
Localizing widening and narrowing

Gianluca Amato and Francesca Scozzari

Dipartimento di Economia
Università “G. d’Annunzio” di Chieti-Pescara

{gamato,fscozzari}@unich.it

Abstract. We show two strategies which may be easily applied to stan-
dard abstract interpretation-based static analyzers. They consist in 1)
restricting the scope of widening, and 2) intertwining the computation
of ascending and descending chains. Using these optimizations it is pos-
sible to improve the precision of the analysis, without any change to the
abstract domains.

1 Introduction

In abstract interpretation-based static analysis, the program to analyze is typi-
cally translated into a set of equations describing the abstract program behavior,
such as:

x1 = Φ1(x1, . . . , xn)

...

xn = Φn(x1, . . . , xn)

(1)

Each index i ∈ {1, . . . , n} represents a control point of the program and each Φi

is a monotone operator. The variables in the equations range over an abstract do-
main A, which is a poset whose elements encode the properties we want to track.
The analysis aims at computing the least solution of this system of equations.

In theory, it is possible to find the (exact) least solution of the system with
a Kleene iteration, starting from the least element in An. However, in practice,
many abstract domains have infinite ascending chains, therefore this procedure
may not terminate. In other cases, domains may have very long finite ascending
chains that would make this procedure impractical. The standard solution to
these problems is to use widening, which ensures the termination of the analysis
in exchange of a certain loss in precision.

Widening has been extensively studied, and we can find in the literature
many different widenings for the most common abstract domains. Furthermore,
many domain-independent techniques have been developed to improve widening
precision, such as delayed widening, widening with threshold [9] and lookahead
widening [17]. There are alternatives to the use of widening, such as acceleration
operators [16] and strategy/policy iteration [11, 15]. However, acceleration only
works for programs with restricted linear assignments, while strategy/policy it-
eration is restricted to template domains [26]. Therefore, widening is the only
general applicable mechanism.

Using widening in the Kleene iteration, we still get an ascending chain which
stabilizes on a post-fixpoint of Φ. It is common practice to improve the precision
of the analysis continuing the iteration, taking this post-fixpoint as a starting
point for a descending chain. Every element of the latter is an over approximation
of the least fixpoint, therefore it is possible to stop the sequence at any moment
without losing correctness. Sometimes a narrowing operator may be used, with
the same purpose.

While widening and ascending chains have been extensively studied, little
attention has been devoted to descending chains. One of the few papers, if not
the only one, which tackles the subject is [20]. Nonetheless, descending chains
(with or without narrowing) are often needed to get a decent precision.

In this paper we propose two strategies for improving the way standard ab-
stract interpretation-based static analyzers are engineered. The first improve-
ment regards widening and ascending chains. The second improvements regards
descending chains, in particular the way ascending and descending chains may
be intertwined.

1.1 Improving widening

Widening is defined by Cousot and Cousot [12] as a binary operation O : A ×
A → A over an abstract domain A, with the property that, given a sequence
x0, . . . , xi, . . . of abstract elements, the sequence y0 = x0, yi+1 = yi O xi is
eventually constant.

It is possible to select a set of widening points W ⊆ {1, . . . , n} among all the
control points of the program and replace, for each i ∈ W , the i-th equation in
the system (1) with

xi = xi O Φi(x1, . . . , xn) .

When W is admissible, i.e., every loop in the dependency graph of the system
of equations contains at least one element in W , then any chaotic iteration
sequence terminates. The choice of the set W of widening points may influence
both termination and precision, thus should be chosen wisely.

Bourdoncle’s algorithm [10] returns an admissible set of widening points.
When the equations are generated by a control-flow graph, this set contains
all the loop junction nodes. For structured programs, these widening points
are exactly the loop heads of the program. This means that, if i ∈ W , the
corresponding equation is

xi = xin ∨ xback ,

where the control points i, in and back are, respectively, the head of the loop, the
input to the loop and the tail of the loop. The standard application of widening
yields the equation

xi = xi O (xin ∨ xback) .

