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Abstract

Accelerated fixpoint iteration by means of widening and narrowing is the method
of choice for solving systems of equations over domains with infinite ascending
chains. The strict separation into an ascending widening and a descending
narrowing phase, however, may unnecessarily give up precision that cannot be
recovered later. It is also unsuitable for equation systems with infinitely many
unknowns—where local solving must be used.

As a remedy, we present a novel operator � that combines a given widening
operator ∇ with a given narrowing operator ∆. We present adapted versions
of round-robin and worklist iteration as well as local and side-effecting solving
algorithms for the combined operator �. We prove that the resulting solvers
always return sound results and are guaranteed to terminate for monotonic
systems whenever only finitely many unknowns are encountered.
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1. Introduction

From an algorithmic point of view, static analysis typically boils down to
solving systems of equations over a suitable domain of values. The unknowns of
the system correspond to the invariants to be computed, e.g., for each program
point or for each program point in a given calling context or instance of a
class. For abstract interpretation, complete lattices were proposed as domains
of abstract values (Cousot and Cousot, 1977a). In practice, partial orders can
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be applied which are not necessarily complete lattices as long as they support
an effective binary upper bound operation. This is the case, e.g., for polyhedra
(Cousot and Halbwachs, 1978), zonotopes (Ghorbal et al., 2009) or parallelotopes
(Amato and Scozzari, 2012). Still, variants of Kleene iteration can be used
to compute solutions. Right from the beginnings of abstract interpretation, it
became clear that many interesting invariants can only be expressed by domains
with infinite strictly ascending chains. In the presence of possibly infinite strictly
ascending chains, naive Kleene iteration is no longer guaranteed to terminate.
For that reason, Cousot and Cousot proposed a widening iteration to obtain
a valid invariant or, technically speaking, a post solution which subsequently
may be improved by means of a narrowing iteration (Cousot and Cousot, 1976,
1992b). The widening phase can be considered as a Kleene iteration that is
accelerated by means of a widening operator to enforce that only finitely many
increases of values occur for every unknown. While enforcing termination, it may
result in a crude over-approximation of the invariants of the program. In order
to compensate for that, the subsequent narrowing iteration tries to improve a
given post solution by means of a downward fixpoint iteration, which again may
be accelerated, in this case by means of a narrowing operator.

Trying to recover precision once it has been thrown away, though, may not
always possible (see, e.g., Halbwachs and Henry (2012) for a recent discussion).
Some attempts try to improve precision by reducing the number of points where
widening is applied (Cousot, 1981; Bourdoncle, 1993), while others rely on refined
widening or narrowing operators (see, e.g., Simon and King (2006); Cortesi and
Zanioli (2011)). Recently, several authors have focused on methods to guide
or stratify the exploration of the state space (Gopan and Reps, 2007, 2006;
Gulavani et al., 2008; Monniaux and Guen, 2012; Henry et al., 2012b), including
techniques for automatic transformation of irregular loops (Gulwani et al., 2009;
Sharma et al., 2011) or by repeating the widening/narrowing phases starting
from a different initial state (Halbwachs and Henry, 2012). An interesting novel
idea is to add a third phase where fixpoint iteration is started from scratch, but
the best known previously computed upper bound for each unknown is exploited
to improve intermediate values (Cousot, 2015). In that third phase, yet another
operator, namely a dual narrowing is applied to enforce termination.

Our approach here at least partly encompasses those of Cousot (1981) and
Bourdoncle (1993), while it is complementary to the other techniques and can,
potentially, be combined with these. Our idea is to avoid postponing narrowing
to a second phase after a post solution has been computed, in which all losses of
information have already occurred and been propagated. Instead, we attempt
to systematically improve the current information immediately by downward
iterations. This means that increasing and decreasing iterations are applied in
an interleaved manner. A similar idea is already used by syntax-directed fixpoint
iteration engines as, e.g., in the static analyzers Astrée (Blanchet et al., 2003;
Cousot et al., 2007) and Jandom (Amato and Scozzari, 2013). The Astrée
analyzer follows the syntax of the program and performs a fixpoint iteration at
every detected loop, consisting of a widening iteration followed by a narrowing
iteration. Nesting of loops, therefore, also results in nested iterations. In order
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to enforce termination, ad hoc techniques such as restrictions to the number of
updates are applied. Here, we explore iteration strategies in a generic setting,
where no a priori knowledge of the application is available, and provide sufficient
conditions for when particular fixpoint algorithms are guaranteed to terminate.

As we concentrate on the algorithmic side and application-independent
generic solvers, we use the original notions of narrowing (Cousot and Cousot,
1976, 1992b), rather than more elaborate definitions (Cousot and Cousot, 1992a;
Cousot, 2015) which refer to the concrete semantics of the system to be analyzed.
The classic formulation of narrowing requires right-hand sides of equations to be
monotonic so that the second iteration phase is guaranteed to be descending and
thus improving. Accordingly, the narrowing operator is guaranteed to return
meaningful results only when applied in decreasing sequences of values. The
assumption of monotonicity of right-hand sides, even disregarding the occurrences
of widening and narrowing operators, may not always be met. Monotonicity can
no longer be guaranteed, e.g., when compiling context-sensitive inter-procedural
analyses into systems of equations (Fecht and Seidl, 1999; Apinis et al., 2012).

Example 1. For some domain D, consider the system of equations

h(x) = g(f(x)) (x ∈ D)

over the unknowns f(d), g(d), h(d), d ∈ D. Similar systems of equations are
used by a context-sensitive inter-procedural analysis when separate unknowns are
introduced for every possible (abstract) calling context of a procedure. In the given
example system, the value of f(x) determines the unknown g(x′) whose value
contributes to the value of h(x). Now consider a domain D with two distinct
elements a @ b and consider the assignments ρ1, ρ2 with

ρ1[f(a)] = a ρ1[g(a)] = b ρ1[g(b)] = a
ρ2[f(a)] = b ρ2[g(a)] = b ρ2[g(b)] = a

which otherwise agree for every unknown. Then ρ1 v ρ2, but the right-hand side
of h(a), when evaluated over ρ1 results in b, while an evaluation over ρ2 results
in a. Accordingly, the given right-hand side cannot be monotonic. �

For inter-procedural analysis with infinite domains, the resulting equation
systems may also be infinite. These can be handled by local solvers. Local solvers
query the value of an interesting unknown and explore the space of unknowns
only as much as required for answering the query. For this type of algorithm,
neither the set of unknowns to be evaluated nor their respective dependences
are known beforehand. Accordingly, the values of fresh unknowns that have not
yet been encountered may be queried in the narrowing phase. As a consequence,
the rigid two-phase iteration strategy of one widening phase followed by one
narrowing phase can no longer be maintained.

In order to cope with these obstacles, we introduce an operator � which is
a combination of a given widening ∇ with a given narrowing operator ∆ and
show that this new operator can be plugged into any solver of equation systems,
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be they monotonic or non-monotonic. The � operator behaves like narrowing
as long as the iteration is descending and like widening otherwise. As a result,
solvers are obtained that return reasonably precise post solutions in one go, given
that they terminate.

Termination, then, is indeed an issue. We present two example systems of
monotonic equations where standard fixpoint algorithms, such as round robin or
worklist iteration, fail to terminate when enhanced with the new operator. As
a remedy, we develop a variant of round robin as well as a variant of worklist
iteration which in absence of widening and narrowing are not much worse than
their standard counterparts—but which additionally are guaranteed to terminate
when the � operator is applied to monotonic systems.

The idea of plugging the new operator � into a local solver works as well. A
local solver, such as that of Hofmann et al. (2010a), however, is not necessarily a
solver in the sense of the present paper—meaning that a naive enhancement with
the operator � is no longer guaranteed to return sound results. As our main
contribution, we therefore present a variation of this algorithm which always
returns a (partial) post solution and, moreover, is guaranteed to terminate—at
least for monotonic equation systems and if only finitely many unknowns are
encountered. This algorithm is generic in that it considers right-hand sides as
black-box functions, implemented perhaps in some programming language. It
relies on self-observation not only for identifying dependencies between unknowns
on the fly, but also to determine a suitable prioritization of the unknowns. This
vanilla version of a local iterator then is extended to cope with the losses in
precision detected by Amato and Scozzari (2013). We present novel techniques
for localizing the use of the operator � to loop heads only. These loop heads are
dynamically detected and recomputed depending on the status of the fixpoint
computation. Interestingly, dynamically recomputing loop heads during fixpoint
computation increases precision significantly. As another improvement, we also
considered dynamically restarting the iteration for subsets of unknowns during
a narrowing sub-iteration. These algorithms are further extended to solvers
for side-effecting constraint systems. Side-effecting systems can conveniently
specify analyses that combine context-sensitive analysis of local information
with flow-insensitive analysis of globals (Apinis et al., 2012) as provided, e.g., by
the program analyzer Goblint (Vojdani and Vene, 2009). Since the different
contributions to a global unknown are generated during the evaluation of a subset
of right-hand sides, which is not known beforehand and may vary during fixpoint
iteration, further non-trivial changes are required to handle this situation.

The obstacle remains that termination guarantees in presence of unrestricted
non-monotonicity cannot be given. By practical experiments, we nevertheless
provide evidence that our iterator as is, not only terminates but is reasonably
efficient — at least for the equation systems of an inter-procedural interval
analysis of several non-trivial real-world programs. Secondly, termination can be
effectively guaranteed by bounding for each unknown the number of switches
from narrowing back to widening, or, more smoothly, to apply more and more
aggressive narrowing operators. Note that this family of restrictions is more
liberal than restricting the number of updates of each unknown directly.
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The rest of the paper is organized as follows. In Section 2, we present the
concept of -solvers for any binary operator . In Section 3, we show that any
such solver, when instantiated with �, returns a post solution of an arbitrary
equation system (be it monotonic or not) whenever the solver terminates. In
order to enforce termination at least for finite systems of monotonic equations,
we provide in Section 4 new variants of round-robin iteration as well as of
worklist-based fixpoint computation. Section 5 introduces the new generic local
�-solver SLR, which is subsequently enhanced with localization of � (Section 6)
and restarting (Section 7). All three local solvers then are generalized to equation
systems with side effects in Section 8. In Section 9, we compare the local solvers
w.r.t. precision and efficiency within the analyzer framework Goblint. Finally,
we discuss related work in Section 10 and conclude in Section 11.

Sections 2 to 5 and the first part of Section 8 are based on prior work (Apinis
et al., 2013). The extension of ordinary and generic local solving provided in
Sections 6 and 7, as well as the second half of Section 8 are new. Also the
experimental evaluation in Section 9 has been redone completely.

2. Chaotic fixpoint iteration

Consider a system S of equations x = fx, for a set of unknowns x ∈ X, and
over a set D of values where the right-hand sides fx are mappings (X → D)→ D.
Furthermore, let : D → D → D be a binary operator to combine old values
with the new contributions of the right-hand sides.

