.
When it does not exist, we simply compute the least parallelotope P ′ containing
refine(c, b)(P) and definable over A: we recall from [10] that P ′ = 〈A, l′,u′〉,
where 〈In, l′,u′〉 = refine(y, b)〈In, l,u〉 . Hence, we may use the known refine
operator over boxes to define a refine operator over parallelotopes.
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Algorithm 3 The refineα(c, b) abstract operator
Require: 〈A, l,u〉 ∈ Parn, c ∈ Rn, b ∈ R
1: y ← solution of ATy = c
2: if ∃j. yj 6= 0 ∧ lj = −∞∧ uj = +∞ then
3: aj∗ ← cT

4: uj ← b
5: return 〈A, l,u〉
6: else
7: 〈In, l′,u′〉 ← refineα(y, b)〈In, l,u〉 {using operator on boxes}
8: return 〈A, l′,u′〉
9: end if

Theorem 16. The operator refineα(c, b) described in Algorithm 3 is correct and
relatively optimal. If c /∈ lin(γ(P))⊥, then refineα(c, b)(P) is γ-complete. The
computational complexity is O(n3).

We could change the algorithm above in such a way that, when there is
no j ∈ U(P) with yj 6= 0, we choose any j such that yj 6= 0 and either lj or
uj is infinite. Then, we proceed with lines 3–5 as if j were in U(P). In this
case, we replace a bounded constraint with a different bounded constraint. The
result is generally incomparable with the original parallelotope P. However, the
rationale here is that the new constraint could be more useful in the remaining of
the analysis than the old one which has been removed. We have not investigated
in practice the impact of such a different approach to linear refinement.

4.5. Union
Let us come to the abstract union of parallelotopes. The result is obvious if

one of the parallelotopes is empty. In the rest of this section and in the following
ones we assume to be in the non-empty case. The same If we fix a matrix
M , the least parallelotope definable over M which contains the parallelotopes
PA = 〈A, l,u〉 and PB = 〈B, j,k〉 can be easily obtained by rotM (PA) and
rotM (PB) simply selecting, for each row in M , the minimum of the two lower
bounds and the maximum of the two upper bounds. By choosing M to be
either A or B, we can use this method for a simple and fast implementation of
abstract union. The biggest drawback of this choice is that it does not generate
new constraints. The ability to generate new constraints precisely allows us
to fully exploit the power of a non-template abstract domain, by changing the
shape of the generated parallelotopes.

We now propose a more complex variant of abstract union, inspired by the
inversion join operator [14]. The main idea of the algorithm is to generate a
bunch of candidate linear forms. The corresponding constraints are obtained
from the candidate linear forms by computing the lower and upper bounds on
PA and PB . We then assign to each constraint a priority. In general, the
candidate linear forms are not linearly independent. At the end, we select
exactly n linearly independent constraints, according to their priorities.

16



Assigning the priorities to the candidate constraints is the key of the abstract
union algorithm. As a first consideration, assigning the priorities must take
into account whether the domain is used in combination with another abstract
domain, thus allowing better optimizations. In particular, in the case of a
reduced product of parallelotopes and intervals, it is immediate to see that
constraints with a single non-null coefficient (interval constraints) are not useful,
and thus we should avoid them. On the contrary, when parallelotopes are used
alone, it is very convenient to choose such constraints. Thus, we have developed
three slightly different algorithms for assigning priorities, according to whether
we prefer to retain interval constraints or not. Choosing the algorithm which
best fits depends on the analysis context.

We use a flag favorAxes to differentiates the behavior of the three algorithms:
when the flag is set to 1, we assign to the interval constraints the highest priority,
so that they are always preferred in the abstract union operation. When the
flag is set to −1, we assign to the interval constraints the lowest priority, so that
the heuristic algorithm tries to avoid them, as much as reasonable. When the
flag is set to 0, we assign priorities to intervals using the same algorithm as for
non-interval constraints.

The priority of non-interval constraints is chosen according to the values
of the bounds: equality constraints come first, followed by constraints which
are saturated both in PA and PB . This order is mostly dictated by heuristic
considerations. Algorithm 4 computes the bounds and assigns the priorities for
a given linear form v. The lines "{other tests}" in Algorithm 4 refers to a set of
tests where we consider all the possible combinations of finite and infinite lower
and upper bounds, in order to better assign priorities.

We now describe how to generate the candidate linear forms for the abstract
union. Obvious candidates are the rows of the matrices A and B. Moreover,
we also generate new linear forms using (a part of) the inversion join algorithm.
Given two constraints in PA and/or PB , the inversion join computes a new
linear form obtained as a linear combination of the two constraints, under the
condition that they form an inversion.

Definition 7. The constraints lh ≤ ah∗·x taken from the parallelotope 〈A, l,u〉
and ji ≤ bi∗·x taken from 〈B, j,k〉 form an inversion when, provided 〈A, j′,k′〉 =
rotA(PB), the following conditions hold:

1. all the bounds lh, j′h, li, j
′
i are finite;

2. ah∗ and bi∗ are linearly independent;
3. lh < j′h and li > j′i (or vice-versa, that is lh > j′h and li < j′i).

Whenever we find an inversion, we may generate the new constraint λhij′h ≤
(ah∗ + λhibi∗) · x, where λhi =

lh−j′h
j′i−li

. The same procedure can also be applied
to upper bounds, just considering ah∗ ·x ≤ uh as equivalent to −uh ≤ −ah∗ ·x.
The complete procedure is illustrated in Algorithm 5.
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Algorithm 4 Bounds and priorities for the linear form v (Sketch)
Require: PA,PB ∈ Parn, v ∈ Rn, favorAxes ∈ {−1, 0, 1}
1: lv ← inf{v · x | x ∈ PA}
2: uv ← sup{v · x | x ∈ PA}
3: jv ← inf{v · x | x ∈ PB}
4: kv ← sup{v · x | x ∈ PB}
5: if v is an interval constraint and favorAxes 6= 0 then
6: if favorAxes = 1 then
7: p← −∞ // this is the highest priority
8: else if favorAxes = −1 then
9: p←∞ // this is the lowest priority

10: end if
11: else
12: if lv = uv = jv = kv then
13: p← 0
14: else if lv = jv ∈ R and uv = kv ∈ R then
15: p← 1
16: else if . . . then

17:
... {other tests}

18: else
19: p← +∞
20: end if
21: end if
22: return 〈min(lv, jv),max(uv, kv), p〉

Example 6. Given the parallelotopes

P1 = {x ∈ Rn | 1 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 4}
P2 = {x ∈ Rn | 2 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3}

depicted in Figure 4 in grey and light-grey respectively, P1 ∪α P2 is the dotted
parallelotope.

Theorem 17. The abstract union operator described in Algorithm 5 is correct
and relatively optimal. The computational complexity is O(n4).

4.6. Widening
We use the standard definition of widening which appears in [15] since, al-

though developed for monotonic abstract operators, it also works in the non-
monotonic case [16].

A first widening for parallelotopes, denoted by O, is essentially inspired by
the standard widening on intervals. In order to compute PA O PB , we first
compute P ′ = rotA(PB). Each bound of PA which has been enlarged in P ′ is
changed into +∞ or −∞.
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Algorithm 5 The abstract union operator
Require: PA = 〈A, l,u〉, PB = 〈B, j,k〉 ∈ Parn
1: Q← ∅ {a priority queue}
2: for all i ∈ {1, . . . , n} do
3: 〈c, d, p〉 ← result of Algorithm 4 applied to ai∗
4: add 〈ai∗, c, d〉 to Q with priority p
5: end for
6: same procedure of lines 2–5 applied to rows in B
7: for all v1,v2 rows of A and B do
8: {here we check if v1 and v2 form an inversion}
9: h1 ← inf{v1x | x ∈ PA}

10: h2 ← inf{v2x | x ∈ PA}
11: i1 ← inf{v1x | x ∈ PB}
12: i2 ← inf{v2x | x ∈ PB}
13: if h1, i1, h2, i2 ∈ R and v1, v2 are linearly independent

and ((h1 < i1 ∧ h2 > i2) ∨ (h1 > i1 ∧ h2 < i2)) then
14: {we know that v1 and v2 form an inversion}
15: w ← v1 + h1−i1

i2−h2
v2 {w is the linear form obtained by inversion join}

16: 〈c, d, p〉 ← result of Algorithm 4 applied to w
17: add 〈w, c, d〉 to Q with priority p
18: end if
19: end for
20: same procedure of lines 7–18 applied to upper bounds
21: same proc. of lines 7–18 applied to lower bounds for v1 and upper bounds

for v2

22: same proc. of lines 7–18 applied to upper bounds for v1 and lower bounds
for v2

23: 〈R, l′,u′〉 ← empty set of constraints
24: while |R| < n do
25: extract 〈w, c, d〉 from Q with maximal priority
26: if w is linearly independent from R then
27: add 〈w, c, d〉 to 〈R, l′,u′〉
28: end if
29: end while
30: return 〈R, l′,u′〉
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Definition 8. Given two parallelotopes PA = 〈A, l,u〉 and PB = 〈B, j,k〉,
let 〈A, j′,k′〉 = rotA(PB). We define PA O PB = 〈A, l′,u′〉 where for each
i ∈ {1, . . . , n}, we have that:

l′i =

{
−∞ if j′i < li

li otherwise
u′i =

{
∞ if k′i > ui

ui otherwise.