We believe that this is a source of imprecision, and show that, under certain
conditions, it is possible (and generally better) to replace this equation with

xi = xin ∨ (xi O xback) . (2)

2

i = 0
while (i <10) {

j = 0
while (j <10)

j = j+1
i = i+1

}
// Invariant: i = 10

i = 0

i < 10

j = 0

j < 10

j = j + 1

i = i+ 1

1

2

true
3

false

4

5

6

true
7

false

8

9

10

x1 = [0, 0]× [−∞,∞]

x2 = x1 ∨ x10
x3 = x2 ∧ ([−∞, 9]× [−∞,∞])

x4 = x2 ∧ ([10,∞]× [−∞,∞])

x5 = first(x3)× [0, 0]

x6 = x5 ∨ x9
x7 = x6 ∧ ([−∞,∞]× [−∞, 9])

x8 = x6 ∧ ([−∞,∞]× [10,∞])

x9 = x7 + ([0, 0]× [1, 1])

x10 = x8 + ([1, 1]× [0, 0])

Fig. 1. The example program nested.

The last equation suggests that, when a junction node is entered from outside
the loop, widening is replaced by least upper bound, and when a junction node
is entered from inside the loop, widening is performed only on values generated
inside the loop. We call localized widening the use of widening according to Eq. 2.
Localized widening is mostly useful in the case of nested loops, where xin does
not change while analyzing the inner loop.

Consider the program in Figure 1 and the corresponding system of equations.
Bourdouncle’s algorithm outputs the set of widening pointsW = {2, 6}. Consider
the trace of the analysis given in Figure 2, which is limited to the ascending chain
and uses a recursive iteration strategy with the standard widening on the interval
domain.

In the result, both x2 and x6 have infinite upper bounds for i. The problem
is that, the second time we enter the inner loop, the new value of x6 is computed
as

x6 O (x5 ∨ x9) = {i = 0, j ≥ 0} O ({i ∈ [0, 9], j = 0} ∨ {i = 0, j ∈ [1, 10]})
= {i = 0, j ≥ 0} O {i ∈ [0, 9], j ∈ [0, 10]}
= {i ≥ 0, j ≥ 0} .

If we compute the descending sequence starting from here, we get x2 = {i ≥ 0}
and x6 = {i ≥ 0, j ∈ [0, 10]}. Note that, while for j we got optimal bounds,
the analysis cannot determine that i = 10 at the end of the loops. The problem
is that the descending iteration cannot improve the upper bound for i for the
variable x5, since i is not used in the inner loop. This is a well known problem,
and [20] gives a detailed presentation of the issue.

3

outer loop inner loop

x2 = {i = 0}
x5 = {i = 0, j = 0}

x6 = {i = 0, j = 0}
x9 = {i = 0, j = 1}

x6 = {i = 0, j ≥ 0}
x9 = {i = 0, j ∈ [1, 10]}

x6 = {i = 0, j ≥ 0}
x10 = {i = 1, j ≥ 0}

x2 = {i ≥ 0}
x5 = {i ∈ [0, 9], j = 0}

x2 = {i ≥ 0}
x5 = {i ∈ [0, 9], j = 0}

x6 = {i ≥ 0, j ≥ 0}
x9 = {i ≥ 0, j ∈ [1, 10]}

x6 = {i ≥ 0, j ≥ 0}x10 = {i ≥ 1, j ≥ 10}

x2 = {i ≥ 0}

Fig. 2. Trace of the analysis (only the ascending chain) for the program in Figure 1
using standard widening. Boxed values are final values. Solid arrows depict the order
of execution, while dashed arrows show which input values are used to compute a new
value.

If we use localized widening as described in Eq. 2, the second time we enter
the inner loop the new value of x6 is computed as:

x5 ∨ (x6 O x9) = {i ∈ [0, 9], j = 0} ∨ ({i = 0, j ≥ 0} O {i = 0, j ≥ 1})
= {i ∈ [0, 9], j = 0} ∨ {i = 0, j ≥ 0}
= {i ∈ [0, 9], j ≥ 0} .

At the end of the ascending chain we get x2 = {i ≥ 0}, x6 = {i ∈ [0, 9], j ≥ 0}
and x10 = {i ∈ [1, 10], j ≥ 10}. This is enough to obtain, after the descending
chain, the required result x2 = {i ∈ [0, 10]} and x6 = {i ∈ [0, 9], j ∈ [0, 10]}.

1.2 Improving descending sequences

The way ascending and descending sequences interact has never been fully clar-
ified. The standard technique is to first compute an over approximation of the

4

least solution of the equations with an ascending chain, and later refine the so-
lution with a descending sequence. However, in the presence of nested loops,
other choices are possible. In particular, when using a recursive strategy for the
ascending sequence [10], it seems natural to intertwine ascending and descending
sequences.