A -solution of S is an assignment ρ : X → D such that for all x ∈ X ,

ρ[x] = ρ[x] fx ρ.

In the case that is defined as a b = b, a -solution is an ordinary solution of
the system, i.e., a mapping ρ with ρ[x] = fx ρ for all unknowns x.

Example 2. Consider the system:

x1 = x2 − 1 x2 = x1 + 1

with D = R. Then a solution is given by, e.g., ρ = {x1 7→ 4, x2 7→ 5}. Now
consider an operator , defined by a b = a+b

2 . Then any solution is also a
-solution and vice versa. For arbitrary operators , though, this need not

necessarily be the case. �

Most of the time D is an upward-directed set, i.e., a poset such that for each
pair of elements a, b ∈ D, there exists an upper bound z such that z w a and
z w b (see, e.g., Carl and Heikkilä (2010) for general background). We denote by
at b a generic upper bound of a and b. In case D is an upward-directed set, and
the -operator is an upper bound, a -solution is a post solution of the system,
i.e., a mapping ρ with ρ[x] w fx ρ for all unknowns x. Likewise in case D is a
downward -directed set and is a lower bound, a -solution is a pre solution of
the system, i.e., a mapping ρ with ρ[x] v fx ρ for all unknowns x.
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do
dirty ← false;
foreach x ∈ X do
new ← ρ[x] fx ρ;
if ρ[x] 6= new then
ρ[x] ← new;
dirty ← true;

while (dirty)

Figure 1: The solver RR.

W ← X;
while W 6= ∅ do
x ← extract(W);
new ← ρ[x] fx ρ;
if ρ[x] 6= new then
ρ[x] ← new;
W ← W ∪ inflx

done

Figure 2: The Solver W.

Example 3. The set N of all non-negative numbers, equipped with the natural
ordering is upward-directed. This set has a least element, namely 0. Now
consider the system:

x1 = x2 + 1 x2 = x1

Then ρ0 = {x1 7→ 2, x2 7→ 1} is a pre solution, while there is no post solution.
If, on the other hand, we add ∞ as a greatest element to the domain of values,
then there is one (post) solution, namely ρ = {x1 7→ ∞, x2 7→ ∞}. �

The operator can also be instantiated with widening and narrowing opera-
tors. According to Cousot and Cousot (1976, 1977a, 1992b), a widening operator
∇ for a poset D must satisfy a v a∇ b, b v a∇ b for all a, b ∈ D, and any
sequence ai, i ≥ 0, with ai+1 = ai∇ bi for i ≥ 0, cannot be strictly ascending.
This implies that a ∇-solution then again provides a post solution of the original
system S. A narrowing operator ∆, on the other hand, is an interpolant (Cousot,
2015). This means that a w b must imply a w (a∆ b) w b. Furthermore, any
sequence, ai, i ≥ 0, with ai+1 = ai ∆ bi for i ≥ 0 and ai w bi cannot be strictly
descending. This means that narrowing can only be applied if the right-hand
sides of equations are guaranteed to return values that are less than or equal
to the values of the current left-hand sides. Thus a mapping ρ can only be a
∆-solution if it is a post solution of the system.

A (chaotic) -solver for systems of equations is an algorithm that maintains
a mapping ρ : X → D and performs a sequence of update steps, starting from an
initial mapping ρ0. In practice, ρ0 is chosen to map each unknown to the least
element of the upward-directed set—if available. Each update step selects an
unknown x, evaluates the right-hand side fx of x w.r.t. the current mapping ρi
and updates the value for x, i.e.,

ρi+1[y] =

{
ρi[x] fx ρi, if x = y

ρi[y], otherwise.

The algorithm is a -solver if upon termination the final mapping (after complet-
ing n steps) ρn is a -solution of S. In this sense, the round-robin iteration RR
of Fig. 1 is a -solver for every binary operator . Note that, in most cases, we
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omit update step indices and, additionally, use imperative assignment syntax of
the form ρ[x]← w to change the value of the unknown x to w in the mapping ρ.

In order to prove that a given algorithm is a -solver, i.e., upon termination
returns a -solution, one typically verifies the invariant that for every terminating
run of the algorithm producing the sequence ρ0, ρ1, . . . , ρn of mappings, and
every unknown x, ρi[x] 6= ρi[x] fx ρi implies that for some j ≥ i, an update
ρj+1[x] = ρj [x] fx ρj occurs.

The round-robin algorithm considers right-hand sides of equations as black
boxes. Such solvers are also called generic. Not every solver algorithm, though,
is generic in this sense. The worklist algorithm W from Fig. 2 can only be used
as -solver, when the dependences between unknowns are provided beforehand.
This means that for each right-hand side fx, a (super-)set depx of unknowns
must be given such that for all mappings ρ, ρ′, fx ρ = fx ρ

′ whenever ρ and
ρ′ agree on all unknowns in depx. From these sets, we define the sets infly of
unknowns possibly influenced by (a change of the value of) the unknown y, i.e.,

infly = {x ∈ X | y ∈ depx} ∪ {y} .

In the case that the value of some unknown y changes, all right-hand sides of
unknowns in the set infly must be recomputed. Note that whenever an update
to an unknown y provides a new value, we reschedule y for evaluation as well.
This is a precaution for the case that the operator is not (right) idempotent.
Here, an operator is called idempotent if the following equality:

(a b) b = a b

holds for all a, b. In this sense, the operators t and u are idempotent and often
also ∇ and ∆. An operator such as a+b

2 , however, for a, b ∈ R is not idempotent.

3. Enhancing Narrowing

First, we observe:

Lemma 4. Assume that all right-hand sides of the system S of equations over a
poset D are monotonic and that ρ0 is a post solution of S, and is a narrowing
operator ∆. Then the sequence ρ0, ρ1, . . . of mappings produced by a generic
-solver, is defined and decreasing and consists of post solutions only.

Proof. Assume that for i = 1, 2, . . . , xi is the unknown corresponding to
the ith evaluation of a right-hand side in the sequence of evaluation produced
by the -solver. The proof is by induction on i. The case i = 0 is trivial.
Now consider i > 0, and assume that ρi−1 is a post solution. This means
that fxi ρi−1 v ρi−1(xi). Therefore, the value ρi(xi) = ρi−1(xi) ∆ fxi ρi−1 is
defined and, due to the property of a narrowing, less than or equal to ρi−1(xi).
Accordingly, we have ρi v ρi−1. Due to the property of a narrowing and
the monotonicity of fxi

, we furthermore have that ρi(xi) w fxi
ρi−1 w fxi

ρi.
Therefore, ρi is again a post solution. �
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Thus, any generic solver can be applied to improve a post solution by means of
a narrowing iteration when all right-hand sides of equations are monotonic.

Equation systems for context-sensitive inter-procedural analysis, though, are
not necessarily monotonic. In the following we show how to lift the technical
restrictions to the applicability of narrowing. For a widening operator ∇ and a
narrowing operator ∆, we define a new binary operator � by:

a� b =

{
a∆ b, if b v a
a∇ b, otherwise.

Let us call the resulting operator � a warrowing. Note that the operator � is
not necessarily idempotent, but whenever narrowing is idempotent the following
holds:

(a � b) � b = (a � b) ∆ b

and therefore also

((a � b) � b) � b = (a � b) � b .

A fixpoint algorithm equipped with warrowing applies widening as long as values
grow or are incomparable. Only once the evaluation of the right-hand side of
an unknown results in a smaller or equal value, narrowing is applied and values
may shrink. For the warrowing operator �, we observe:

Lemma 5. Consider a finite system S of equations over an upward-directed set
D. Then every �-solution ρ of S is a post solution.

Proof. Consider a mapping ρ that is a �-solution of S and an arbitrary
unknown x. For a contradiction assume that ρ[x] 6w fx ρ. But then we have

ρ[x] = ρ[x] � fx ρ = ρ[x]∇ fx ρ w fx ρ

in contradiction to our assumption! Accordingly, ρ must be a post solution of
the system of equations S. �

Thus, every generic solver for upward-directed sets D can be turned into a
solver computing post solutions by using the combined widening and narrowing
operator. The intertwined application of widening and narrowing, which naturally
occurs when solving the system of equations by means of �, has the additional
advantage that values may also shrink in-between. Improvement of too great
(imprecise) values, thus, may take place immediately, resulting in overall lesser
(more precise) post solutions. Moreover, no restriction is imposed any longer
concerning monotonicity of right-hand sides.
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4. Enforcing termination

For the new warrowing operator, termination cannot generally be guaranteed for
all solvers. In this section, we therefore present a modifications of round-robin
as well as of worklist iteration which are guaranteed to terminate when all
right-hand sides of equations are monotonic.

Example 6. Consider the system:

x1 = x2 x2 = x3 + 1 x3 = x1

with D = N ∪ {∞}, the lattice of non-negative integers, equipped with the nat-
ural ordering v given by ≤ and extended with ∞. Consider a widening ∇
where a∇ b = a if a = b and a∇ b =∞ otherwise, together with a narrowing
∆ where, for a ≥ b, a∆ b = b if a =∞, and a∆ b = a otherwise. Round-robin
iteration with the warrowing operator for this system starting from the mapping
ρ0 = {x1 7→ 0, x2 7→ 0, x3 7→ 0}, will produce the following sequence of mappings:

0 1 2 3 4 5
x1 0 0 ∞ 1 ∞ 2 . . .
x2 0 ∞ 1 ∞ 2 ∞ . . .
x3 0 0 ∞ 1 ∞ 2 . . .

Iteration does not terminate—although right-hand sides are monotonic. �

A similar example shows that ordinary worklist iteration, enhanced with �, also
may not terminate, even if all equations are monotonic.

Example 7. Consider the two equations:

x1 = (x1 + 1) u (x2 + 1) x2 = (x2 + 1) u (x1 + 1)

using the same lattice as in Example 6 where u denotes minimum, i.e., the greatest
lower bound. Assume that the work set is maintained with a lifo discipline. For
W = [x1, x2], worklist iteration, starting with the initial mapping ρ0 = {x1 7→
0, x2 7→ 0}, results in the following iteration sequence:

W [x1, x2] [x1, x2] [x1, x2] [x2] [x2, x1] [x2, x1] [x1] [x1, x2]

x1 0 ∞ 1 1 1 1 1 ∞ . . .
x2 0 0 0 0 ∞ 2 2 2 . . .

which does not terminate. �

We present modified versions of the round-robin solver RR as well as the
worklist solver W for which termination can be guaranteed. For both algorithms,
we assume that we are given a fixed linear ordering on the set of unknowns so
that X = {x1, . . . , xn}.
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let rec solve i =
if i = 0 then return;
do
solve(i−1);
old ← ρ[xi];
ρ[xi] ← ρ[xi] fi ρ;

while old 6= ρ[xi];
}

Figure 3: The new solver SRR.