The problem with this widening is that it cannot change the constraint
matrix. For this reason, it is better to use it with delayed widening. Even a
small delay allows the constraint matrix in loops to stabilize to a good value.
Then, when widening kicks in, constraints cannot change anymore.

We introduce an alternative widening operator which tries to change the
constraint matrix while avoiding infinite ascending chains and that will be used
in the rest of the paper.

Definition 9. Given two parallelotopes PA = 〈A, l,u〉 and PB = 〈B, j,k〉, we
define

PA O PB =

{
rotB(PA) O PB if rotB(PA) < PB
PA O PB otherwise

The above definition works because applying the rot operator does not decrease
the number of infinite bounds in the parallelotope.

Theorem 18. The operator O is a widening.

4.7. Narrowing
First of all, we give a definition of narrowing which, as we will discuss later,

slightly differs from the standard one.
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Definition 10 (Narrowing). Given a lattice (C,⊆) (the concrete domain)
and a partial order (A,≤) (the abstract domain) with monotone concretiza-
tion map γ : A → C, a narrowing is a binary operator M : A × A → A such
that:

• a1 M a2 ≤ a1;

• γ(a1) ∩ γ(a2) ⊆ γ(a1 M a2);

• for each sequence a0, . . . , ai, . . . of elements of A, the sequence defined as
b0 = a0 and bi = bi−1 M ai for i > 0 is definitively stationary.

This generalizes the standard narrowing in [15] to the case when the second
argument is not bigger than the first one. The generalization is needed since
abstract operators on parallelotopes are not monotone, hence the arguments
to narrowing may not be in the correct relation as expected in [15]. Another
generalization of narrowing, designed to work with non-monotonic abstract op-
erators, recently appeared in [16]. However, we find the latter not completely
satisfactory, since correctness of the descending iterations does not depend on
the definition of narrowing alone, but on the interaction between narrowing and
the abstract operators.

The first condition in Definition 10 ensures that an iteration sequence built
with narrowing is decreasing, the second condition means that M is a cor-
rect approximation of the concrete meet, while the last condition enforces ter-
mination. When a2 ≤ a1, then γ(a2) ∩ γ(a1) = γ(a2), and the condition
γ(a1)∩ γ(a2) ⊆ γ(a1 M a2) is enforced by the stronger condition a2 ≤ a1 M a2 of
the standard narrowing.

A narrowing satisfying the definition above may be used to improve the
result of the ascending phase of the analysis:

Theorem 19. In the hypothesis of Definition 10, let F̄ be a (possibly non-
monotone) abstract operator F̄ : A → A which is a correct abstraction of the
monotone operator F : C → C. Given a ∈ A, let c ∈ C be a fixpoint of F such
that c ⊆ γ(a). We define the iteration sequence y0 = a, yi+1 = yiM F̄ (yi). Then

• the iteration sequence {yi}i∈N is decreasing and definitively stationary;

• for each i ∈ N, yi is a correct approximation of c.

Our definition of narrowing ensures that the descending phase terminates on
a correct abstraction, which might not be a post-fixpoint of the set of semantic
equations.

For parallelotopes PA and PB , the narrowing is defined by first computing
P ′ = rotA(PB) and then refining with P ′ the unbounded constraints in PA.
Definition 11. Given two parallelotopes PA = 〈A, l,u〉 and PB = 〈B, j,k〉,
let 〈A, j′,k′〉 = rotA(PB). We define PA M PB = 〈A, l′,u′〉 where for each
i ∈ {1, . . . , n}, we have that:

l′i =

{
j′i if li = −∞
li otherwise

u′i =

{
k′i if ui = +∞
ui otherwise
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Theorem 20. The operator M for parallelotopes is a narrowing according to
Definition 10.

5. Parametric parallelotopes

In Sections 4.5 we have designed a parametric algorithm for the abstract
union depending on the flag favorAxes. Changing the flag we modify the pri-
orities assigned to interval constraints, thus obtaining different parallelotopes
during the analysis. We now show that the resulting three abstract union oper-
ations produce quite different results.

We have implemented a prototype of the abstract domain of parallelotopes
in the static analyzer Jandom [17] and did some preliminary test on the ALICe2
benchmarks [18] (plus some additional test programs which can be found in
[17]). The test-suite comprises a total of 105 models with 326 program points.
The models have at most 11 different program points and 10 variables.

The domain of parallelotopes Par has been implemented with the standard
union, namely favorAxes = 0. The domain Par+axes is tuned with favorAxes = 1,
thus assigning to the interval constraints the highest priority, so that they are
always preferred. On the contrary, in the domain Par−axes we use favorAxes =
−1, so producing parallelotopes which hardly use interval constraints.

Figure 5 shows the results of the experimental comparison between the stan-
dard parallelotope Par, Par+axes and Par−axes. The experimental results show
that in about one third of the experiments we get incomparable results. This
is due to the fact that we deal with a non-template numerical domain, and
thus the shape of the result may considerably vary when changing the abstract
operations. The experiments show that the domain with the best performance
in precision is clearly Par+axes, which improves over the results of both Par and
Par−axes. This result was largely expected, since variable initialization is an im-
portant source of information which should be carried on during the analysis.
Thus, when the abstract domain of parallelotopes is used alone, the preferred
version should certainly be Par+axes.

On the other hand, we show in the next section that things change when
considering a reduced product of Par−axes with intervals which dramatically
improves the analysis precision.

6. Reduced product

Although the abstract domain of parallelotopes is very expressive and can
potentially represent any linear invariant, it is limited by the reduced number of
constraints allowed in the constraint matrix. In order to overcome this limit, we
strongly believe that parallelotopes should be used in combination with another
simple, even non-relational, numerical abstract domain. In particular, the com-
bination of a non-template, fully relational domain with a rich expressiveness,

2http://alice.cri.ensmp.fr/
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Figure 5: Comparing parallelotopes with different flags favorAxes. On the left we compare
Par with Par−axes, on the right Par with Par+axes.

such as parallelotopes, and a template, weakly relational domain, able to carry
on the basic information at least on interval constraints, allows parallelotopes
to exploit its full potential.

In this section we define a simple reduced product between parallelotopes
and intervals. We denote by Box the domain of intervals with the standard
operations [2]. Since intervals are parallelotopes (whose constraint matrix is
the identity matrix), we abuse notation and use the same denotations for the
concretization map and the abstract operations.

6.1. Representation of reduced product
The (reduced) product of the domains Par and Box is defined as

Par u Box = {〈P,B〉 | P ∈ Par, B ∈ Box}

and the concretization map is simply given by

γ(〈P,B〉) = γ(P ) ∩ γ(B) .

6.2. Abstract operators on the reduced product
The abstract operations on Par u Box are obtained by combining the opera-

tions of the original domains, with the help of a reduction operator responsible
for transferring information between the two domains.

We first need to introduce a new abstract operator of weak intersection on
parallelotopes which is defined asymmetrically by first performing a rotation of
the second argument on the constraint matrix of the first one.
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Figure 6: Weak intersection of parallelotopes P1 and P2.

Definition 12 (Weak intersection). Given two parallelotopes P1 = 〈A, l,u〉,
P2 ∈ Parn, let 〈A, l′,u′〉 = rotA(P2). We define the weak intersection of P1 and
P2 as:

P1 ∩α P2 = 〈A, l′′,u′′〉

where l′′i = max(li, l
′
i) and u′′i = min(ui, u

′
i).

The idea of the weak intersection is to preserve the constraint matrix of the first
parallelotope. Algorithm 6 shows the weak intersection operator.

Example 7. Given the parallelotopes

P1 = {x ∈ Rn | 0 ≤ −x1 + 3x2 ≤ 2, 3 ≤ x1 + 2x2 ≤ 8}

P2 = {x ∈ Rn | 2 ≤ x1 + x2 ≤ 4,−2 ≤ −x1 + x2 ≤ 2}

depicted in Figure 6, P1 ∩α P2 is the parallelotope filled with both vertical and
horizontal lines.