Consider again the program in Figure 1. Using either a recursive or an iter-
ative strategy with the standard widening, the ascending chain determines the
following invariants for the loops:

x2 = {i ≥ 0} x6 = {i ≥ 0, j ≥ 0}

As shown in the previous section, precision may be partially recovered using a
descending iteration, obtaining:

x2 = {i ≥ 0} x6 = {i ≥ 0, j ∈ [0, 10]}

However, it is possible to view the nodes inside the dashed rectangle in Fig-
ure 1 as if they were a single node, with input edge 5 and output edge 8. The
abstract transformer for the new node is obtained performing a standard analy-
sis of the inner loop, comprised of both ascending and descending chain. In this
case, we have the following results:

x02 = ⊥ x12 = {i = 0} x22 = {i ∈ [0,∞]}
x05 = ⊥ x15 = {i = 0, j = 0} x25 = {i ∈ [0, 9], j = 0}
x08 = ⊥ x18 = {i = 0, j = 10} x28 = {i ∈ [0, 9], j = 10}

where the values for x8 are computed by considering the dashed rectangle as a
whole. Every time it is considered, the analysis of the inner loop starts from the
beginning, independently from the results of previous iterations. The last row
is the fixpoint of the ascending chain (of the outer loop). Then, the descending
chain (of the outer loop) begins:

x↓02 = {i ∈ [0,∞]} x↓12 = {i ∈ [0, 10]}

x↓05 = {i ∈ [0, 9], j = 0} x↓15 = {i ∈ [0, 9], j = 0}

x↓08 = {i ∈ [0, 9], j = 10} x↓18 = {i ∈ [0, 9], j = 10}

In this case, we are able to prove that in the head of the outer loop i ∈ [0, 10],
since in the ascending chain we do not lose the information that i ∈ [0, 9] holds
in the inner loop.

If we look at the entire procedure without considering the abstraction given
by the dashed rectangle, it happens that ascending and descending sequences are
intertwined. While an ascending sequence is going on in the outer loop, either an
ascending or descending sequence is going on in the inner loop. We call localized
narrowing this strategy of intertwining ascending and descending chains. Here
we use the term narrowing broadly, to mean not only the standard narrowing
operator [13] but any procedure producing a descending chain.

5

1.3 Plan of the paper

Localized widening and narrowing may improve precision, but it is not com-
pletely clear whether they may be applied without compromising correctness
and termination.

In Section 2, we show that localized widening is correct and terminates for any
iteration strategy. In Section 3, we show that localized narrowing is correct and
guarantees termination. Section 4 shows that localized widening and narrowing
may improve precision not only w.r.t. standard abstract interpretation, but even
when compared to other optimizations.

2 Localized widening

We now formalize the treatment of widening presented in Section 1.1. We show
the conditions that allow to replace the standard widening with the localized
one and prove the correctness of the resulting analysis.

In the following, we denote with Φ a system of equations as in (1), where each
variable xi ranges over a poset A, and each Φi : An → A is a monotone function.
With an abuse of notation, we denote with Φ = (Φ1, . . . , Φn) the function Φ :
An → An obtained as the product of the Φi’s.

2.1 Preliminaries

We use the standard definition of widening, as appeared for the first time in [12].

Definition 1 (Widening [12]). A widening for the poset A is a binary oper-
ator O : A×A→ A such that:

1. x ≤ x O y,

2. y ≤ x O y,

3. for every sequence (xi)i∈ω, the sequence y0 = x0, yi+1 = yiOxi is eventually
constant.

In [14] a different definition of widening is introduced, where the convergence of
the sequence (yi) is ensured only if the sequence (xi) is ascending. Note that,
every widening Õ satisfying [14] may be transformed in a widening O satisfying
[12] by defining

x O y = xÕ(x ∨ y) . (3)

Definition 2 (Dependency graph). The dependency graph of the system of
equations Φ is a directed graph with nodes {1, . . . , n} and an edge i → j iff xi
occurs in Φj.

6

Example 1. The dependency graph for the system in Figure 1 is:

1 2 3

4

5 6

7

8

9

10

The nodes in the dependency graph correspond to the edges in the control-flow
graph.