The ordering will affect the iteration strat-
egy, and therefore, as shown by Bourdoncle
(1990), may have a significant impact on per-
formance and, in presence of widening and
narrowing, also upon precision. Hence, the
ordering should be chosen in a way that inner-
most loops would be evaluated before iteration
on outer loops.

For the system of equations given by xi =
fi, for i = 1, . . . , n, the new algorithm SRR
(structured round-robin) is shown in Fig. 3.
For a given initial mapping ρ0, structured
round-robin is started by calling solven. The idea of the algorithm is, when
called for a number i, to iterate on the unknown xi until stabilization. Before
every update of the unknown xi, however, all unknowns xj , j < i are recursively
solved. The resulting algorithm is a -solver for every binary operator .

Recall that a poset D has height h if h is the maximal length of a strictly
increasing chain d0 @ d1 @ . . . @ dh. We find:

Theorem 8. Assume the algorithm SRR is applied to a system of n equations
over an upward-directed set D.

1. If D has bounded height h and = t, then SRR terminates with a post
solution after at most n+ h

2n(n+ 1) evaluations of right-hand sides.

2. In presence of possibly unbounded ascending chains, when instantiated with
= �, SRR terminates with a post solution—whenever each right-hand

side is monotonic.

The first statement indicates that SRR may favorably compete with ordinary
round-robin iteration in case that no widening and narrowing is required. The
second statement, on the other hand, provides us with a termination guarantee
— whenever all right-hand sides are monotonic.

Proof. Recall that ordinary round-robin iteration for upward-directed sets of
bounded height performs at most h · n rounds due to increases of values of
unknowns plus one extra round to detect termination, giving in total

n+ h · n2

evaluations of right-hand sides. In contrast for structured round-robin iteration,
termination for unknown xi requires one evaluation when solve i is called for
the first time and then one further evaluation for every update of one of the
unknowns xn, . . . , xi+1. This sums up to h · (n− i) + 1 evaluations throughout
the whole iteration. This gives a overhead of

n+ h ·
n∑

i=1

(n− i) = n+
h

2
· n · (n− 1) .
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Additionally, there are h ·n evaluations that increase values. In total, the number
of evaluations, therefore, is

n+
h

2
· n · (n− 1) + h · n = n+

h

2
· n · (n+ 1)

giving us statement 1.
For the second statement, we proceed by induction on i. The case i = 0

is vacuously true. For the inductive step, assume that i > 0 and for all j < i,
solve j terminates for any mapping. To arrive at a contradiction, assume that
solve i for the current mapping ρ does not terminate. First, consider the case
where fi ρ returns a value smaller than ρ[xi]. Since SRR is a -solver for every
, we have for all j < i, ρ[xj ] = ρ[xj ] � fj ρ, implying that ρ[xj ] w fj ρ for all
j < i. After ρ[xi] is updated, by monotonicity, it still holds that ρ[xj ] w fj ρ
for all j < i. Solving for the unknown i− 1 will only cause further descending
steps, where � behaves like ∆. The subsequent iteration of solve i will produce
a decreasing sequence of mappings. Since all decreasing chains produced by
narrowing are ultimately stable, the call solve i will terminate—in contradiction
to our assumption.

Therefore, non-termination is only possible if during the whole run of solve i,
evaluating fi ρ must always return a value that is not subsumed by ρ[xi]. Since
all calls solve (i− 1) in-between terminate by the induction hypothesis, a strictly
increasing sequence of values for xi is obtained that is produced by repeatedly
applying the widening operator. Due to the properties of widening operators,
any such sequence is eventually stable—again in contradiction to our assumption.
We thus conclude that solve i is eventually terminating. �

Example 9. Recall the equation system, for which round-robin iteration did
not terminate. With structured round-robin iteration, however, we obtain the
following sequence of updates:

i 2 1 2 1 3 2 1
x1 0 0 ∞ ∞ 1 1 1 ∞
x2 0 ∞ ∞ 1 1 1 ∞ ∞
x3 0 0 0 0 0 ∞ ∞ ∞

where the evaluations of unknowns not resulting in an update have been omitted.
Thus, structured round-robin quickly stabilizes for this example. �

Q ← {1, . . . , n};
while Q 6= ∅ do
xi ← extract_min(Q);
new ← ρ[xi] fi ρ;
if ρ[xi] 6= new then
ρ[xi] ← new;
add Q infli;

done

Figure 4: The new solver SW.

The idea of structured iteration can also
be lifted to worklist iteration. Consider again
a system xi = fi, for i = 1, . . . , n, of equa-
tions. As for the ordinary worklist algorithm,
we assume that for each right-hand side fi
a superset depi of unknowns is given, such
that for all mappings ρ, ρ′, fi ρ = fi ρ

′ when-
ever ρ and ρ′ agree on all unknowns in depi.
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As before for each unknown xj , let inflj de-
note the set consisting of the unknown xj
together with all unknowns influenced by
xj . Instead of a plain worklist, the modified
algorithm maintains the set of unknowns to
be reevaluated, within a priority queue Q. In every round, not an arbitrary
element is extracted from Q — but the unknown with the least index. The
resulting algorithm is presented in Fig. 4.

Here, the function add inserts an element into the priority queue or leaves
the queue unchanged if the element is already present. Moreover, the function
extract_min removes the unknown with the smallest index from the queue and
returns it as result.

Let us call the resulting algorithm SW (structured worklist iteration). Clearly,
the algorithm SW is a -solver for systems of equations where the dependences
between unknowns are explicitly given.

Example 10. Consider again the system from Example 7. Structured worklist
iteration using � for this system results in the following iteration:

Q [x1, x2] [x1, x2] [x1, x2] [x2] [x1, x2] [x1, x2] [x2] []

x1 0 ∞ 1 1 1 ∞ ∞ ∞
x2 0 0 0 0 ∞ ∞ ∞ ∞

and thus terminates. �

In general, we have:

Theorem 11. Assume the algorithm SW is applied to a system of n equations
over an upward-directed set D.

1. If D has bounded height h and = t, then SW terminates with a post solu-
tion after at most h ·N evaluations of right-hand sides, where N=

∑n
i=1(2+

|depi|).

2. In presence of possibly unbounded ascending chains, when instantiated with
= �, SW terminates with a post solution—whenever each right-hand

side is monotonic.

The first statement of the theorem indicates that SW behaves complexity-wise
like ordinary worklist iteration: in case that the upward-directed set D has
finite height, the only overhead to be paid for is an extra logarithmic factor
for maintaining the priority queue. The second statement, perhaps, is more
surprising: it provides us with a termination guarantee for arbitrary lattices and
the warrowing operator — whenever only all right-hand sides are monotonic.

Proof. We only consider the second statement. We proceed by induction on
the number n of unknowns. The case n = 1 is true by definition of widening and
narrowing. For the induction step assume that the assertion holds for systems
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of equations of n− 1 unknowns. Now consider a system of equations for a set
X of cardinality n, and assume that xn is the unknown which is larger than all
other unknowns in X.

For a contradiction assume that SW does not terminate for the system of
equations for X. First assume that the unknown xn is extracted from the queue
Q only finitely many times, say k times where d is the last value computed for
xn. This means that after the last extraction, an infinite iteration occurs on the
subsystem on the unknowns X ′ = X \ {n} where for xr ∈ X ′, the right-hand
side is given by f ′r ρ = fr (ρ⊕ {xn 7→ d}). By inductive hypothesis, however, the
algorithm SW for this system terminates — in contradiction to our assumption.

Therefore, we may assume that the unknown xn is extracted infinitely often
from Q. Let ρi, i ∈ N, denote the sequence of mappings at these extractions.
Since Q is maintained as a priority queue, we know that for all unknowns xr with
r < n, the inequalities ρi[xr] w fr ρi hold. Let di = ρi[xn]. If for any i, fn ρi v di,
the next value di+1 for xn then is obtained by di+1 = di ∆ fn ρi which is less or
equal to di. By monotonicity, this implies that in the subsequent iteration, the
values for all unknowns xr, r ≤ n, may only decrease. The remaining iteration
is a pure narrowing iteration and therefore terminates. In order to obtain an
infinite sequence of updates for z, we conclude that for no i, fn ρi v di. Hence
for every i, di+1 = di∇ fn ρi where di v di+1. This, however, is impossible due
to the properties of the widening operator. In summary, we conclude that xn is
extracted only finitely often from Q. Hence the fixpoint iteration terminates. �

The algorithm SW can also be applied to non-monotonic systems. There,
however, termination can no longer be guaranteed. In fact, the assumption of
monotonicity is not a defect of our solvers SRR or SW, but inherent to any
terminating fixpoint iteration which intertwines widening and narrowing.

Example 12. Consider the single equation:

x = if (x = 0) then 1 else 0

over the lattice of naturals (with infinity) with a∇ b =∞ whenever a < b and
a∆ b = b whenever a =∞. The right-hand side of this equation is not monotonic.
An iteration, defined by x0 = 0 and xi+1 = xi � fxi for i ≥ 0 (f the right-hand
side function of the equation) will produce the sequence:

0→∞→ 0→∞→ 0→∞→ . . .

and thus will not terminate. We conclude that in absence of monotonicity,
we cannot hope for termination—at least, without further assumptions on the
right-hand sides of the equations. �

Clearly at the price of extra imprecision, termination for all �-solvers and
all monotonic or non-monotonic systems of equations can always be enforced.
One generic idea to achieve this, is to count for each unknown how often the
solver has switched from narrowing back to widening. This number then may
be taken into account by the � operator, e.g., by choosing successively less
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aggressive narrowing operators ∆0,∆1, . . ., and, ultimately, to give up improving
the obtained values. The latter is achieved by defining a∆k b = a for a certain
threshold k.

5. Local generic solvers

Similar to -solvers, we define local -solvers. Local solvers should be consid-
ered if systems of equations are infeasibly large or even infinite. Such systems
are, e.g., encountered for context-sensitive analysis of procedural languages
(Cousot and Cousot, 1977b; Apinis et al., 2012). Local solvers query the system
of equations for the value of a given unknown of interest and try to evaluate
only the right-hand sides of those unknowns that are needed for answering the
query (Le Charlier and Van Hentenryck, 1992; Vergauwen et al., 1994; Fecht and
Seidl, 1999). As the dependences between unknowns may change during fixpoint
iteration, such a solver should keep track of the dynamic dependences between
unknowns. For a mapping ρ, a set X ′ ⊆ X subsumes all dynamic dependences
of a function f : (X → D)→ D (w.r.t. ρ) in the case that f ρ = f ρ′ whenever
ρ′|X′ = ρ|X′ . Such sets can be constructed on the fly whenever the function f is
pure in the sense of Hofmann et al. (2010b).