Proposition 21. The operator ∩α is a correct approximation of the concrete
intersection. It is γ-complete when the two arguments are defined over the same
constraint matrix.

We can now define the reduction operator in a standard way, by using the
weak intersection operator.

Definition 13 (Reduction). Given a parallelotope P ∈ Parn and a box B ∈
Box, we define the reduction operator red : Par u Box→ Par u Box as:

red(〈P,B〉) = 〈P ∩α B,B ∩α P 〉

Proposition 22. The reduction operator is correct, i.e., given any P ∈ Par and
B ∈ Box, we have that γ(red(〈P,B〉)) = γ(〈P,B〉).
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Algorithm 6 The weak intersection operator
Require: PA = 〈A, l,u〉, PB = 〈B, j,k〉 ∈ Parn
1: 〈A, l′,u′〉 ← rotA(PB)
2: for all i ∈ {1, . . . , n} do
3: l′i = max(l′i, li)
4: h′i = min(h′i, hi)
5: if (l′i > h′i) then
6: return ε
7: end if
8: end for
9: return 〈A, l′,u′〉

Since weak intersection is not relatively optimal, it happens that multiple
iterations of the reduction operator may improve the precision of the result [19],
at the cost of an increase in the computational cost of the operation.

All the operators �P,B on Par u Box except widening and narrowing are
simply defined componentwise, by first performing the operation on the original
domain and then applying the reduction operator:

〈P1, B1〉 �P,B 〈P2, B2〉 = red(〈P1 �P P2, B1 �B B2〉) (2)

Corollary 23. All the operations on ParuBox defined according to Equation 2
are correct, namely:

γ(〈P1, B1〉 �P,B 〈P2, B2〉) ⊇ γ(〈P1, B1〉)� γ(〈P2, B2〉)

The widening and narrowing operators cannot be defined using the reduc-
tion, since it may prevent termination. Thus we use a standard definition for
reduced product omitting the reduction step.

Definition 14 (Widening and narrowing). Given P1, P2 ∈ Par andB1, B2 ∈
Box, the abstract widening and narrowing on Par u Box are defined as

〈P1, B1〉 OP,B 〈P2, B2〉 = 〈(P1 O
P
P2), (B1 O

B B2)〉

〈P1, B1〉 MP,B 〈P2, B2〉 = 〈(P1 M
P P2), (B1 M

B B2)〉

7. Evaluating the reduced product

In the previous section, we have defined the reduced product Par u Box.
According to Section 5, we can easily design a parametric reduced product
along the lines of Par u Box, by simply tuning the flag favorAxes, so obtaining
the reduced products Par−axesuBox and Par+axesuBox. We have implemented a
prototype of the reduced products in the static analyzer Jandom and performed
the test on the ALICe benchmarks. We have performed two different kinds of
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Figure 7: Comparing Par with different versions of reduced product

evaluations. Firstly, we have compared the parametric versions of the reduced
product with the domain Par, in order to validate our intuition that the domain
Par−axes u Box is generally more precise than the other versions. Secondly, we
have tested the domain Par−axes u Box versus the domains Par, Par+axes and
Par−axes, in order to show the increment in precision that we gain when using
the reduced product.

7.1. Parametric reduced products
We have compared the domain of parallelotope Par to the reduce products

Par u Box, Par−axes u Box and Par+axes u Box. In addition, for completeness, we
have also implemented a naive analysis, denoted by Par ∩ Box, obtained by
separately performing the analysis with parallelotopes and intervals, and then
taking the intersection of the results only once at the end of the two analyses.

The results of the experiments are given in Figure 7. From the experiments
it emerges that the domain Par−axes u Box is more precise and more expressive,
since it is able to compute more and different invariants with respect to the
other domains, according to the two last columns of the bar chart which show
the program points with a better behavior (147) and those where we can produce
(at least a) new invariants (55). We strongly believe that the ability to found
new invariants is specially important.
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Figure 8: Comparing the reduced product Par−axes u Box with Par+axes, Par and Par−axes.

7.2. Reduced product vs parallelotopes
We have compared the best domain resulting from the previous section,

Par−axes u Box, with the different versions of parallelotopes Par, Par+axes and
Par−axes, in order to show the increment in precision obtained by considering
the combination with intervals. In all the tests, we have used a delayed widening
and narrowing, fixing the delay to 5, i.e. we avoid applying the widening and
narrowing operators during the first 5 iterations of any loop.

The comparison in Figure 8 shows that the reduced product highly improves
over the results of the analysis when using the parallelotopes alone.

8. Experimental comparison with other domains

We have compared the domain Par−axes u Box with the polyhedra [1], oc-
tagons [3] and intervals [2] abstract domains. The tests have been conducted in
the Jandom static analyzer. The comparison is mostly performed in precision,
since parallelotopes and intervals are implemented natively in Jandom, while for
polyhedra and octagons we use the PPL (Parma Polyhedra Library) [20] and
comparing the execution times would be unfair.

We have conducted two different evaluations. First, we have compared the
domain Par−axes u Box with the polyhedra, octagons and intervals domains. For
each model in the benchmarks and for each program point, we have evaluated
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Figure 9: Comparing Par−axes u Box with polyhedra, octagons and intervals. The first poly-
hedra domain is equipped with the standard polyhedra widening [1], the second one with the
widening in [21].

both the shapes and the bounds of the invariants found by the analyses. In the
experiments we use two different polyhedra domains, the first equipped with
the standard polyhedra widening [1], the second one with the widening in [21].

The results in Figure 9 show that in about one half of the program points
we obtain the same results as polyhedra and octagons. In the comparison with
octagons, we obtain a better result in 38 program points (out of 326), we get
worse results in 67 program points, and incomparable results in 62 program
points. Thus, in about one third of the cases (100 program points), we get
a better or different result than octagons. A similar conclusion holds for the
comparison with polyhedra.

Even if octagons seem to be better than our domain in many program points,
this is mainly due to the fact that octagons can represent a greater number
of constraints. In fact, it is worth noting that this comparison measures not
only the ability of the domain to discover better bounds or new invariants, but
also the total number of constraints found by each domain. Of course, this is
unfair with respect to the domain Par−axes u Box, which can represent at most
2n constraints, while octagons can represent n2 constraints, and the polyhedra
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Figure 10: Comparing Par−axes u Box with polyhedra, octagons and intervals on the interval
constraints.

potentially any number. Things change if we are interested in (a limited number
of) specific constraints, for instance interval constraints, which can be expressed
in all the domains. A precise interval analysis is very helpful in many contexts,
therefore it is interesting to compare the relative precision of different domains
with respect to interval properties. Thus, we have compared the analysis results
projecting them on the domain of intervals. The results are in Figure 10.

In this case, the domain Par−axes u Box dramatically outperforms the other
ones. This evaluation shows that, if we are interested in interval bounds only,
then the domain Par−axes u Box is strictly more precise than octagons in 69
program points (21.1%), octagons is better in 5 cases (1.5%), the results are
incomparable in only 1 program point (0.3%), and we get the same result on
the other program points.

Surprisingly, we get a similar result also when comparing Par−axes u Box with
polyhedra. In fact, our domain is strictly more precise than polyhedra [1] in 77
program points (23.6%), polyhedra is better in 13 cases (3.9%) and the results
are incomparable in 6 program points (1.8%). Similar results hold when we use
the widening in [21]. We believe that this improvement is mainly due to the
widening on polyhedra, which is responsible for losing precision with respect to
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Delay 3 4 5 6 7
equals 245 234 230 231 225
Par−axes u Box is better 58 73 77 79 85
polyhedra [1] is better 16 12 13 12 13
incomparable 7 7 6 4 3

Table 1: Comparing Par−axes u Box with polyhedra [1] using various widening and narrowing
delays.

Domain Time
Par−axes u Box 3.7
polyhedra [21] 2.6
polyhedra [1] 2.4
octagons 1.8
intervals 0.2

Table 2: Comparing analysis time. Results are in seconds.

more abstract domains.
Our experiments also show that the widening and narrowing delays may

greatly change the results of the comparison. In Table 1 we compare Par−axes u Box
with polyhedra [1] on the interval constraints using delays from 3 to 7. For in-
stance, when choosing the delay 5, we obtain the same result for 230 program
points, Par−axes u Box is better in 77 program points, polyhedra is better in 13
program points, and in 6 we get incomparable results.

Finally, we have briefly compared the efficiency of our domain with respect
to polyhedra, octagons and intervals. We believe that this is not completely fair
because we use the PPL [20] for polyhedra and octagons, which is carefully engi-
neered and optimized, so comparing their efficiency against our implementation
is difficult. Moreover, the PPL is written in C++, while our analyzer Jandom
[17], where we have implemented parallelotopes, box and their reduced product,
is written in Scala, so that we also pay the overhead of the Java virtual machine.
Table 2 shows some preliminary results. Analysis time is computed on the full
set of benchmarks and it is in seconds. Because of the above consideration, and
since there is still space for improvements on the abstract operators, we believe
that this result is actually very promising.