We recall from [10] the definitions of hierarchical ordering and weak topological
ordering.

Definition 3 (Hierarchical ordering [10]). A hierarchical ordering of a set
S is a well-parenthesized permutation of this set without two consecutive “(”.

In other words, a hierarchical ordering is a string over the alphabet S augmented
with left and right parenthesis. The elements between two matching parentheses
are called a component and the first element of a component is called the head.
The innermost component containing an element l is denoted by comp(l), and its
head is denoted by head(l), when they exist. The set of heads of the components
containing the element l is denoted by ω(l).

Example 2. For the dependency graph in Example 1, two hierarchical orderings
are 1 2 3 4 5 6 7 8 9 10 and 1 (2 3 5 (6 7 9) 8 10) 4. In the second ordering, the
heads are 2 and 6 and we have head(7) = 6 and head(3) = 2.

A hierarchical ordering induces a total ordering, that we denote by �, cor-
responding to the permutation of the elements.

Definition 4 (Weak topological ordering [10]). A weak topological order-
ing of a directed graph (w.t.o. for short) is a hierarchical ordering of its nodes
such that for every edge u→ v, either u ≺ v or v � u and v ∈ ω(u). 1

Example 3. For the graph given in Example 1, a possible weak topological or-
dering is 1 (2 3 5 (6 7 9) 8 10) 4.

Every weak topological ordering of the dependency graph of Φ determines a
set of admissible widening points (the set of all the heads) and two iteration
strategies for solving the equations in Φ: an iterative and a recursive strategy.

In the recursive strategy, we apply the equations in the order given by the
w.t.o., but every time we enter a new component, we loop within that component
until all its values are stabilized. The iterative strategy is similar, but with the
ordering obtained by removing all parentheses except the ones for the outermost
component.

1 In [10], the first condition was u ≺ v ∧ v /∈ ω(u). However, the second conjunct is
implied by the first one.

7

2.2 Localizing widening

In the following, assume given a system Φ, its dependency graph and an associ-
ated weak topological ordering. An admissible set of widening points is implicitly
defined as the set of all the heads in the weak topological ordering.

Definition 5 (Loop join node). A loop join node is a node l ∈ [1, n] in the de-
pendency graph of Φ such that l is the head of a component and Φl(x1, . . . , xn) =
xv1 ∨ · · · ∨ xvm for some {v1, . . . , vm} ⊆ [1, n].

Given a loop join node l, let {vi1, . . . , vir} and {vb1, . . . , vbs} be the partition of
{v1, . . . , vm} such that vij /∈ comp(l) and vbj ∈ comp(l). Elements of the two sets

are called input nodes and back nodes respectively. We define xini = xvi
1
∨· · ·∨xvi

r

and xbacki = xvb
1
∨ · · · ∨ xvb

s
.

Example 4. Nodes 2 and 6 in the system in Figure 1 are loop join nodes.

Intuitively, the above definition allows us to distinguish between join nodes gen-
erated by while loops and join nodes generated by if statements. In the first case,
we separate the edges coming from inside the loop, denoted by xini , and the edges
coming from outside the loop, denoted by xbacki . Note that the conditions on in-
put and back nodes, i.e., vij /∈ comp(l) and vbj ∈ comp(l), are equivalent to vij ≺ l
and l � vbj .

Definition 6. We denote by Φ∨ a new system of equations derived from Φ and
such that, for each head node i, the i-th equation is replaced as follows:

– if i is a loop join node, by xi = xini ∨ (xi O xbacki);
– if i is not a loop join node, by xi = xi O Φi(x1, . . . , xn).

The idea is that any input coming from outside of a component does not
need to be guarded by the widening. In fact, either the input does not belong
to any loop (and therefore it has a constant value after the first iteration) or it
belongs to a loop, and therefore it is already guarded by another outer widening
which ensures that it will not increase forever. This reasoning works, however,
only assuming that all the head nodes are widening nodes.

Example 5. If Φ is the system in Figure 1 whose heads are 2 and 6, we have
that Φ∨ is the same as Φ but for the following equations: x2 = x1 ∨ (x2 O x10),
x6 = x5 ∨ (x6 O x9).

We can now prove that localized widening guarantees termination, using any
fair iteration sequence. First of all, we clarify what we mean with fair iteration
sequence.