Essentially, purity for a right-hand side f means that evaluating f ρ for a
mapping ρ operationally consists of a finite sequence of value lookups in ρ where
the next unknown whose value has to be looked up may only depend on the
values that have already been queried. Once the sequence of lookups has been
completed, the final value is determined depending on the sequence of values and
finally returned. In this case, the set X ′ can be chosen as the set of all variables
y for which the value ρ y is queried when evaluating (an implementation of) the
function f for the argument ρ. Let us denote this set by depx ρ.

A partial -solution of a (finite or infinite) system of pure equations S consists
of a set dom ⊆ X together with a mapping ρ : dom→ D with the following two
properties:

1. ρ[x] = ρ[x] fx ρ for all x ∈ dom; and

2. depx ρ ⊆ dom for all x ∈ dom

In essence, this means that a partial -solution is a -solution of the subsystem
of S restricted to unknowns in dom.

Example 13. The following equation system (for n ∈ N = D)

y2n = max(yy2n
, n)

y2n+1 = y6n+4

is infinite as it uses infinitely many unknowns, but has at least one finite
partial max-solution—the set dom = {y1, y2, y4} together with the mapping
ρ = {y1 7→ 2, y2 7→ 2, y4 7→ 2} where depy1

ρ = {y4}, depy2
ρ = {y2} and depy4

ρ =
{y4, y2}. �
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let rec solve x =
if x /∈ stable then
stable ← stable ∪ {x};
tmp ← ρ[x] t fx (eval x);
if tmp 6= ρ[x] then
W ← infl[x];
ρ[x] ← tmp;
infl[x] ← ∅ ;
stable ← stable \ W;
foreach x ∈W do solve x

end
end

and eval x y =
solve y;
infl[y] ← infl[y] ∪ {x};
ρ[y]

in
stable ← ∅ ;
infl ← ∅ ;
ρ ← ρ0;
solve x0;
ρ

Figure 5: The solver RLD (Hofmann et al., 2010a).

A local -solver then, is an algorithm that, when given a system of pure
equations S, an initial mapping ρ0 for all unknowns, and an unknown x0,
performs a sequence of update operations that, upon termination, results in a
partial -solution (dom, ρ), such that x0 ∈ dom.

At first sight, it may seem surprising that generic local -solvers may exist.
In fact, one such instance can be derived from the round-robin algorithm. For
that, the evaluation of right-hand sides is instrumented in such a way that it
keeps track of the set of accessed unknowns. Each round then operates on a
growing set of unknowns. In the first round, just x0 alone is considered. In
any subsequent round all unknowns are added whose values have been newly
accessed during the last iteration.

A more elaborate algorithm for local solving is formalized by Hofmann et al.
(2010a), namely the solver RLD, as shown in Figure 5. This algorithm has the
benefit of visiting nodes in a more efficient order, first stabilizing innermost loops
before iterating on outer loops. The global assignment infl : X → 2X records, for
each encountered unknown y, the set of unknowns x ∈ dom with the following
two properties:

• the last evaluation of fx has accessed the unknown y;

• since then, the value of the unknown y has not changed.

The right-hand sides fx are not directly applied to the current mapping
ρ, but instead to a (partially applied) helper function eval which in the end,
returns values for unknowns. Before that, however, the helper function eval
provides extra book-keeping of the encountered dependence between unknowns.
In order to be able to track dependences between unknowns, the helper function
eval receives as a first argument the unknown x whose right-hand side is under
evaluation. Given that this partial application is applied to another unknown
y, first the best possible value for y is computed by calling the procedure solve
for y. Then the fact that the right-hand side of x depends on y, is recorded by
adding x to the set infl[y]. Only then is the corresponding value ρ[y] returned.
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The main fixpoint iteration is implemented by the procedure solve. It requires
a set stable of unknowns such that, if x is in stable, a call to the procedure solvex
has been started and no unknowns influencing x have been updated.

This algorithm correctly determines a post solution of the set of equations
upon termination. However, when enhanced with an operator , it is not a
generic -solver in our sense, since it is not guaranteed to execute as a sequence
of atomic updates. Due to the recursive call to procedure solve at the beginning
of eval, one evaluation of a right-hand side may occur nested into the evaluation
of another right-hand side. Therefore, conceptually, it may happen that an
evaluation of a right-hand side uses the values of unknowns from several different
mappings ρi from the sequence ρ0, ρ1, . . . , ρn, instead of the latest mapping ρn.
Accordingly, the solver RLD is not guaranteed to return a -solution—even if
it terminates. We therefore provide a variant of RLD where right-hand sides
(conceptually) are executed atomically.

Clearly, a local -solver does not terminate if infinitely many unknowns are
encountered. Therefore, a reasonable local -solver will try to consider as few
unknowns as possible. Our solver, thus, explores the values of unknowns by
recursively descending into solving unknowns newly detected while evaluating a
right-hand side. Certain equation systems, though, introduce infinite chains of
dependences for the unknowns of interest. Those systems then cannot be solved
by any local solver. Here, we show that the new generic solver is guaranteed to
terminate for the warrowing operator at least when applied to equation systems
which are monotonic and either finite or infinite but where only finitely many
unknowns are encountered.

Let us call the new solver, on Fig. 6, SLR1 (structured local recursive solver).
The new algorithm maintains an explicit set dom ⊆ X of unknowns that have
already been encountered. Beyond RLD, it additionally maintains a counter
count which counts the number of elements in dom, and a mapping key : dom→ Z
that equips each unknown with its priority. Unknowns whose equations may
possibly be no longer valid will be scheduled for reevaluation. This means that
they are inserted into a global priority queue Q.

As in the algorithm RLD, right-hand sides fx are applied to the helper
function eval partially applied to x. The call eval x y first checks whether the
unknown y is already contained in the domain dom of ρ. If this is not the case,
y is first initialized by calling the procedure init. Subsequently, the best possible
value for y is computed by calling the procedure solve for y.

Initialization of a fresh unknown y means that y is inserted into dom where
it receives a key less than the keys of all other unknowns in dom. For that, the
variable count is used. Moreover, infl[y] and ρ[y] are initialized with {y} and
ρ0[y], respectively. Thus, the given function eval differs from the corresponding
function in RLD in that solve is recursively called only for fresh unknowns, and
also in that every unknown y always depends on itself.

The main fixpoint iteration is implemented by the procedure solve. When
solve is called for an unknown x, we assume that there is currently no un-
known x′ ∈ dom with key[x′] < key[x] that violates its equation, i.e., for which
ρ[x′] 6= ρ[x′] fx′ ρ holds. In the procedure solve for x, the call min_key Q
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let rec solve x =
if x /∈ stable then
stable ← stable ∪ {x};
tmp ← ρ[x] fx (eval x);
if tmp 6= ρ[x] then
W ← infl[x] ∪ {x};
add Q W;
ρ[x] ← tmp;
infl[x] ← ∅ ;
stable ← stable \W;
while (Q 6= ∅ ) ∧

(min_key Q ≤ key[x]) do
solve (extract_min Q);

end
end

and init y =
dom ← dom ∪ {y};
key[y] ← −count;
count++;
infl[y] ← ∅ ;
ρ[y] ← ρ0[y]

and eval x y =
if y /∈ dom then
init y;
solve y;

end;
infl[y] ← infl[y] ∪ {x};
ρ[y]

in
stable ← ∅ ; infl ← ∅ ;
ρ ← ∅ ; dom ← ∅ ;
Q ← empty_queue();
count ← 0; init x0;
solve x0;
ρ

Figure 6: The new solver SLR1.
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returns the minimal key of an element in Q, and extract_min Q returns the
unknown in Q with minimal key and additionally removes it from Q. Besides
the global priority queue Q, the procedure solve also requires the set stable as
for RLD. Due to the changes in eval and the fact that x is always added to W
during the execution of solve x, at each call of the procedure solve, if x ∈ stable
then either

• a call to the procedure solvex has been started and the update of ρ[x′] has
not yet occurred; or

• the equality ρ[x] = ρ[x] fx ρ holds.

The new function solve essentially behaves like the corresponding function in
RLD with the notable exception that not necessarily all unknowns that have
been found unstable after the update of the value for x in ρ, are recursively solved
right-away. Instead, all these unknowns are inserted into the global priority
queue Q and then solve is only called for those unknowns x′ in Q whose keys
are less or equal than key[x]. Since x0 has received the largest key, the initial
call solvex0 will result, upon termination, in an empty priority queue Q.

Example 14. Consider again the infinite equation system from Example 13.
The solver SLR1, when solving for y1, will return the partial max-solution
{y0 7→ 0, y1 7→ 2, y2 7→ 2, y4 7→ 2}. �

The modifications of the algorithm RLD to obtain algorithm SLR1 allow
us not only to prove that it is a generic local solver, but also a strong result
concerning termination. Our main theorem is:

Theorem 15. Assume the algorithm SLR1 is applied to a system of pure
equations over a set D, with initially queried interesting unknown x0.

1. SLR1 returns a partial -solution whose domain contains x0—whenever it
terminates.

2. If D is an upward-directed set, each right-hand side of the equation system
is monotonic and the operator is instantiated with �, then SLR1 is
guaranteed to terminate and thus always to return a partial post solution—
whenever only finitely many unknowns are encountered.

Proof. We first convince ourselves that, upon termination, each right-hand
side can be considered as being evaluated atomically. For that, we notice that a
call solve y will never modify the value ρ[x] of an unknown x with key[x] > key[y].
During evaluation of right-hand sides, a recursive call to solve may only occur
for an unknown y that has not been considered before, i.e., is fresh. Therefore,
it will not affect any unknown that has been encountered earlier. From that, we
conclude that reevaluating a right-hand side fx for ρ immediately after a call
fx (evalx), will return the same value — but by a computation that does not
change ρ and thus is atomic.
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In order to prove that SLR1 is a local generic solver, it therefore remains
to verify that upon termination, ρ is a partial -solution with x0 ∈ dom. Since
x0 is initialized before solvex0 is called, x0 must be contained in dom. Upon
termination, evaluation of no unknown is still in process and the priority queue
is empty. All unknowns in dom \ stable are either fresh and therefore solved
right-away, or non-fresh and then inserted into the priority queue. Therefore, we
conclude that the equation ρ[x] = ρ[x] fx ρ holds for all x ∈ dom. Furthermore,
the invariant for the map infl implies that upon termination, x ∈ infl[y] whenever
x = y or y ∈ depx ρ. In particular, infl is defined for y implying that y ∈ dom.

In summary, correctness of the algorithm SLR1 follows from the stated
invariants. The invariants themselves follow by induction on the number of
function calls. Therefore, statement 1 holds.

For a proof of statement 2, assume that all equations are monotonic and only
finitely many unknowns are encountered during the call solvex0. Let dom denote
this set of unknowns. We proceed by induction on key values of unknowns in
dom. First consider the unknown x ∈ dom with minimal key value. Then for all
mappings ρ and infl, the call solvex will perform a sequence of updates to ρ[x].
In an initial segment of this sequence, the operator � behaves like ∇. As soon as
the same value ρ[x] or a smaller value is obtained, the operator � behaves like
the operator ∆. Due to monotonicity, the remaining sequence may only consist
of narrowing steps. By the properties of widening and narrowing operators, the
sequence therefore must be finite.