9. Conclusions

We have proposed a new, non-template abstract domain based on parallelo-
topes. The domain of parallelotopes can represent any linear constraint, thus
retaining the expressivity of the polyhedra abstract domain, with reasonable
computational costs. We have provided the full set of abstract operators and
have defined a reduced product with intervals. Operations are mostly performed
exploiting the inversion of the constraint matrix and, unlike template polyhedra,
do not resort to linear programming.
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We have experimentally validated the precision of parallelotopes versus the
domains of polyhedra and octagons. In many cases we compute more invariants
or invariants with tighter bounds. In particular, if we are interested in inferring
interval constraints, the reduced product of parallelotopes and intervals greatly
improves over polyhedra and octagons, still having a reasonable computational
cost similar to octagons.

We believe that the ability to potentially represent any constraint is the
key of the parallelotope domain, and makes it a valid alternative to template
polyhedra.

We think that the domain of parallelotopes can be further improved by ex-
ploring alternative heuristics used in some abstract operators, which need an
extensive experimental evaluation. Also the implementation of all the abstract
operators could be enhanced, avoiding to recompute the inverse matrix (or solv-
ing a full linear system) when only few rows of the constraint matrix vary.

Appendix (Proofs)

Theorem 1. For every parallelotope P there is a representation P such that
γ(P) = P .

Proof. If P is a parallelotope, there is A ∈ GL(n) and l,u ∈ R̄n such that (1)
holds. If P is empty, its representation is ε and γ(ε) = ∅ by definition. If P is
non-empty, then l ≤ u and for all i ∈ {1, . . . , n}, li 6= +∞ and ui 6= −∞. Hence
〈A, l,u〉 is a representation of P .

Theorem 2 (Parallelotopes and Representations). If P = 〈A, l,u〉 is a repre-
sentation of a parallelotope in Rn, the following holds:

1. dim(P) is equal to n− |E(P)|; 3

2. v 6= 0 is a ray in P iff for each i ∈ {1, . . . , n}, li ∈ R implies ai∗ · v ≥ 0
and ui ∈ R implies ai∗ · v ≤ 0;

3. P is bounded iff all the bounds are finite;
4. v 6= 0 is a line in P iff it is orthogonal to all the constrained rows.

Proof. We start proving the first point. Assume without loss of generality that
E(P) = {1, . . . ,m}. Since the rows of A are linearly independent, we know from
linear algebra that the solution set of the first m constraints in P is a flat of
dimension n−m. Therefore dim(P) ≤ n−m.

Now we prove the opposite inequality. Let us define vectors l̄, ū ∈ Rn such
that

l̄i =


li if li ∈ R
ui − 1 if li /∈ R and ui ∈ R
−1 otherwise

ūi =


ui if ui ∈ R
li + 1 if ui /∈ R and li ∈ R
+1 otherwise

3As an example of the problems which arise in considering representations with l 6≤ u, this
property is false in that case, since P is empty and dim(P) = −1 regardless of the number of
equality rows.
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Note that l ≤ l̄ ≤ ū ≤ u and l̄i < ūi for each i > m. For each i > m we
define ui = l̄[i 7→ ūi], and note that l̄ ≤ ūi ≤ u. To ease notation, we also
define un+1 = l̄. We prove that the set {ui}n+1

i=m+1 is affinely independent.
Assume otherwise, i.e.

∑n+1
i=m+1 λiu

i = 0 with
∑n+1
i=m+1 λi = 0 and λj 6= 0. We

have
∑n+1
i=m+1 λiu

i
j = (

∑
k 6=j λk)l̄j + λj ūj = −λj l̄j + λj ūj = 0. However, since

ūj 6= l̄j , this is only possible if λj = 0, which contradicts our hypothesis. Then
{ui}n+1

i=m+1 is affinely independent.
Since A is invertible, it is possible to find points {vi}n+1

i=m+1 such that Avi =

ui. By definition of ui we have that vi is a point in P. Since {ui}n+1
i=m+1 is a

set of affinely independent vectors, the same is true for {vi}n+1
i=m+1. Therefore

dim(P) ≥ n−m and this proves the result.
In order to prove the second point, assume v 6= 0 is a ray in P. If li ∈ R and

ai∗ · v = z < 0, consider a generic x ∈ P . Then it is possible to find k ≥ 0 such
that ai∗ · (x+kv) = ai∗ ·x+kz < li, which implies x+kv /∈ P . This is absurd,
hence ai∗ ·v ≥ 0. The case when ui ∈ R is similar. For the converse implication,
assume v 6= 0 such that for each i ∈ {1, . . . , n}, li ∈ R implies ai∗ · v ≥ 0 and
ui ∈ R implies ai∗ · v ≤ 0. We need to prove that v is a ray. Given x ∈ P
and α ≥ 0, consider the point w = x + αv. Then, Aw = Ax + αAv, where
l ≤ Ax ≤ u by definition. Given i ∈ {1, . . . , n}, if li ∈ R then ai∗ · v = z ≥ 0,
hence ai∗ ·w = ai∗ · x + αz ≥ ai∗ · x ≥ li. The same holds for the case ui ∈ R,
hence w ∈ P .

We come to the third point. It is clear that P is bounded iff it has no
rays. Assume there is a row ai∗ with ui = +∞, and we show that P has a
ray. We write ai∗ as v +w where v is in the space V of the rows of A different
from i, and w in V ⊥. Note that w 6= 0, otherwise A is not invertible, and
ai∗ ·w = w ·w > 0. Given a point x ∈ P , we have that aj∗ · (x+λw) = aj∗ ·x
for j 6= i, while ai∗ · (x + λw) ≥ ai∗ · x. Hence w is a ray. The same happens
if li = −∞. On the converse, assume P has a ray v. If all bounds are finite,
by the point 2 of this Lemma, we have that Av = 0, i.e., v = 0, which is not
possible since a ray, by definition, cannot be zero.

Finally, if v 6= 0 is orthogonal to all the constrained rows, then, according
to the second point, both v and −v are rays, hence v is a line. On the contrary,
assume v 6= 0 is a line and ai∗ has a real bound, let us say li ∈ R. Since v is a
ray, we have ai∗ · v ≤ 0, and since −v is a ray, we have ai∗ · v ≥ 0, hence v is
orthogonal to ai∗.

Corollary 3. The linearity space of a parallelotope P is V ⊥ where V is the
linear space generated by all the constrained rows of P. It is generated by the
orthogonal projections of the unconstrained rows onto V ⊥.

Proof. The fact that the linearity space of a parallelotope is V ⊥ is an immediate
consequence of the last point of the previous theorem.

For each unconstrained row ai∗ in P, consider its projection wi over V ⊥.
Since it is a vector in V ⊥, it is a line. Moreover, all the wi’s are linearly
independent. Actually, we have that ai∗ = wi + vi with vi ∈ V and wi ∈ V ⊥.
Since vi ∈ V , we have vi =

∑
j βijaj∗ where j ranges over the constrained
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rows. If
∑
i αiwi = 0, we have that

∑
i αiai∗ − αi

∑
i

∑
j βijaj∗ = 0, which

would mean that A is singular.

Theorem 4. Given the representation P = 〈A, l,u〉 and a vector c ∈ Rn, we
have that

inf
x∈P

c · x = inf
l≤y≤u

cTA−1y.

The computational complexity of the minimization operation is O(n3).

Proof. By replacing Ax with y we may transform the linear programming prob-
lem infx∈〈A,l,u〉 c · x = infl≤Ax≤u cTx into infl≤y≤u cTA−1y. The computa-
tional complexity is bounded by the cost for computing cTA−1, which may be
found out by solving for z in the system of linear equations zA = cT .

Theorem 5. Given a parallelotope P and A′ ∈ GL(n), rotA′(P) is the least
parallelotope definable over A′ which contains P, i.e., rotA′(P) = αA′(γ(P)).
The computational complexity of rotA′ is O(n3).

Proof. If P = ε the result is obvious. Otherwise, let P = 〈A, l,u〉. If we
want to compute αA′(γ(P)), it is enough to find out, for each row a′i∗ in A′,
the minimum and maximum value of a′i∗x for x ∈ γ(P). These will be the
values for l′i and u′i respectively. Note that infx∈P a′i∗x = infl≤y≤u a′i∗A

−1y by
Theorem 4. Moreover a′i∗A−1 = bi∗, which proves that αA′(γ(P)) = rotA′(P).
The computational cost is bounded by the cost for computing B, which may be
found out as the solution on X of the equation XA = A′.