An iteration sequence starting from D ∈ An is a possibly infinite sequence
(Xj) with elements Xj ∈ An such that:

– X0 = D.
– Xj for j > 0 is obtained from Xj−1 by applying one of the equations in Φ∨.

8

In the following we denote with δ(j) the equation chosen to compute Xj .

Definition 7 (Enabled equation). Given an iteration sequence (Xj), we say
that equation i is enabled in step k when

– either i has never been chosen before, i.e., {l ∈ [1, k − 1] | δ(l) = i} = ∅;
– or let m = max{l ∈ [1, k − 1] | δ(l) = i} the last choice of i: there is
l ∈ [m, k − 1] with δ(l) = u, u → i is an edge in the dependency graph,
X l > X l−1.

An equation is enabled when its execution may produce a new value. An
equation is not enabled when its execution cannot produce a new value, that
is Xj

i = Φ∨i (Xj). A fair iteration sequence is an iteration sequence where some
enabled equations are eventually executed.

Definition 8 (Fair iteration sequence). A fair iteration sequence starting
from D ∈ An is an iteration sequence (Xj) starting from D such that, for any
step j, there exists j′ ≥ j such that the equation δ(j′) is enabled.

The sequence terminates when it is not possible to choose any equation. It
is immediate to see that both the iterative and recursive strategies compute fair
iteration sequences. Moreover, any work-list based iteration sequence is fair.

Theorem 1. Given a system of equations Φ and D ∈ An a pre-fixpoint of Φ,
any fair iteration sequence starting from D over Φ∨ terminates on a post-fixpoint
of Φ greater than D.

There is one peculiarity when we use localized widening we should be aware
of. While not specified in the definition, in the standard application of widening
in the form xi = xiOΦi(x1, . . . , xn), it is always the case that Φi(x1, . . . , xn) ≥ xi.
This does not hold anymore with localized widening. Some libraries of abstract
domains, such as PPL [8] or APRON [23], implement widening under the as-
sumption that the second argument is bigger then the first one. In this case, the
same trick of Eq. 3 may be used: it is enough to replace x O y with x O (x ∨ y).

3 Localized Narrowing

Looking from a different perspective, what localized widening does is to decouple
the analysis of the inner components from the analysis of the outer components.
Each component is analyzed almost as if it were a black box. We say “almost”
because every time the black box is entered, we remember the last value of the
variables and continue the analysis from that point: we are still computing a
fixpoint using a chaotic iteration strategy.

However, we can push further the idea of the black box, as we have shown
in Section 1.2. This allows to intertwine ascending and descending sequences in
order to reach better precision and generally pursuing different strategies which
do not follow in the umbrella of chaotic iteration. In this section, we are going
to formalize and generalize the example given in Section 1.2.

9

3.1 More on w.t.o. and dependency graphs

First of all, we make an assumption to simplify notation: we consider only sys-
tems of equations with a join regular w.t.o., according to the following definition.

Definition 9 (Join regular w.t.o.). A w.t.o. for the dependency graph of the
system of equations Φ is join regular iff all the heads of the components are loop
join nodes.

The reason why we use join regular w.t.o. is that, as shown for localized
widening, it is possible to separate the information coming from outer compo-
nents from the information coming from inner components, giving better chance
of optimizations. If in the head node i we have the equation xi = Φi(xa, xb) and
Φi is not a join, it is not clear whether it is possible to separate the contribution
of xa and xb.

We could easily extend the algorithm to work on non join regular graphs,
along the lines of Definition 6, which chooses the right widening to be applied.
However, we think it is not a particularly heavy restriction, since systems of
equations used in static analysis generally come out from flow graphs or labelled
transition systems, and may be rewritten in such a way that the only equations
with more than one variable in right-hand side are of the form xi = xv1

∨· · ·∨xvn ,
therefore allowing a join regular w.t.o.

The recursive algorithm we are going to present works on the components of
the w.t.o. In order to iterate over components and nodes, it uses the concepts of
segments and top-level elements.

Definition 10 (Segment). A segment is a set S ⊆ [1, n] such that there exists
a well-parenthesized substring of the w.t.o. which contains exactly the elements
in S.

Example 6. Consider the w.t.o. 1 (2 3 5 (6 7 9) 8 10) 4 from Example 3. Some of
the possible segments are {6, 7} and {3, 5, 6, 7, 9, 8}, while {5, 6, 7} and {3, 6, 7, 9}
are not segments, because the substring 5 (6 7 is not well-parenthesized and
{3, 6, 7, 9} does not come from a substring.