Now consider a call solvex for an unknown x ∈ dom where by inductive
hypothesis, solve y terminates for all unknowns y with smaller keys, and all
mappings ρ, infl, sets stable and priority queue Q satisfy the invariants of the
algorithm. In particular, this means that every recursive call to a fresh unknown
terminates.

Assume for a contradiction that the assertion were wrong and the call to
solvex would not terminate. Then this means that the unknown x must be
destabilized after every evaluation of fx (evalx). Upon every successive call to
solve x, all unknowns with keys smaller than key[x] are no longer contained in
Q and therefore are stable. Again we may deduce that the successive updates
for ρ[x] are computed by ∇ applied to the former value of ρ[x] and a new value
provided by the right-hand side for x, until a narrowing phase starts. Then,
however, again due to monotonicity a decreasing sequence of values for ρ[x] is
encountered where each new value now is combined with the former value by
means of ∆. Due to the properties of ∇ and ∆, we conclude that the iteration
must terminate. �

One limitation of using local solvers such as SLR1, is that nontermination may
be encountered due to an ever growing number of explored unknowns. Multiple
remedies have been suggested to cope with this situation. From some point on,
the solver may stop to further explore newly appearing unknowns and decide
to constantly return for these a safe value, e.g., the largest value > of D (if
such a value exists). Alternatively, the solver may also introduce a partition of
the unknowns and provide only a single value for each equivalence class. The
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latter solution has been proposed by Bourdoncle (1992). It may at least work
for inter-procedural analysis where unknowns whose right-hand sides are closely
related can naturally be grouped together.

6. Localized warrowing in SLR

So far we have applied the warrowing operator at every right-hand side. It
has been long known for the 2-phase widening and narrowing approach, however,
that precision can be gained by applying widening and thus also narrowing only
at selected unknowns. These unknowns may be chosen freely, provided they
form an admissible set, i.e., at least one unknown is selected for each loop in the
dependence graph of the equations. When intertwining widening and narrowing
by means of structured round-robin or worklist iteration, restricting � to an
admissible set of widening points may, however, no longer ensure termination of
the resulting solvers.

Example 16. Consider the same set of equations in the Example 6. According
to our definition, the singleton set {x2} is admissible. Now assume that the
� operation is performed for the unknown x2 only. With SRR we obtain the
following sequence of updates:

i 2 1 2 1 3 2 1 2 1
x1 0 0 ∞ ∞ 1 1 1 ∞ ∞ 2 . . .
x2 0 ∞ ∞ 1 1 1 ∞ ∞ 2 2 . . .
x3 0 0 0 0 0 1 1 1 1 1 . . .

Whenever the value for x3 increases, x2 and x1 receive the value x3 + 1, implying
that subsequently, x3 further increased. A stable post-solution is never attained.
A similar behavior can also be observed for SW on this example. �

Example 16 indicates that we cannot ignore the ordering on the unknowns xi
when selecting the points of application for �. Therefore, we refine the notion
of admissibility as follows. Assume that we are given a system of equations
xi = ei, i = 1, . . . , n where sets dep(xi) of variable dependences are explicitly
given. Then the set W of unknowns is called an admissible set of �-points if,
in each cycle in the dependence graph of the equations, the unknown with the
highest index is in W . We obtain:

Theorem 17. Given a system of equations and an admissible set W of �-points,
both the algorithm SRR and the algorithm SW are guaranteed to terminate
when instantiated with = �, even when restricting the application of � to
unknowns in W only.

Proof. The proofs are similar to those for the Theorems 8 and 11, respectively.
Here, we only consider the assertion for SW. For the base case, note that if
x1 is the only unknown, either the right hand size of x1 is a constant, or it
refers to x1 itself, in which case x1 is in the set of �-points. In both cases, SW
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terminates. For the inductive case, assume xn is extracted infinitely many times.
First assume that xn is contained in W . In this case, the proof proceeds as in
Theorem 11. Now assume that xn is not contained in W . Then there is no loop
containing xn which consists of variables with index at most n. In particular, this
means that the set {x1, . . . , xn−1} can be split into disjoint subsets X1, X2, X3.
X1 consists of all unknowns directly or indirectly depending on xn, X2 consists
of the unknowns onto which xn directly or indirectly depends, and X3 contains
the remaining unknowns. As soon as xn is evaluated for the first time, the
evaluation of the unknowns in X2 and X3 have already terminated. Therefore
following an update of the unknown xn, only unknowns from X1 may be added
to the worklist. Since none of these ever will cause xn to be added to the worklist
again, fixpoint iteration terminates by the inductive hypothesis. �

Example 18. According to the refined definition, the set {x2} in Example 16 is
no longer admissible, whereas the set {x3} is. When restricting � to the latter
set, we obtain:

i 2 1 3 2 1 3
x1 0 0 1 1 1 ∞ ∞
x2 0 1 1 1 ∞ ∞ ∞
x3 0 0 0 ∞ ∞ ∞ ∞

and the algorithm terminates. �

In applications where dependences between unknowns may change, we cannot
perform any pre-computation on the dependence graph between unknowns. In
order to conveniently deal with these nonetheless, methods are required which
determine admissible sets of �-points on the fly. Assume that we are given an
assignment key of unknowns to priorities which are linearly ordered. Such an
assignment enables us to dynamically identify back-edges. Here, a back-edge
y → x consists of unknowns x, y where the value of y is queried in the right-
hand side of x where key[x] ≤ key[y]. Note that this does not correspond to
the standard definition of back-edge, but we use the same terminology since
both may be used to identify the head of loops. When y is the unknown with
the highest priority in some loop, then a back-edge y → x along this loop is
encountered. Therefore y is included into the set of admissible unknowns, i.e.,
those where � is going to be applied. In all other cases, we may omit the
application of � and directly use the value of the right-hand side to determine
the next value for the left-hand side. The resulting improvement to the solver,
as shown in Fig. 7, is called SLR2.

Interestingly for our suite of benchmark programs, the algorithm SLR2 did
not significantly improve the precision of the resulting interval analysis. Consider,
e.g., the program in Fig. 8. The control-flow graph corresponding to this program
is shown in Fig. 9 where each node v is marked with the priority assigned to
v when the function solve of SLR1 is called for the endpoint of the program
for an interval analysis. We are looking for nodes that influence nodes with
smaller priority. In the example, these are the nodes with priorities −1 and −5,
respectively, i.e., exactly the loop heads. After the first iteration for interval
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let rec solve x =
wpx ← if x ∈ wpoint

then true else false;
if x /∈ stable then

stable ← stable ∪ {x};
tmp ← if wpx

then ρ[x] � fx (eval x)
else fx (eval x);

if tmp 6= ρ[x] then
ρ[x] ← tmp;
W ← if wpx

then infl[x] ∪ {x}
else infl[x];

add Q W;
infl[x] ← ∅ ;
stable ← stable \W;
while (Q 6= ∅) ∧

(min_key Q ≤ key[x]) do
solve (extract_min Q);

end
end

and init y =
dom ← dom ∪ {y};
key[y] ← −count;
count++;
infl[y] ← ∅ ;
ρ[y] ← ρ0[y]

and eval x y =
if y /∈ dom then
init y; solve y;

if key[x] ≤ key[y] then
wpoint ← wpoint ∪ {y};

infl[y] ← infl[y] ∪ {x};
ρ[y]

in
wpoint ← ∅
stable ← ∅ ; infl ← ∅ ;
ρ ← ∅ ; dom ← ∅ ;
Q ← empty_queue();
count ← 0; init x0;
solve x0;
ρ

Figure 7: The algorithm SLR2, which is SLR with plain localized widening. Colored in red
are changes w.r.t. SLR1.

i = 0;
while (i < 100) {
j = 0;
while (j < 10) {
// Inv: 0 ≤ i ≤ 99
j = j + 1;

}
i = i + j;

}

Figure 8: Example program with
nested loops.
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Figure 9: The control-flow graph of the program.
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analysis on this program, the interval [0, 0] has been established for the program
variable i at all program points of the inner loop. Then a second iteration of the
outer loop is performed. Even if warrowing is only applied at the loop heads,
we obtain the interval [0,∞] for i at the loop head of the outer loop. In the
subsequent iteration of the inner loop, the new interval for variable i at the inner
loop head is [0, 99]. Since warrowing is meant to be applied at that program
point, the interval [0, 0] �[0, 99] = [0,∞] is recorded for i and subsequently also
propagated to all the other program points of the inner loop, and no subsequent
narrowing will take place to recover from the loss of the upper bound for i.

This kind of loss of precision is avoided if we allow the set wpoint of unknowns
where to apply � not only to grow monotonically, but also to shrink. Our second
idea therefore is to remove an unknown x from wpoint before the right-hand side
of x is evaluated. The resulting algorithm SLR3 is shown in Fig. 10. Note that
back-edges are detected by the call eval x y which therefore may insert y into the
set wpoint, while the unknown x is removed from wpoint inside the call solve x.

Theorem 19. Assume the algorithm SLR3 is applied to a system of pure equa-
tions over an upward-directed set D, with initially queried interesting unknown
x0.

1. SLR3 returns a partial post solution whose domain contains x0—whenever
it terminates.

2. If each right hand side is monotonic, then SLR3 is guaranteed to terminate—
whenever only finitely many unknowns are encountered.

Proof. The considerations in the original proof for SLR1 regarding atomicity of
evaluation of right-hand sides still hold. The same is true for partial correctness.
The only difference w.r.t. SLR1 is that, upon termination, for an unknown x
either ρ[x] = ρ[x] � fxρ or ρ[x] = fxρ. In any case, ρ is a post-solution.

The most interesting part is the proof of termination. So, assume that all
right hand sides are monotonic and only finitely many unknowns are encountered
during the call of solve x0. Assume the algorithm does not terminate. It means
there are unknowns x whose values ρ[x] are updated infinitely many times. Let
x denote one of these unknowns, namely the one with maximum priority. From a
certain point in the execution of the algorithm, no fresh unknown is encountered
and no ρ[y] for an unknown y with key value exceeding key[x] is ever updated.