Theorem 6. Given two representations P and P ′, we have that P ≤ P ′ iff
γ(P) ⊆ γ(P ′). Moreover, ≤ is a pre-order. The computational complexity of
deciding ≤ is O(n3).

Proof. Given the Galois connection between αA′ and γ, we have γ(P) ⊆ γ(P ′)
iff αA′(γ(P)) = rotA′(P) ≤ P ′ which is equivalent to P ≤ P ′. The fact that
≤ is a pre-order immediately follows from its characterization in terms of γ
and ⊆. The computational complexity of deciding ≤ is clearly bounded by the
complexity of rot which is O(n3).

Theorem 7. The operation assignα(i, c, b) is correct and γ-complete. The com-
putational complexity is O(mn) where m is the number of non-zero components
in c.

Proof. It trivially holds that assign(i, c, b)(γ(ε)) = assign(i, c, b)(∅) = ∅ = γ(ε).
Given P = 〈A, l,u〉 ∈ Parn, we have

assign(i, c, b)(γ(P))

= {x[i 7→ c · x + b] | l ≤ Ax ≤ u}
= {Kx + bei | l ≤ Ax ≤ u}
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where K = In+ei(c−ei)T . Note that K is invertible and K−1 = In− 1
ci
ei(c−

ei)T . Therefore, by the change of variable y = Kx + bei, we have

assign(i, c, b)(γ(P))

= {y | l ≤ AK−1(y − bei) ≤ u}
= {y | l + bAK−1ei ≤ AK−1y ≤ u + bAK−1ei}.

Since AK−1 = A− 1
ci
a∗i(c−ei)T we have AK−1ei = a∗i− 1

ci
a∗i(ci−1) = 1

ci
a∗i.

Hence

assign(i, c, b)(γ(P))

=

{
y | l +

b

ci
a∗i ≤

(
A− 1

ci
a∗i(c− ei)T

)
y ≤ u +

b

ci
a∗i

}
= γ(assignα(i, c, b))(P).

This proves that assignα(i, c, b) is γ-complete. The computational complexity of
this operation is dominated by the cost of computing all non-zero products in
a∗i(c−ei)T , which is O(mn). This is true even if we use a dense representation
for vectors and matrices, since 1

ci
a∗i(c−ei)T may be subtracted from A without

materializing it.

Proposition 8. Given two parallelotopes 〈A, l,u〉 ≤ 〈A′, l′,u′〉, we have that

forget(i)(γ(〈A, l,u〉)) ⊆ γ(〈A′, l′,u′〉) iff ∀j(a′ji 6= 0→ (l′j = −∞∧ u′j = +∞)).

Proof. If a′ji 6= 0→ (l′j = −∞∧ u′j = +∞) for all j, it follows immediately that
for each v ∈ R and x ∈ 〈A′, l′,u′〉, x[i 7→ v] ∈ 〈A′, l′,u′〉, since the variable
xi is not used in l′ ≤ A′x ≤ u′. Since 〈A, l,u〉 ≤ 〈A′, l′,u′〉, it follows that
forget(i)(γ(〈A, l,u〉)) ⊆ γ(〈A′, l′,u′〉).

Now, let forget(i)(γ(〈A, l,u〉)) ⊆ γ(〈A′, l′,u′〉). By contradiction, assume
there exists an index j such that a′ji 6= 0 and l′j ∈ R. Let x ∈ 〈A, l,u〉 and let
v ∈ R such that va′ji < l′j−a′j∗x. It follows that a′j∗·(x+vei) = a′j∗·x+va′ji < l′j ,
and thus x+ vei /∈ 〈A′, l′,u′〉. However, x+ vei ∈ forget(i)(γ(〈A, l,u〉)), which
is a contradiction. The case that there exists an index j such that a′ji 6= 0 and
u′j ∈ R is analogous.

Theorem 9. The operator forgetα(i) described in Algorithm 1 is correct and
relatively optimal. The computational complexity is O(n2).

Proof. The algorithm begins at line 1 by computing a set J of indexes. Each
element j ∈ J is the index of a constrained row aj∗ of the constraint matrix
A, where the i-th component aji is non-zero. If J is empty, by Proposition 8,
γ(P) = forget(i)(γ(P)) and therefore we return P. The result is γ-complete,
and thus relatively optimal.

Otherwise, lines from 6 to 14 of the algorithm choose an index r ∈ R, accord-
ing to a given heuristic. The loop at lines 15–21 finds a new constraint matrix
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A′ and builds at the same time the parallelotope 〈A′, l′,u′〉 = rotA′(P ). In par-
ticular, the r-th constraint of the parallelotope (lr ≤ a∗r ≤ ur) is combined with
the j-th constraint (lj ≤ aj∗ ≤ uj) to obtain a new constraint l′j ≤ a′j∗ ≤ u′j
which is implied by the first two. The set of rows {a′j∗ | j ∈ J} generates the
same vector space as {aj∗ | j ∈ J}, therefore A′ is invertible. Moreover, after
the loop a′ji = 0 for each j ∈ J \ {r}.

From Proposition 8, we know that the smallest parallelotope whose con-
straint matrix is A′ and which contains forget(i)(γ(P)) is given by turning the
constrained rows which contain a non-zero entry in the i-th position into uncon-
strained rows. There is only one such a row in A′, which is row r. The bounds
for this row are changed in the final return statement.

The complexity is bounded by the cost of determining all the linear combi-
nations in the loop at lines 15–21.

Theorem 10. If ei is a line in P or J0 6= ∅, then it holds that γ(forgetα(i)(P)) =
forget(i)(γ(P)).

Proof. If ei is a line in γ(P), then forget(i)(γ(P)) = γ(P). Moreover, since ei

is orthogonal to the constrained rows in P (Theorem 2), it means that J in line
1 of the algorithm is empty, hence forgetα(i)(P) = P.

Otherwise, assume the set J0 in line 6 of the algorithm is not empty and the
row ar∗ chosen in line 9 is an equality constraint, with bounds lr = ur = α.

We now prove that the steps 15–21 in the algorithm do not change the
parallelotope. Consider the constraint c1 ≡ l′j ≤ a′j∗ · x ≤ u′j computed during
the for loop. We prove that this constraint together with the r-th constraint
of P, i.e. c ≡ ar∗ = α, is equivalent to the combination of the r-th and j-th
constraint of P, i.e. c2 ≡ lj ≤ aj∗ · x ≤ uj . Given what we have said in the
proof of correctness, we only need to check that the j-th constraint of P is a
logical consequence of the new constraint and the r-th constraint in P. Assume
without loss of generality that ari > 0 and aji > 0. Then

c1 ≡ ajiα− ariuj ≤ (ajiar∗ − ariaj∗) · x ≤ ajiα− arilj .

It is easy to check that (ajic− c1)/ari = c2. Since this holds for all j ∈ J \ {r},
we have that, at the end of the loop, 〈A′, l′,u′〉 and P are representations for
the same parallelotope.

The last step is removing the bounds in the row r, which is the only con-
strained row with a non-null i-th coefficient.

Now, given a generic point x ∈ γ(forgetα(i)(P)), we need to prove that
x ∈ forget(i)(γ(P)). It is obvious that y = x + λei ∈ γ(forgetα(i)(P)) for
each λ ∈ R. Note that, for each constrained row a′j∗ with j 6= r, we have that
a′j∗ ·y = a′j∗ ·x, while ar∗ ·y = ar∗ ·x+λari. By choosing λ = α− (ar∗ ·x)/ari,
we have y ∈ γ(〈A′, l′,u′〉) = γ(P). Since x = y − λei and y ∈ γ(P), then
x ∈ forget(i)(γ(P)).

Lemma 24. Consider the polyhedron P = {x ∈ Rn | l ≤ Ax ≤ u} such that
A ∈ R(m,n) has maximal row rank, a∗r = 1 (the column vector with 1 in all
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its components) and l,u ∈ R̄n with l < u. The set of constraints generated by
Fourier-Motzkin elimination is {(ai∗ − aj∗) · x ≤ ui − lj | i, j ∈ {1, . . . ,m}}.
None of these constraints is redundant.

Proof. First of all, considering l ≤ Ax ≤ u as a short form of Ax ≤ u and
−Ax ≤ −l and applying Fourier-Motzkin elimination, we obtain the set

{(ai∗ − aj∗) · x ≤ ui − lj | i, j ∈ {1, . . . , n}} .

Without loss of generality, consider the inequality (a1∗ − a2∗) ·x ≤ u1 − l2 and
assume u1− l2 is finite. We want to prove that this constraint is not redundant.