Intuitively, a segment corresponds to a piece of a program which is syntactically
correct, where loops are not broken apart. It is immediate to see that every
component C is a segment. Moreover, if C is a component with head h, then
C \ {h} is a segment. Finally, the entire [1, n] is a segment.

Definition 11 (Top-level elements). A top-level element of a segment S is
an element t ∈ S such that ω(t) ∩ S ⊆ {t}.

Example 7. Consider the w.t.o. 1 (2 3 5 (6 7 9) 8 10) 4 from Example 3. The
top-level elements of the segment {3, 5, 6, 7, 9, 8} are 3, 5, 6 and 8.

10

Algorithm 1 Analysis based on localized narrowing

The algorithm requires a system of equations Φ with a join regular w.t.o. and a global
map x : [1, n]→ A to keep track of the current value of the variables.

Require: S is a segment in the w.t.o. of Φ
1: procedure Analyze(S)
2: for all j ← tl(S) do . extracted in w.t.o.
3: if j is head of a component then
4: AnalyzeComponent(comp(j))
5: else
6: xj ← Φj(x1, . . . , xn)
7: end if
8: end for
9: end procedure

Require: C is a component in the w.t.o. of Φ
10: procedure AnalyzeComponent(C)
11: i← head of the component C
12: input←

∨
{xl | l→ i, l /∈ C} . Input from outer components

13: 〈 initialize candidateInv ≥ input 〉
14: repeat . Start of ascending phase
15: xi ← candidateInv
16: Analyze(C \ {i})
17: candidateInv ← xi O

∨
{xl | l→ i, l ∈ C} . Widening with back edges

18: until candidateInv ≤ xi . End of ascending phase
19: while 〈 eventually false condition 〉 do . Start of descending phase
20: xi ← Φi(x1, . . . , xn)
21: y ← x
22: Analyze(C \ {i})
23: x← x ∧ y
24: end while . End of descending phase
25: end procedure

3.2 The algorithm

Algorithm 1 is the formalization and generalization of the procedure illustrated in
Section 1.2. It depends on a system of equations Φ with a join regular w.t.o. and
on a global map x : [1, n]→ A which contains the initial value and keeps track of
the current value of variables. There are two procedures mutually recursive. The
procedure AnalyzeComponent has a parameter which is a component of the
w.t.o., and calls Analyze to analyze the equations which are part of the com-
ponent, with the exception of the head. The head is analyzed directly within
AnalyzeComponent, using widening to ensure convergence. The procedure
Analyze takes as input a segment of the w.t.o., and iterates over the top-level el-
ements, either executing equations directly, or calling AnalyzeComponent for
nested components. The entry point of the algorithm is the procedure Analyze.
To analyze the entire system of equations, we call Analyze([1, n]) with x ini-
tialized to ⊥.

11

The procedure AnalyzeComponent depends on a policy, which initializes
candidateInv : the value for candidateInv may be chosen freely, subject to the
condition candidateInv ≥ input , where input is the join of all edges coming into
the join node from the outer components. It starts with an ascending phase,
where all the nodes on the component are dealt with, either directly, or with
a recursive call for nodes which are part of a nested component. Then it fol-
lows a descending phase where the ∧ operator is used to refine the result. The
lines 21 and 23 are used to enforce that x is descending. Termination of the de-
scending phase is ensured by the condition in line 19 which should be eventually
false. A typical check is obtained by performing a given number of descending
steps before giving up. A narrowing operating could be used instead to enforce
termination.

3.3 Initialization policies

Let us consider some of the possible initialization policies. The simplest one is
the Restart policy, given by

candidateInv ← input . Restart policy (4)

With this policy, every time Analyze is called on a component, all the results of
the previous analyses are discharged and the analysis starts from the beginning.
This is exactly the behavior we have shown in Section 1.2.