Assume we have reached this point in the execution of the algorithm. More-
over, assume that x is extracted. This means that in the queue there are no
unknowns with key value less than key[x]. Since all unknowns with key values
greater than key[x] are not subject to update (hence their evaluation does not
add elements to the queue), for x to be extracted repeatedly, the only possibility
is that in every subsequent call solve x, we have:

1. tmp 6= ρ[x]; and

2. there is some unknown y ∈ infl[x] with key[y] ≤ key[x] so that the evaluation
of the right-hand side of y queries the value of the unknown x.
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let rec solve x =
wpx ← if x ∈ wpoint

then true else false ;
wpoint ← wpoint \ {x};
if x /∈ stable then

stable ← stable ∪ {x};
tmp ← if wpx

then ρ[x] � fx (eval x)
else fx (eval x);

if tmp 6= ρ[x] then
ρ[x] ← tmp;
W ← if wpx

then infl[x] ∪ {x}
else infl[x];

add Q W;
infl[x] ← ∅ ;
stable ← stable \W;
while (Q 6= ∅) ∧

(min_key Q ≤ key[x]) do
solve (extract_min Q);

end
end

and init y =
dom ← dom ∪ {y};
key[y] ← −count;
count++;
infl[y] ← ∅ ;
ρ[y] ← ρ0[y]

and eval x y =
if y /∈ dom then
init y; solve y;

if key[x] ≤ key[y] then
wpoint ← wpoint ∪ {y};

infl[y] ← infl[y] ∪ {x};
ρ[y]

in
wpoint ← ∅
stable ← ∅ ; infl ← ∅ ;
ρ ← ∅ ; dom ← ∅ ;
Q ← empty_queue();
count ← 0; init x0;
solve x0;
ρ

Figure 10: The algorithm SLR3, which is SLR2 with localized warrowing. Colored in red are
changes w.r.t. SLR2.

Assume for a contradiction, that the second assertion were wrong. Then the
evaluation of the right-hand side of every unknown y with key[y] ≤ key[x] returns
the current value of y. Therefore, the next evaluation of the right-hand side of x
also will return the same value as the last evaluation the right-hand side of x
— implying that the call solvex terminates: in contradiction to our assumption.
Therefore, the second assertion holds. Now, due to the second assertion, x is
inserted into the set wpoint before the procedure solve is tail-recursively called
for x. Accordingly, wpx will always be true when evaluating solve x. However,
by the properties of �, this means that x cannot be updated infinitely many
times: contradiction. Therefore the algorithm terminates. �

Let us again consider the program from Fig. 8. The solver SLR3 iterates
through the program points of the inner loop until stabilization before the next
iteration on the program points of the outer loop is performed. After this
iteration, the interval [0, 0] has been established for the program variable at
all program points of the inner loop. Since the unknown corresponding to the
loop head of the inner loop is now stable, it is no longer contained in the set
wpoint. Therefore, when during the next iteration of the outer loop the interval
[0, 99] arrives for program variable i, this interval will replace the current interval
[0, 0] for i (without application of the warrowing operator). Accordingly, the
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i = 0;
while (TRUE) {
i = i + 1;
j = 0;
while (j < 10) {
// Inv: 1 ≤ i ≤ 10
j = j + 1;

}
if (i > 9) i = 0;

}

Figure 11: Example program hybrid
from Halbwachs and Henry (2012).
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Figure 12: The control-flow graph for the program
from Fig. 11.

subsequent iteration on the inner loop will propagate this interval throughout the
inner loop without change. Therefore no upper bound ∞ for i is ever generated
within the inner loop. This effect is comparable to the concept of localized
widening as proposed by Amato and Scozzari (2013).

7. Restarting in SLR

Besides localization of widening and narrowing, Amato and Scozzari (2013)
present a second idea to improve precision of fixpoint iteration in presence
of infinite increasing chains. Consider the program in Fig. 11 whose control-
flow graph is given in Fig. 12. In this example, the program variable i takes
values from the interval [0, 10] whenever the inner loop is entered. The upper
bound 10, though, is missed both by the vanilla version of SLR as well as by
SLR3. The reason is that the inner loop is iterated with the interval [1,∞] for i
until stabilization before that, triggered by a narrowing iteration of the outer
loop, the value [1, 10] for i arrives at the entry point of the inner loop. Since
[1, 10] t [1,∞] = [1,∞], the finite upper bound of i at the entry point cannot be
recovered.

In order to improve on this and similar kinds of precision loss, Amato and
Scozzari propose to restart the iteration for sub-programs. The restart could
be triggered, e.g., for the body of a loop as soon as the value for the head has
decreased.

In the following, we indicate how this strategy may be integrated into the
generic solver SLR3 (see Fig. 13). The resulting algorithm SLR4 requires a
function restart. This function, when called with a priority r and an unknown x,
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let rec restart r y =
add Q y;
stable ← stable \ {y};
if key[y] < r then
ρ[y] ← ρ0[y];
M ← infl[y];
infl[y] ← ∅ ;
foreach z ∈ M do
restart r z

in
let rec solve x =
wpx ← if x ∈ wpoint

then true else false;
wpoint ← wpoint \ {x};
if x /∈ stable then

stable ← stable ∪ {x};
tmp ← if wpx

then ρ[x] � fx (eval x)
else fx (eval x);

if tmp 6= ρ[x] then
if wpx ∧ tmp v ρ[x] then
foreach z ∈ infl[x] ∪ {x}

do restart key[x] z;
else
W ← if wpx

then infl[x] ∪ {x}
else infl[x];

add Q W;
stable ← stable \W;

infl[x] ← ∅ ;
ρ[x] ← tmp;
while (Q 6= ∅) ∧
(min_key Q ≤ key[x]) do
solve (extract_min Q);

end
end

and init y =
dom ← dom ∪ {y};
key[y] ← −count;
count++;
infl[y] ← ∅ ;
ρ[y] ← ρ0[y]

and eval x y =
if y /∈ dom then
init y; solve y;

if key[x] ≤ key[y] then
wpoint ← wpoint ∪ {y};

infl[y] ← infl[y] ∪ {x};
ρ[y]

in
wpoint ← ∅
stable ← ∅ ; infl ← ∅ ;
ρ ← ∅ ; dom ← ∅ ;
Q ← empty_queue();
count ← 0; init x0;
solve x0;
ρ

Figure 13: Solver SLR4. Colored in red are changes w.r.t. SLR3.

traverses variables y that are recursively influenced by x such that the priority
of y is less than r. As the main effect of restart, the value ρ[y] is reset to ρ0[y],
for each found unknown y. Additionally, to force re-computation, all influenced
unknowns are added to the priority queue Q, removed them from the stable set,
and have their their influence sets cleared. The function restart then is called
within the function solve for an unknown x whenever x is currently contained
in wpoint and the new value tmp for x is less than the current value for x. In
this case, all unknowns in the set infl[x] are restarted (w.r.t. the priority of x).
Otherwise, the algorithm behaves like the algorithm SLR3.

Consider again the program from Fig. 11. As soon as narrowing at the head
of the outer loop recovers the interval [0, 9] for the program variable i, recursively
the values for the reachable program points with lower priorities are reset to ⊥.
This refers to all program points in the body of the outer loop and thus also
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to the complete inner loop. Reevaluation of all these program points with the
value [0, 9] for i at the outer loop head provides us with the invariant 1 ≤ i ≤ 10
throughout the inner loop.

The algorithm will return a �-solution whenever it terminates. A guarantee,
however, of termination is no longer possible even if right-hand sides are mono-
tonic and only finitely many unknowns are visited. Intuitively, the reason is the
following. Assume that the value for an unknown x has decreased. Then we
might expect that restarting the iteration for lower priority unknowns results in
a smaller next approximation for x. Due to the non-monotonicity introduced by
widening, this need not necessarily be the case. Accordingly, we are no longer
able to bound the number of switches between increasing and decreasing phases
for x. There are simple practical remedies for nontermination, though. We may,
for example, bound for each unknown the number of restarts which do not lead
to the same value or a decrease. This behaviour is somewhat different from
the restart policy of Amato and Scozzari (2013) where nontermination cannot
happen, due to the fact that the algorithm keeps track of which (ascending or
descending) phase is executed in a given program point, and a descending phase
cannot turn into an ascending phase just because the current values of some
unknowns have been decreased.

8. Side-effecting systems of equations

In the following, generic solving, as we have discussed in the preceding
sections, is extended to right-hand sides fx that not only return a value for
the left-hand side x of the equation x = fx, but additionally may produce side
effects to other unknowns. This extension to equation systems corresponds to
assert-statements of Prolog or Datalog programs. Side effects may arbitrarily
be dispersed over right-hand sides of unknowns. This kind of extension to right-
hand sides has been advocated by Apinis et al. (2012) for an elegant specification
of inter-procedural analysis using partial contexts and flow-insensitive unknowns
and thus also of multi-threaded programs (Seidl et al., 2003). In that paper it is
argued that, at least for very large or infinite systems, side effects cannot easily
be simulated by ordinary systems of equations.

Example 20. Consider the following program.

int g = 0;
void f (int b) {

if (b) g = b + 1;
else g = −b − 1;

}
int main() {
f(1);
f(2);
return 0;

}
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The goal is to determine a tight interval for the global program variable g. A
flow-insensitive analysis of globals aims at computing a single interval which
should comprise all values possibly assigned to g. Besides the initialization with
0, this program has two assignments, one inside the call f(1), the other inside
the call f(2). A context-sensitive analysis of the control-flow should therefore
collect the three values 0, 2, 3 and combine them into the interval [0, 3] for g.
This requires to record for which contexts the function f is called. This task can
nicely be accomplished by means of a local solver. That solver, however, has to
be extended to deal with the contributions to global unknowns. �

In general, several side effects may occur to the same unknown z. Over an
arbitrary domain of values, though, it remains unclear how the multiple contri-
butions to z should be combined. Therefore in this section, we assume that the
values of unknowns are taken from an upward-directed set D with a least element,
which is denoted by ⊥. Also, right-hand sides are again assumed to be pure. For
side-effecting constraint systems this means that evaluating a right-hand side
fx applied to functions get : X → D and side : X → D→ unit (unit being the
type consisting of the empty tuple only) consists of a sequence of value lookups
for unknowns by means of calls to the first argument function get and side effects
to unknowns by means of calls to the second argument function side which is
terminated by returning a contribution in D for the corresponding left-hand side.

Subsequently, we assume that each right-hand side fx produces no side effect
to x itself and at most one side effect to each unknown z 6= x. Technically,
the right-hand side fx of x with side effects can be considered as a succinct
representation of a function f̄x that takes a mapping ρ and does not return just
a single value, but again another mapping ρ′ where ρ′[x] equals the return value
computed by fx for get = ρ, and for z 6= x, ρ′[z] = d if during evaluation of
fx get side, side is called for z and d. Otherwise, i.e., if no side effect occurs
to z, ρ′[z] = ⊥. A post solution of a system x = fx, x ∈ X , of equations with
side effects then is a mapping ρ : X → D such that for every x ∈ X , ρ w f̄x ρ. A
partial post solution with domain dom ⊆ X is a mapping ρ : dom→ D such that
for every x ∈ dom, evaluation of fx for ρ accesses only unknowns in dom and
also produces side effects only to unknowns in dom; moreover, ρ̄ w f̄x ρ̄ where
ρ̄ is the total variable assignment obtained from ρ by setting ρ̄[y] ← ⊥ for all
y 6∈ dom.