By Farkas Lemma, this inequality is redundant iff there are λij ≥ 0 such
that λ12 = 0 and

a1∗ − a2∗ =
∑
i,j

λij(ai∗ − aj∗) (3)

and ∑
i,j

λij(ui − lj) ≤ u1 − l2 .

We may rewrite
∑
i,j λij(ai∗−aj∗) as

∑
i,j λijai∗−

∑
i,j λijaj∗ =

∑
i,j λijai∗−∑

i,j λjiai∗ Since the ai∗ are linearly independent, we have that (3) holds iff

∑
j

λij −
∑
j

λji =


1 if i = 1

−1 if i = 2

0 otherwise.
(4)

Let αi =
∑
j λji and βi =

∑
j λij . Equation 4 means that β1 = 1 + α1,

β2 = −1 + α2 and αi = βi for each i > 2. Using these relationships, we may
rewrite

∑
λij(ui − lj) ≤ u1 − l2 as follows:∑

i,j

λij(ui − lj) =
∑
i

(∑
j

λij

)
ui −

∑
i

(∑
j

λji

)
li

=
∑
i

(βiui − αili)

= (α1 + 1)u1 − α1l1 +
∑
i>2

(αiui − αili) + β2u2 − (1 + β2)l2

= u1 − l2 +
∑
i6=2

αi(ui − li) + β2(u2 − l2) .

Since ui > li , λij ≥ 0 and
∑
i,j λij(ui− lj) ≤ u1− l2, then αi = 0 for each i 6= 2

and β2 = 0. This entails that the only possibly positive λ’s are the λj2 with
j > 2. Let h > 2 such that λh2 > 0, then βh = αh > 0, which is a contradiction.
Therefore all the λij are zero, i.e. a1∗ = a2∗ which is not possible since A is of
maximal row rank. Therefore a1∗ − a2∗ ≤ u1 − l2 is not redundant.
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Corollary 25. Consider the polyhedron P = {x ∈ Rn | l ≤ Ax ≤ u} such
that A ∈ R(m,n) has maximal row rank, a∗r has no zero components and
l,u ∈ R̄n with l < u. Then, none of the constraints obtained by Fourier-Motzkin
elimination of P is redundant.

Proof. Consider the matrix A′ such that a′ij = aij/air, and vectors l′ and u′

such that

l′i =

{
li/air if air > 0;
ui/air otherwise;

u′i =

{
ui/air if air > 0;
li/air otherwise.

Then P = {x ∈ Rn | l′ ≤ A′x ≤ u′}. We may apply Lemma 24 and note that
each constraint (a′i∗ − a′j∗) · x ≤ u′i − l′j is equivalent to one of the constraints
obtained by Fourier-Motkin elimination of P . For example, if air > 0 and
ajr < 0, constraints ai∗ · x ≤ ui and aj∗ · x ≤ uj are combined into (−ajrai∗ +
airaj∗) · x ≤ −ajrui + airuj , which is equivalent to (ai∗/aij − aj∗/ajr) · x ≤
ui/air − uj/ajr, i.e, (a′i∗ − a′j∗) · x ≤ u′i − l′j . The other cases are similar.

Proposition 11. Given a parallelotope 〈A, l,u〉 and a column index i, assume
that lj < uj for each constrained row j such that aji 6= 0. Consider the polyhe-
dron obtained by Fourier-Motzkin elimination of the i-th variable. None of its
constraints with finite bounds is redundant.

Proof. Let J be defined as in Algorithm 1, i.e. J = {j | aji 6= 0, lj 6= −∞∨uj 6=
+∞}. We have that the result of Fourier-Motzkin elimination is the polyhedron

{x ∈ Rn | l−J ≤ A−J∗x ≤ u−J} ∩ {x ∈ Rn | Dx ≤ d}

where Dx ≤ d is the set of constraints determined by Fourier-Motzkin elimina-
tion from the polyhedron {x ∈ Rn | lJ ≤ AJ∗ ·x ≤ uJ}. We need to prove that
all the constraints with finite bounds are not redundant. All finitely bounded
constraints of the kind lj ≤ aj∗ · x or aj∗ · x ≤ uj for j /∈ J are not redun-
dant simply because aj∗ is linearly independent from all the rows in D and in
A−(J∪{j})∗. Therefore, it is not possible for such a constraint to be a positive
linear combination of other constraints.

Moreover, since the rows of D are linearly independent from the rows of
A−J∗, if a constraint generated by D is redundant, then it should be a positive
linear combination of other constraints generated by D. This is not possible by
Corollary 25.

Lemma 26. Let P ⊆ P ′ ⊆ P ′′ be convex sets, and H an hyper-plane. If P ∩H
and P ′′ ∩H are faces of dimension k, then P ′ ∩H is a face of dimension k.

Proof. By definition, if C is a convex set and H is a hyper-plane, C ∩ H is a
face when it is non-empty and C is entirely on one side of H. Since P ∩H is
non-empty and P ′ ⊇ P , then P ∩H is not-empty. Moreover, since P ′′ is entirely
on one side of H and P ′ ⊆ H, then P ′ is entirely on one side of H. Then P ′∩H
is a face. Moreover, since P ∩ H ⊆ P ′ ∩ H ⊆ P ′′ ∩ H and both P ∩ H and
P ′′ ∩H have dimension k, also P ′ ∩H has dimension k.
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Theorem 12. The operator forgetα(i) is minimal.

Proof. Let P = 〈A, l,u〉 be a parallelotope representation and P = γ(P) ⊆ Rn.
If we are in the case where forgetα(i) is γ-complete, then it is also minimal.
Otherwise, assume P has a equality rows and u unconstrained rows. Therefore,
dim(P ) = n − a and dim(lin(P )) = u. If j is an equality row, then aji = 0,
otherwise we fall in the case where forgetα(i) is γ-complete.

Consider now the polyhedron forget(i)(P ). By the properties of P dis-
cussed above, we have that dim(forget(i)(P )) = dim(P ), aff.hull(forget(i)(P )) =
aff.hull(P ) and dim(lin(forget(i)(P ))) = u+ 1. Assume c ≡ v · x ≤ u is a con-
straint generated by Fourier-Motzkin elimination and H = {x | v ·x ≤ u}. Since
c is not redundant, by a property of polyhedron we have that forget(i)(P ) ∩H
is a facet of forget(i)(P ), i.e., a face of dimension dim(P )− 1.

If P ′ = forgetα(i)(P) = 〈A′, l′,u′〉 and P ′ = γ(P ′) we have that P ′ has a
equality rows and u + 1 unconstrained rows. The constraints corresponding to
the equality rows are unchanged from those in P, hence dim(P ′) = dim(P ),
aff.hull(P ′) = aff.hull(P ) and dim(lin(P ′)) = u+ 1. The other constraints are
a selection of constraints obtained by Fourier-Motzkin elimination. Since these
constraints were non-redundant in forget(i)(P ) by Proposition 11, they are also
non-redundant in P ′. Hence if a′j∗ · x ≤ uj is a bounded constraint in P ′ and
H = {x | a′j∗ · x ≤ uj}, then P ′ ∩ H is a facet of P ′. The same holds for
constraints of the kind lj ≤ a′j∗ · x.

Now assume P ′′ is a correct approximation of forget(i)(P ) such that P ′′ ≤
P ′ and P ′′ = γ(P ′′). Therefore, dim(P ′′) = dim(P ′) = dim(forget(i)(P )),
aff.hull(P ′′) = aff.hull(P ′) = aff.hull(forget(i)(P )) and dim(lin(P ′′)) = u + 1.
We want to prove that in P ′′ should explicitly appear all the constraints which
appear in P ′. Without loss of generality, consider the constraint a′j∗ ·x ≤ uj in
P ′ and H = {x | a′j∗ ·x ≤ uj}. We know that both P ′∩H and forget(i)(P )∩H
are faces of dimension dim(P ′) − 1. By Lemma 26, P ′′ ∩H is a face of P ′′ of
the same dimension, and since dim(P ′′) = dim(P ′) then P ′′ ∩H is a facet.

For a polyhedron, and therefore also for a parallelotope, facets exactly cor-
responds to the inequality constraints in its definition. Therefore, a′j∗ · x ≤ uj
(or an equivalent multiple) should appear in P ′′. This holds for all constrained
inequality rows of A′ and for constraints determined by either lower or upper
bounds. Since a rows in P ′′ are needed for the equality constraints which force
aff.hull(P ′′) = aff.hull(P ′) and u+ 1 row should remain unconstrained, so that
dim(lin(P ′′)) = dim(lin(P ′)), we have that all remaining constraints in P ′′ are
multiples of constraints in P ′, and therefore P ′′ = P ′.