In the following, we present the side-effecting variant SLR+
1 of the algorithm

SLR1 from Section 5 that for such systems returns a partial -solution—whenever
it terminates. Moreover, the enhanced solver SLR+

1 is guaranteed to terminate
whenever all right-hand sides fx are monotonic, i.e., the functions f̄x all are
monotonic.

Example 21. Consider again the analysis of Example 20. The contributions
to the global program variable g by different contexts may well be combined
individually by widening to the current value of the global. When it comes to
narrowing, though, an individual combination may no longer be sound. Therefore,
the extension of the local solver SLR1 should collect all occurring contributions
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into a set, and use the joint value of all these to possibly improve the value of g.
�

Conceptually, the algorithm SLR+
1 therefore creates for each side effect to

unknown z inside the right-hand side of x, a fresh unknown sx,z which receives
that single value during evaluation of the right-hand side fx. Furthermore, the
algorithm maintains for every unknown z an auxiliary set set[z] which consists
of all unknowns x whose right-hand sides may possibly contribute to the value
of z by means of side effects. Accordingly, the original system of side-effecting
equations is (implicitly) transformed in the following way:

1. Inside a right-hand side fx, when a side effect side z d is encountered, the
value d is stored inside the auxiliary unknown sx,z while the unknown x is
added to the set set[z].

2. The new right-hand side for an unknown x is extended with a least upper
bound of all sz,x, z ∈ set[x].

The warrowing operator is applied whenever the return value of the new right-
hand side for x is combined with the previous value of x. Let us now list the
required modifications of the algorithm SLR1.

First, the function init y is extended with an extra initialization of the set
set[y] with ∅. The function eval remains unchanged. Additionally, a function
evalSide is required for realizing the side effects during an evaluation of a right-
hand side. As eval, the function evalSide also receives the left-hand side of the
equation under consideration as its first argument. We define:

let evalSide x y d =
if sx,y /∈ dom then ρ[sx,y] ← ⊥;
if d 6= ρ[sx,y] then
ρ[sx,y] ← d;
if y ∈ dom then
set[y] ← set[y] ∪ {x};
stable ← stable \ {y};
add Q y

else
init y; set[y] ← {x};
solve y

end
end

When called with x, y, d, the function evalSide first initializes the unknown sx,y
if it is not yet contained in dom. If the new value is different from the old
value of ρ for sx,y, ρ[sx,y] is updated. Subsequently, the set set[y] receives the
unknown x, and the unknown y is triggered for reevaluation. If y has not yet been
encountered, y is initialized, set[y] is set to {x}, and solve y is called. Otherwise,
x is only added to set[y], and y is scheduled for reevaluation by destabilizing y
first and then inserting y into the priority queue Q.
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The third modification concerns the procedure solve. There, the call of the
right-hand side fx now receives evalSidex as a second argument and additionally
evaluates all unknowns collected in set[x]. The corresponding new line reads:

tmp← ρ[x] � (fx (evalx) (evalSidex) t
⊔
{ρ[sz,x] | z∈set[x]});

Example 22. Consider again interval analysis for the program from Example
20. Concerning the global program variable g, the initialization g = 0 is detected
first, resulting in the value ρ[g] = [0, 0]. Then g is scheduled for reevaluation.
This occurs immediately, resulting in no further change. Then the calls f(1), f(2)
are analyzed, the side effects of 2 and 3 are recorded and g is rescheduled for
evaluation. When that happens, the value ρ[g] is increased to

[0, 0] � [0, 3] = [0, 0]∇ [0, 3] = [0,∞]

if the standard widening for intervals is applied. Since ρ[g] has changed, z again
is scheduled for evaluation resulting in the value

[0,∞] � [0, 3] = [0,∞] ∆ [0, 3] = [0, 3]

Further evaluation of g will not change this result any more. �

Analogously to Theorem 15 from the last section, we obtain:

Theorem 23. Assume the algorithm SLR+
1 is applied to a system of pure

equations with side effects over an upward-directed set D with bottom, with
initially queried interesting unknown x0.

1. SLR+
1 returns a partial post solution whose domain contains x0—whenever

it terminates.

2. If each right hand side is monotonic and t is monotonic as well, then
SLR+

1 is guaranteed to terminate—whenever only finitely many unknowns
are encountered and side effects of low priority variables’ right-hand sides
always refer to higher priority variables.

Note that in the proof of termination we also require the upper bound operator
t to be monotone. The property trivially holds when D is a join semi-lattice and
t is the least upper bound. However, there are some abstract domains which are
not join semi-lattices, such as zonotopes (Goubault et al., 2012) or parallelotopes
(Amato and Scozzari, 2012).

The proof of Theorem 23 is analogous to the proof of Theorem 15. It is worth-
while noting, though, that the argument there breaks down if the assumption
on the priorities in side effects is not met: in that case, any reevaluation of a
high-priority variable x may have another effect onto a low-priority variable y —
even if x does not change. No guarantee therefore can be given that the overall
sequence of values for y will eventually become stable. If on the other hand, the
side-effected variable y has priority greater than x, at reevaluation time of y, the
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evaluation of x has already terminated where only the final contributions to y
are taken into account. Since only finitely many such contributions are possible,
the algorithm is overall guaranteed to terminate.

The extra condition on the side effects incurred during fixpoint computation
is indeed crucial for enforcing termination — as can be seen from the following
example.

Example 24. Consider the following program:

int g = 0;
int main() {
g = g + 1;
return 0;

}

where the global is meant to be analyzed flow-insensitively. Consider an interval
analysis by means of solver SLR+

1 , and assume that the unknown for the global
g has lesser priority than the unknown for the endpoint of the assignment to
g. The first side effect to g is the interval [1, 1] resulting in the new value [0, 1]
which is combined with the old value [0, 0] by means of � and then again by
means of �. Since

([0, 0] � [0, 1]) � [0, 1] = [0,∞] � [0, 1] = [0, 1]

the widening is immediately compensated by the consecutive narrowing. The
same phenomenon occurs at every successive update of the value for g, implying
that SLR+

1 will not terminate.
The solver SLR+

1 behaves differently if the priority of the unknown for g
exceeds the priority of the unknown for the endpoint of the assignment. In this
case after the first application of � at g, the assignment is processed again. Since
the first application of � behaves like a widening, this means that the second side
effect to g is with the interval [1,∞]. Accordingly, the following recomputation
of the new value for g will be

[0,∞] � ([0, 0] t [1,∞]) = [0,∞] � [0,∞] = [0,∞]

and the fixpoint computation terminates.�

In practical applications where the side-effected unknowns correspond to globals,
the extra condition on priorities in Theorem 23 can be enforced, e.g., by ensuring
that the initializers of globals are always analyzed before the call to the procedure
main.

Theorem 23 only discusses the extension of the base version of the algorithm
SLR1 to systems of equations with side effects. A similar extension is also
possible to the solvers with localized application of �. In order to ensure
termination also in this case, however, we additionally must insert every side-
effected unknown into the set wpoint of unknowns where the operation � is to
be applied. For the side-effecting version of SLR3, we therefore define:
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let evalSide x y d =
wpoint ← wpoint ∪ {y};
if sx,y /∈ dom then ρ[sx,y] ← ⊥;
if d 6= ρ[sx,y] then
ρ[sx,y] ← d;
if y ∈ dom then
set[y] ← set[y] ∪ {x};
stable ← stable \ {y};
add Q y

else
init y; set[y] ← {x};
solve y

end
end

With this definition, termination of the algorithm SLR+
3 can be guaranteed

under the same assumptions as for the algorithm SLR+
1 .

9. Experimental evaluation

We have implemented the proposed generic local solvers and included them
into the analyzer Goblint for multi-threaded C programs. Goblint uses CIL
as C front-end (Necula et al., 2002) and is written in OCaml. The tests were
performed on 2.7GHz Intel Core i7 laptop, with 8GB DDR3 RAM, running OS
X 10.9.

In a first series of experiments we tried to clarify the increase of precision
possibly attained by means of the various �-solvers w.r.t. the two-phase solving
using widening and narrowing according to (Cousot and Cousot, 1976). For
these experiments, we used the benchmark suite1 from the Märdalen WCET
research group (Gustafsson et al., 2010) which collects a series of interesting
small examples for WCET analysis, varying in size from about 40 lines to 4000
lines of code. We have extended this benchmark suite with four tricky programs
from (Amato and Scozzari, 2013): a) hh.c, b) hybrid.c, c) nested.c, and
d) nested2.c. The basis of our analysis is constant propagation together with a
may-points-to analysis of pointer variables, which is flow-sensitive for locals and
flow-insensitive for globals. On top of that, we performed an interval analysis.
In contrast to the preliminary experiments of Apinis et al. (2013), we now use an
interval analysis which soundly approximates 32bit integers with wrap-around
semantics. This means that the abstract semantics of arithmetic operations now
returns > = [minint,maxint] if an overflow may occur. Likewise, the widening
operator widens finite lower and upper bounds to minint and maxint, respectively.
Additionally, we have considered the relational abstract numerical domains of

1available at www.mrtc.mdh.se/projects/wcet/benchmarks.html
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Figure 14: The relative improvement of SLR1 over two-phase solving.
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Figure 15: The relative improvement of SLR3 over SLR2.

octagons and polyhedra, respectively. The implementation of these is based
on the Apron library (Jeannet and Miné, 2009). First, we determined the
relative precisions achieved by the various solvers w.r.t. the interval domain only.
The results of this comparison is displayed in Figs. 14, 15, and 16. Since the
absolute run-times are negligible (about 14 seconds for all programs together),
we only display the relative precision. Fig. 14 reports the percentage of program
points where solver SLR1 returns better results than two-phase solving. In the
vast majority of cases, SLR1 returned significantly better results—supporting
the claim that �-solving may improve the precision. Interestingly, placing the
warrowing operator at widening points only, as implemented by solver SLR2,
results in an improvement in the first two benchmarks (28.81% and 1.01%,
respectively) only. The reason might be that, applying narrowing intertwined
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Figure 16: Comparison of SLR4 with SLR3 indicating the percentage of program points
where the results are incomparable (brown), better (blue) or worse (red).

with widening can quite often recover some of the precision lost by the superfluous
widenings.

Fig. 15 reports the relative further improvement when additionally widening
points can dynamically be removed during solving. In 15 of 36 cases, we again
obtain an improvement, in some cases even for over 70% of program points!
This strategy therefore seems highly recommendable to achieve good precision.
Fig. 16 finally explores the impact of restarting. Here, the picture is not so clear.
For the benchmark program 2, restarting resulted even in a loss of precision for
a small fraction of program points, while still for a larger fraction improvements
were obtained. In two further benchmarks, program points with incomparable
results where found. For benchmark program 3, these make up about 4% of
the program points, while for program 7, the fraction goes even up to 31%. In
principle such a behavior is not surprising, considering the non-monotonicity
of widening. Still, for two more example programs, drastic improvements are
found. One of these comes from the WCET benchmark suite, while the other
has been provided by (Amato and Scozzari, 2013), admittedly, as an example
where restarting is beneficial.

In a second experiment, we explored the relative efficiencies of our implemen-
tation of the generic local �-solvers. For that, we performed interval analysis
where local variables are analyzed depending on a calling context which includes
all non-interval values of locals, while the values of globals are analyzed flow-
insensitively. Such kinds of analysis cannot be performed by the two-phase
approach, since right-hand sides are not monotonic and the sets of contexts and
thus also the sets of unknowns encountered during the widening and narrowing
phases may vary.

The analysis was run on all benchmarks from the SpecCpu2006 benchmark
suite which can be handled by the C front-end CIL used in our analyzer. The
set of selected benchmarks consist of seven programs in the range of 1 to 33
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Figure 17: Context sensitive interval analysis of SpecCpu2006 programs.

35



kloc, 400.perlbench with 175 kloc, and 445.gobmk with 412 kloc of C code.
The results for the side-effecting versions of SLR1 to SLR4 are reported in
Fig. 17 where the numbers of evaluations of right-hand sides are displayed on a
logarithmic scale. For a comparison we also included the numbers of evaluations
if the solver SLR+

1 uses plain widening instead of �.
The analysis of the seven smaller programs could be handled in less than

13 seconds. The large program 400.perlbench (175 kloc of C code) could be
handled by our solvers — but with running times between 18 minutes (using
SLR+

3 ) and 4 hours (using SLR+
4 ), while context-sensitive analysis did not

terminate for the largest benchmark 445.gobmk (412 kloc) within 5 hours.
The first observation is that SLR+

1 is only marginally slowed down, if widening
is enhanced to �, i.e., narrowing is added. The second observation is that
the efficiency of fixpoint computation is greatly improved when restricting
the application of � to widening points. Improvements of about 30% could
consistently be obtained. For the large program 400.perlbench, the speedup
even was by a factor of 3. Enhancing solver SLR+

2 to solver SLR+
3 , on the other

hand, which comes with a significant improvement in precision, additionally
results in another slight reduction of the number of evaluated right-hand sides.
To us, these numbers came at a surprise, since even in those scenarios where
we could theoretically establish termination of the algorithms, we expected
drastically worse running times of iteration with � when compared to iteration
with widening alone.

Restarting, finally, adds another dimension of potential inefficiency to fixpoint
iteration. Yet, our numbers for SLR+

4 on the benchmark suite show that the
practical slowdown over the fastest solver SLR+

3 is in many cases still better
than solving with SLR+

1 with widening alone. For the programs 458.sjeng and
400.perlbench, however, SLR+

4 is slower by a factor of 5 and 14, respectively.
As a third experiment, we compared the two-phase algorithm with the

�-solver SLR+
3 for octagons and polyhedra. Since the results for these two

relational domains are quite similar on our benchmark suite, we only report
the numbers for polyhedra. This domain is quite expressive. On very small
programs, we found virtually no differences in precision for the two fixpoint
algorithms (up to two notable exceptions in favor of SLR3). Fig. 18 therefore
only lists results for programs with at least fifty program points. On average, the
number of computed invariants per program is then about 229. Improvements
of 21.87% and 14.49% of SLR3 over the classical two-phase approach occur in
the peak, while improvements around 5% are more common. No differences can
be observed for more than half of the programs. In rare cases, a few invariants
found by the two-phase approach could not be detected by SLR3. Again, due
to the non-monotonic behavior of widening, such phenomena are to be expected.

10. Related work

Numerous attempts have been made to face the problem of the loss of
precision introduced by widening operators. Some authors propose to avoid
widening and compute a fixpoint of the Kleene iteration by using strategy/policy
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Figure 18: Comparison of 2-phase widening and narrowing with SLR3 indicating the percentage
of program points where the results are incomparable (brown), where SLR3 is better (blue)
or worse (red).

iteration (Costan et al., 2005; Gawlitza and Seidl, 2011) or acceleration operators
(Gonnord and Halbwachs, 2006), but these methods are applicable only to specific
abstract domains or under syntactical restrictions to the program syntax. In
contrast, our approach is generally applicable, independently from the choice
of the abstract domain and operators used in the analysis or any syntactical
restrictions.

Another domain-independent approach is to design enhanced widening op-
erators such as delayed widening, widening with threshold (Blanchet et al.,
2003), widening with landmarks (Simon and King, 2006) and lookahead widening
(Gopan and Reps, 2006). These are tailored for specific settings and abstract
domains. They are orthogonal to our approach. They may be plugged into the
warrowing operator, and thus be used together with our fixpoint algorithms.

Due to the presence of widening operators, it has been observed that the entire
analysis fails to be monotonic. Therefore, selecting a different starting point of
the analysis, other than the bottom of the abstract domain, may improve the
overall result. In practice, this idea has been exploited by various techniques, all
of which have in common to repeat the entire analysis multiple times with some
variations, and to combine the obtained results. The proposal of Halbwachs and
Henry (2012) is to iterate the analysis starting from a different initial value. After
each widening/narrowing phase, the result is perturbed in order to get a new
value to restart the widening/narrowing phase. The intersection of all obtained
results is guaranteed to be a post-fixpoint. There are several approaches to
choose the perturbation, but only the simplest one has been implemented so far.
The main difference to our restarting solver is that the algorithm of Halbwachs
and Henry (2012) restarts the widening/narrowing phase only after that a post
fixpoint has been reached. On the contrary, in our approach the ascending
and descending phases, perhaps together with restarting are intertwined and
different program points can be in different phases during the same iteration.

37



Thus, these two approaches are technically incomparable. Still, computing a
post solution before the restarting as well as after the restarting according to
Halbwachs and Henry (2012) could very well be implemented, e.g., by one of our
solvers in order to obtain the benefits of both approaches. (Amato and Scozzari,
2013) provide experimental evidence that localized widening with a standard
separated narrowing is competitive with respect to this approach. These ideas
are generalized by our solvers SLR2 and SLR3.

Guided static analysis as proposed by Gopan and Reps (2007) applies a
standard program analysis to a sequence of program restrictions, each obtained
by disabling some program paths. Each restriction is analyzed starting from
the result of the previous one, until the original program is analyzed. Henry
et al. (2012a) further enhanced this approach by combining it with path-focusing
(Monniaux and Gonnord, 2011), in order to avoid merging infeasible paths and
thus to find precise disjunctive invariants. Lookahead widening (Gopan and
Reps, 2006) may be viewed as a variant of guided static analysis where the
machinery needed to explore the different program restrictions is embedded, with
some limitations, inside the widening operator. Amato and Scozzari (2013) give
some evidence, though, that guided static analysis does not help in those cases
where localized widening and intertwined widening and narrowing are beneficial.

Static analysis stratified by variable dependency, as proposed by Monniaux
and Guen (2012), is similar to guided static analysis in that successive approx-
imations of the program are considered, where later approximations consider
more variables than former ones. The result of one approximation is used within
the successive approximations to improve the results. All these techniques treat
the equation solver as a black box, and try to execute different analyses to
improve the result. In this sense, they are orthogonal to our engineering of solver
algorithms and may therefore benefit from our improvements as well.

A recent proposal by Cousot (2015) is to add a third phase of iteration to the
analysis, subsequently to the ascending (widening) and descending (narrowing)
phases. In order to further improve on that post solution, another ascending
iteration from the initial value is performed, now with a dual-narrowing operator.
The dual narrowing operator allows to obtain a terminating iteration whose
result is bounded above by the previously found post solution. Thus, similar to
the approach of Halbwachs and Henry (2012), the third phase takes place only
after a post solution has been reached. Currently, our approach only intertwines
the ascending and descending phases — implying that for each unknown of the
system, the solver may switch between widening and narrowing several times. In
a technical sense, our setting is incomparable with the setting of Cousot (2015),
as we do not require the initial value to be a pre solution. Accordingly, also the
computed (partial) post solutions need not necessarily exceed the initial values.
Still, it would be interesting to explore how far our solvers could be enhanced so
that a third mode of iteration could be intertwined which uses a dual narrowing
operator instead of � — at least, whenever sensible.
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11. Conclusion

We have presented a combination of widening and narrowing into a single op-
erator � and systematically explored solver algorithms which, when instantiated
with � will solve general systems of equations. Perhaps surprisingly, standard
versions of fixpoint algorithms, when enhanced with �, may fail to terminate
even for finite systems of monotonic equations. Therefore, we presented variants
of round-robin iteration, of ordinary worklist iteration as well as of recursive local
solving with and without side effects where for monotonic equations and finitely
many unknowns, termination can be guaranteed whenever only finitely many
unknowns are encountered, and side effects are to higher-priority unknowns only.
In order to enforce termination, we assigned static priorities to the unknowns
of the system. In order to construct generic solvers for arbitrary systems of
equations, we heavily relied on self-observation of the solvers. Thus, priorities are
assigned in the ordering in which the unknowns are encountered. We also let the
fixpoint iterator itself determine the dependencies between unknowns. Together
with the priorities, also the places where to apply warrowing are dynamically
determined.

It has not been clear before-hand, though, how well the resulting algorithms
behave for real-world program analyses. In order to explore this question, we
have provided an implementation within the analysis framework Goblint. In
our experimental set-up, we considered inter-procedural interval analysis where
the monotonicity assumption is not necessarily met. Our experiments confirm
that fixpoint iteration based on the combined warrowing operator still terminates
and may increase precision considerably. This holds true already for the local
solver SLR+

1 which has been presented by Apinis et al. (2013). Beyond that,
we demonstrated that the add-on of localizing warrowing operators increases
precision further, while efficiency is improved at the same time. An equally clear
picture could not be identified for the extra add-on of restarting. While we found
improvements in selected cases and generally still an acceptable efficiency, we
also found exceptional cases where a (minor) loss of precision occurs at some
program points or where the performance is degraded considerably.

In the end, we think that the two most important benefits of using the
warrowing operator are:

• the increase in precision w.r.t. standard analysis with separate widening
and narrowing phases;

• simpler implementation of solvers w.r.t. other solutions with separate
and (especially) interleaved widening and narrowing phases (compare, for
example, the complexity of the solver based on localized narrowing of
Amato and Scozzari (2013) with the solver SRR).

The most significant improvements were achieved for standard interval analy-
sis with the obvious widening and narrowing operators. For more expressive (and
more expensive) domains such as octagons and polyhedra, still improvements
could be observed in several cases. It remains for future work to explore how
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well our methods work also for other domains, for more sophisticated widening
and narrowing operators and also for larger classes of programs. It would also
be interesting to see whether other approaches such as static guided analysis by
Gopan and Reps (2007) may benefit from our enhanced algorithms, and also in
how far our ideas can be extended so that the third iteration phase by Cousot
(2015) is incorporated into our solvers.
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