Theorem 13. The operator assignα(i, c, b) described in Algorithm 2 is correct.
The computational complexity is O(n2).

Proof. We begin by proving that lines 2–5 of the algorithm change the represen-
tation P ′ = 〈A′, l′,u′〉 into another representation for the same parallelotope.
First of all, we need to check that the new vectors vs = a′s∗ − (a′si/a

′
ji)a

′
j∗ cor-

respond to unbounded directions in γ(P ′), i.e., that the linear form x 7→ vs · x
is unbounded for x ∈ γ(P ′). Note that this does not mean that vs is a line.
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Since A′ is invertible, vs cannot be obtained as a linear combination of the
constrained rows of A′, hence vs = λ1w1 + λ2w2 where w2 is a line and w1 is
orthogonal to the linearity space of P ′. Hence, inf{vs · x | x ∈ P ′} = −∞ and
sup{vs · x | x ∈ P ′} = +∞. Moreover, the operations at line 4 are basic row
operations, which are known to preserve the rank of a matrix.

At line 6, a′j∗ is the only row in A′ with a non-zero i-th component. If
we replace it with another row which has a non-empty i-th component, such
as ei − c, the matrix remains invertible. Moreover, ei − c is an unbounded
direction in forgetα(i)(〈A, l,u〉). Therefore, at the end of line 6, we still have
γ(〈A′, l′,u′〉) = γ(forgetα(i)(〈A, l,u〉)).

Lines 7 and 8 in the algorithm amount to building the parallelotope represen-
tation αA′(assign(i, c, b)(γ〈A′, l′,u′〉)) = αA′(assign(i, c, b)(γ(forgetα(i)〈A, l,u〉))).
Since forgetα(_) is correct, this proves the correctness of the non-invertible as-
signment.

The computational complexity of the algorithm is dominated by the cost of
the loop at lines 3–5, which is O(n2).

Theorem 14. Consider c ∈ Rn, b ∈ R and ci = 0. If P is a parallelotope in
Rn and ei is a line in P or J0 6= ∅ in Algorithm 1 then γ(assignα(i, c, b)(P)) =
assign(i, c, b)(γ(P)).

Proof. Assume P = 〈A, l,u〉 and 〈A′′, l′′,u′′〉 = assignα(i, c, b)(P). Consider
a generic x ∈ γ(assignα(i, c, b)(P)). If j is the row determined at line 2 of
Algorithm 2, then a′′j∗x = b, which means that x satisfies the equation xi =

c · x + b. At then end of line 5 of Algorithm 2, we have values of A′, l′ and
u′ which only differ from A′′, l′′ and u′′ for the j-th constraint, which directly
comes from the result of forgetα(i). From the definition of forgetα(i), it turns
out that l′j = −∞ and u′j = +∞, hence x ∈ γ(〈A′, l′,u′〉). Since lines 2–5 in the
algorithm do not change the parallelotope, we have x ∈ γ(forgetα(i)(P)). By
Theorem 10, x ∈ forget(i)(γ(P)), and since x satisfies the equation xi = c·x+c,
then also x ∈ assign(i, c, b)(forget(i)(γ(P))) = assign(i, c, b)(γ(P)).

Theorem 15. The operator assignα(i, c, b) with ci = 0 is minimal.

Proof. Let P ′′ = 〈A′′, l′′,u′′〉 be a correct approximation of assign(i, c, b)(P),
P ′ = 〈A′, l′,u′〉 = assignα(i, c, b)(P) and assume P ′′ ≤ P ′.

Note that γ(P ′) lies on the hyper-plane (ei − c) · x = b. Since P ′′ ≤ P ′, the
same holds for γ(P ′′). It is easy to check that this implies

γ(P ′′) = assign(i, c, b)(forget(i)(γ(P ′′))) . (5)

Since P ′′ lies in the hyper-plane (ei − c) · x = b, one of its equality rows must
have a non-zero i-th component. The same also holds for P ′. By Theorem 10
we get:

γ(forgetα(i)(P ′)) = forget(i)(γ(P ′)) , (6)
γ(forgetα(i)(P ′′)) = forget(i)(γ(P ′′)) . (7)

39



Moreover, it is clear that forget(i) ◦ assign(i, c, b) = forget(i) and γ ◦ forgetα(i) ◦
assignα(i, c, b) = γ ◦ forgetα(i). Therefore, by (7),

γ(forgetα(i)(P ′′)) = forget(i)(γ(P ′′)) ⊇
⊇ forget(i)(assign(i, c, b)(γ(P))) = forget(i)(γ(P))

which means that forgetα(i)(P ′′) is a correct approximation of forget(i)(P).
Moreover, by (6) and (7),

γ(forgetα(i)(P ′′)) = forget(i)(γ(P ′′)) ⊆ forget(i)(γ(P ′)) =

= γ(forgetα(i)(P ′)) = γ(forgetα(i)(assignα(i, c, b)(P))) = γ(forgetα(i)(P)) ,

hence γ(forgetα(i)(P ′′)) ⊆ γ(forgetα(i)(P)). However, by Theorem 12, we have
that forgetα(i)(P) is a minimal correct approximation of forget(i)(P). Hence,
we have γ(forgetα(i)(P ′′)) = γ(forgetα(i)(P)), and together with (7) this gives
forget(i)(γ(P ′′)) = γ(forgetα(i)(P)). Therefore, by (5),

γ(P ′′) = assign(i, c, b)(forget(i)(γ(P ′′))) = assign(i, c, b)(γ(forgetα(i)(P))

and since ei is a line in forgetα(i)(P), by Theorem 14 we have that γ(P ′′) =
γ(assignα(i, c, b)(forgetα(i)(P))) = γ(assignα(i, c, b)(P)).

Theorem 16. The operator refineα(c, b) described in Algorithm 3 is correct and
relatively optimal. If c /∈ lin(γ(P))⊥, then refineα(c, b)(P) is γ-complete. The
computational complexity is O(n3).

Proof. Assume P = 〈A, l,u〉, and let y ∈ Rn be the solution of the equation
ATy = c. First of all, we prove γ-optimality when c /∈ lin(γ(P))⊥. In this case
there is an index j that satisfies the condition in line 2 of the algorithm: since
c /∈ lin(γ(P))⊥, then c is not a linear combination of the constrained rows in
P. Steps 3 and 4 introduce the new constraint and, due to the choice of j, the
modified matrix A is invertible. Let A′, l′, u′ be the values of variables A, l
and u at line 5, i.e., 〈A′, l′,u′〉 = refineα(c, b)(P). Then x ∈ γ(〈A′, l′,u′〉) iff
x ∈ γ(〈A, l,u〉) and c · x ≤ b iff x ∈ refine(c, b)(γ(P)). This proves that, when
c /∈ lin(γ(P))⊥, refineα(c, b) is γ-complete.

We now prove correctness when c ∈ lin(γ(P))⊥. Note that, in this case,

refine(c, b)(P) = {x | l ≤ Ax ≤ u ∧ c · x ≤ b} =

{A−1z | l ≤ z ≤ u ∧ c · (A−1z) ≤ b} =

{A−1z | l ≤ z ≤ u ∧ ((AT )−1c) · z ≤ b} =

{A−1z | l ≤ z ≤ u ∧ y · z ≤ b} =

{A−1z | z ∈ refine(y, b)(γ(〈In, l,u〉))} =

{x | Ax ∈ refine(y, b)(γ(〈In, l,u〉))} ⊆
{x | Ax ∈ γ(refineα(y, b)(〈In, l,u〉))}
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If refineα(y, b)(〈In, l,u〉) = 〈In, l′,u′〉, the last set in the previous equation is
equal to γ(〈A, l′,u′〉). Since 〈A, l′,u′〉 is the result computed in lines 7–8 of the
algorithm, we have that Algorithm 3 is correct. Moreover, since refineα(c, b) on
boxes is optimal, the algorithm is also relatively optimal.

Finally, the computational complexity of the algorithm is bounded by the
time needed to solve the system of linear equations in line 1, which is O(n3).

Theorem 17. The abstract union operator described in Algorithm 5 is correct
and relatively optimal. The computational complexity is O(n4).

Proof. We first prove that the result of Algorithm 5 is correct.
Given two parallelotopes PA,PB ∈ Parn and a vector v ∈ Rn, Algorithm 4

computes a triple 〈l, u, p〉 ∈ R̄3. By line 22 in Algorithm 4 we know that
l = min(inf{v · x | x ∈ PA}, inf{v · x | x ∈ PB}), and thus l = inf{v · x | x ∈
PA ∪ PB}. Symmetrically we have that u = sup{v · x | x ∈ PA ∪ PB}.

In Algorithm 5, we first fill a priority queue Q with the candidate constraints.
The lines 2-6 ensure that all the rows of the matrices A and B are added
to Q. By line 4, we insert in Q the constraints with their lower and upper
bounds, as computed by Algorithm 4. With the lines 7-22 we insert in Q
the candidate constraints which form an inversion, with their lower and upper
bounds computed by Algorithm 4. The while loop in lines 24-29 extracts n
linearly independent elements from Q which form the constraint matrix. First
note that the queue Q contains at least n such linear forms. In fact, all the n
constraints of A are in the queue, and they are linearly independent. Thus, lines
25-28 which extract n linearly independent elements from Q always succeed.

Moreover, for each 〈v, c, d〉, in the queue, we know by Algorithm 4 that
c = inf{v · x | x ∈ PA ∪ PB}, and d = sup{v · x | x ∈ PA ∪ PB}. Thus,
γ({x ∈ Rn | c ≤ v · x ≤ d}) ⊇ γ(PA) ∪ γ(PB). By line 27 we know that the
resulting matrix R is formed by n linear forms all enjoying this property. Then
for the algorithm output 〈R, l′,u′〉 it holds that γ({x ∈ Rn | l′ ≤ Rx ≤ u′}) =
∩i∈{1,...,n}γ({x ∈ Rn | l′i ≤ ri∗ · x ≤ u′i}) which, by the previous property,
⊇ γ(PA) ∪ γ(PB). Thus the union operator is correct.

Relative optimality immediately follows from the fact that Algorithm 4 com-
putes the tightest bounds in lines 1-4.

The computational complexity of Algorithm 4 is O(n3) by Theorem 4, and
all the other operators on vectors have a lower complexity. But the complexity
is O(n3) only the first time, since we need to compute the inverse of the two
matrices. Successive calls have a complexity of O(n2).

Since Algorithm 4 is called n times in lines 2-5, n times in line 6, at most
n2 times in the loop in 7-19, and the same for lines 20, 21 and 22, we have
that the complexity of all the vector operations is at most O(n4). The other
part comes from the complexity for insert and extract operations in the priority
queue. We perform at most O(n2) insert operations in lines 7-22, and at most
O(n2) extract operations in line 25 (since the number of elements in the queue
is at most O(n2)), and thus the complexity is bounded by O(n4).
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Lemma 27. Given the parallelotope P = 〈A, l,u〉 in Rn and A′ ∈ GL(n), let
P ′ = rotA′(P) = 〈A′, l′,u′〉. Then, the sum of the number of infinite components
in l′ and u′ is greater or equal then the sum of the number of infinite components
in l and u.

Proof. Each row of A′ may be written as a linear combination of the rows in A.
Assume we have

a′j∗ =

n∑
i=1

λiai∗

with λk > 0 and assume uk = +∞. Then either supx∈P a′j∗ · x = +∞ or
infx∈P a′j∗ · x = −∞. Consider the set R of all the rows in A with an infinite
upper bound. Then, there are at least |R| rows in A′ whose linear combinations
involve rows in R. Actually, if this is not the case, it means that there are
strictly more than n−|R| linearly indipendent rows in A′ which may be written
as linear combination of n − |R| rows in A, and this is impossible. Therefore,
to each infinite upper bound in P corresponds an infinite lower or upper bound
in P ′. The same happens for the lower bounds. Therefore, the set of infinite
bounds in P ′ is no less than the set of infinite bounds in P.

Theorem 18. The operator O is a widening.

Proof. The fact that O is an upper bound immediately derives from the fact that
O is an upper bound. Now consider a sequence P0, . . . ,Pi, . . . of parallelotopes.
We do not require the sequence to be increasing. We need to prove that the
sequence {Pwi } defined as Pw0 = P0 and Pwi = Pwi−1OPi for i > 0 is definitively
stationary. Let Pi = 〈Ai, li,ui〉 and Pwi = 〈Awi , l

w
i ,u

w
i 〉.

We show that for each i, either Pwi = Pwi+1 or the number of infinite compo-
nents in lwi and uwi is strictly smaller than the number of infinite components in
lwi+1 and uwi+1. This is obviously true when Pwi+1 = Pwi O Pi. Now we consider
the case rotAi+1

(Pwi ) < Pi+1, which implies Pwi+1 = rotAi+1
(Pwi ) O Pi+1. By

Lemma 27 we now that the number of infinite bounds in rotAi+1
(Pwi ) is greater

or equal than the number of infinite bounds in Pwi . Since Pi+1 is strictly greater
than rotAi+1(Pwi ) and we apply the O widening, at least one finite bound is
turned into an infinite bound.

Theorem 19. In the hypothesis of Definition 10, let F̄ be a (possibly non-
monotone) abstract operator F̄ : A → A which is a correct abstraction of the
monotone operator F : C → C. Given a ∈ A, let c ∈ C be a fixpoint of F such
that c ⊆ γ(a). We define the iteration sequence y0 = a, yi+1 = yiM F̄ (yi). Then

• the iteration sequence {yi}i∈N is decreasing and definitively stationary;

• for each i ∈ N, yi is a correct approximation of c.

Proof. The fact that {yi}i∈N is decreasing and definitively stationary immedi-
ately follows from the first and third properties in the definition of narrowing.
Now we prove that if c ⊆ γ(yi), i.e., yi is a correct approximation of c, then
c ⊆ γ(yi+1). By the second property of narrowing, γ(yi+1) ⊇ γ(yi) ∩ γ(F̄ (yi)).

42



By correctness of F̄ , we have γ(F̄ (yi)) ⊇ F (γ(yi)) ⊇ F (c) = c, and γ(yi+1) ⊇
c.

Theorem 20. The operator M for parallelotopes is a narrowing according to
Definition 10.

Proof. Since PA MPB is built on the same constraint matrix of PA by possibly
restricting the bounds, then PA MPB ≤ PA. Now, let PA, PB and rotA(PB) as
in Definition 11. Assume x ∈ γ(PA) ∩ γ(PB). Then, for each row i in A, we
have li ≤ ai∗x ≤ ui and j′i ≤ ai∗x ≤ k′i, hence max(li, j

′
i) ≤ ai∗x ≤ min(ui, k

′
i).

Since l′i ≤ max(li, j
′
i) and u′i ≥ min(ui, k

′
i), then l′i ≤ ai∗x ≤ u′i, hence x ∈

γ(PA M PB). Termination is guaranteed because bounds may be enlarged at
most 2n times.

Proposition 21. The operator ∩α is a correct approximation of the concrete
intersection. It is γ-complete when the two arguments are defined over the same
constraint matrix.

Proof. We first prove that when P1 = 〈A, l,u〉 and P2 = 〈A, l′,u′〉 are defined
over the same constraint matrix, then ∩α is γ-complete. In this case the rot
operation is a no-op, hence rotA(P2) = P2. Let x ∈ γ(P1) ∩ γ(P2). This is
equivalent to l ≤ Ax ≤ u and l′ ≤ Ax ≤ u′. If we use l′′ and u′′ as in the
definition of weak intersection, we have the equivalent property l′′ ≤ Ax ≤ u′′.
If l′′ ≤ u′′, this means x ∈ γ(〈A, l′′,u′′〉), otherwise the intersection is empty.
In both cases x ∈ γ(P1) ∩α γ(P2) iff x ∈ γ(P1 ∩α P2).

Now, let us consider the general case. It is immediate to check that if
P1 = 〈A, l,u〉, then P1 ∩α P2 = P1 ∩α rotA(P2). By the γ-completeness proved
above, γ(P1 ∩α P2) = γ(P1)∩ γ(rotA(P2)) ⊇ γ(P1)∩ γ(P2), i.e., ∩α is a correct
abstraction of ∩.

Proposition 22. The reduction operator is correct, i.e., given any P ∈ Par and
B ∈ Box, we have that γ(red(〈P,B〉)) = γ(〈P,B〉).
Proof. We need to prove that, given any P ∈ Par and B ∈ Box, we have that
γ(red(〈P,B〉)) ⊇ γ(P ) ∩ γ(B).

First note that, given any P ∈ Par and matrix A ∈ GL(n), we have that P ≤
rotA(P ). Thus, the weak intersection on parallelotopes correctly approximates
the concrete intersection, namely

γ(P1 ∩α P2) ⊇ γ(P1) ∩ γ(P2)

and therefore
γ(red(〈P,B〉)) ⊇ γ(P ) ∩ γ(B)

which proves the result.

Corollary 23. All the operations on ParuBox defined according to Equation 2
are correct, namely:

γ(〈P1, B1〉 �P,B 〈P2, B2〉) ⊇ γ(〈P1, B1〉)� γ(〈P2, B2〉)

Proof. It immediately follows from Proposition 22.
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