When the outer component is in the ascending phase, this is mostly a waste,
since each time AnalyzeComponent is called with an input value which is
bigger than the previous one. Hence, even the resulting invariant should be bigger
than the one previously computed. We use “should” since non-monotonicity
of widening makes this statement potentially false. Nonetheless, it is probably
better for efficiency reasons not to start the analysis from the beginning. To this
purpose, we can use the Continue policy, which joins the new input with the
previous invariant.

candidateInv ← xi ∨ input . Continue policy (5)

Were not for the intertwining of ascending and descending sequences, this
would correspond to the use of localized widening. The Continue policy has
a different drawback. When the outer component is in the descending phase,
successive inputs generally form a descending chain. Starting from the last in-
variant may preclude a more precise result to be found. The Hybrid policy tries
to balance efficiency and precision.

if input = oldinputi then . Hybrid policy
return

else if input < oldinputi then
candidateInv ← input

else
candidateInv ← xi ∨ input

end if
oldinputi ← input

(6)

12

i = 0
while (TRUE) {

i = i+1
j = 0
while (j <10) {

// Inv: 0 ≤ i ≤ 10
j = j+1

}
i f (i >9) i = 0

}

i = 0
while (i <4) {

j = 0
while (j<4) {

// Inv: i ≤ j + 3
i = i+1
j = j+1

}
i = i−j+1

}

i = 0
while (TRUE) {

// Inv: i ≥ 0
j = 0
while (j <10) {

j = j+1
}
i = i+11− j

}

Fig. 3. From left to right: programs hybrid, hh from [20] and nested2.

This policy needs a global map oldinput : H → A, where H is the set of loop
heads, to keep track of old input values.

The Hybrid policy behaves either as the Restart or Continue policy,
according to the relation between the new input and the old one. The program
hybrid in Figure 3 is an example where the Hybrid strategy is more precise
then the Continue strategy. At the end of the ascending phase of the outer
loop, the inner invariant is 1 ≤ i, 0 ≤ j < 10. At the second iteration of the
outer descending phase, the inner loop is called with input 1 ≤ i ≤ 10, j = 0.
However, this is joined with the previous invariant, and since i is not used in
the inner loop, the improvement in precision is lost. With the Hybrid strategy,
when the inner loop is called with input 1 ≤ i ≤ 10, j = 0, since it is smaller
then the previous input 1 ≤ i, j = 0, the analysis starts from the beginning, and
the invariant of the inner loop is updated.

Since the combination of ascending and descending sequences is not some-
thing commonly considered, Algorithm 1 requires a correctness proof.

Theorem 2. Algorithm 1 terminates and the global map x resulting from the
call to Analyze([1, n]) is a post-fixpoint of the set of equations Φ.

Note that, differently from the case of standard iteration strategies, we are not
sure that the post-fixpoint resulting from Analyze([1, n]) is greater than the
original value of x. If we want to find a solution bigger than a given D ∈ An,
we may modify the algorithm accordingly, or insert the lower bound in the
equations.

4 Related works

In the abstract interpretation literature, many efforts have been devoted to im-
prove the precision of the analysis by modifying the standard procedure of an
ascending chain with widening followed by a descending chain.

Some frameworks propose a complete departure from the model of iterative
sequences, such as the acceleration operators [16] and the strategy/policy iter-
ation [11, 15]. These are not compatible with localized widening and narrowing.

13

Other proposals refine the model of iterative sequences, and can be applied to-
gether with our optimizations. We recall the main ones, comparing them with
our results.

Gopan and Reps’ guided static analysis [18] is a technique were standard
program analysis is applied to a sequence of program restrictions, which are
essentially obtained by removing some edges from the control-flow graph of the
program. Each restriction is analyzed starting from the result of the previous
restrictions, until the original program is analyzed. Due to non-monotonicity of
widening, this procedure may improve precision, especially in the case where
loops contain different phases. In guided static analysis, the analyzer is treated
as a black box, and therefore it may be immediately replaced with an analyzer
implementing localized widening and narrowing. Henry at al. [21] enhance guide
static analysis by combining it with path-focusing [24], in order to avoid merging
infeasible paths. This optimization helps in finding precise disjunctive invariants,
avoiding the use of disjunctive completion. The basic idea is to exploit an SMT-
solver to find feasible paths, which are gradually discovered and analysed.

Guided static analysis and the strategies we propose try to fix complemen-
tary defects of standard iterative sequences. Guided static analysis focuses on
improving analysis of loops whose behavior evolves along time, while localization
improves results of nested loops.

Similar arguments hold for Monniaux and Le Guen’s stratified static analy-
sis by variable dependency [25]. The idea is similar to guided static analysis in
that restrictions of the program are considered, but in this case the restriction
is not on the edges of the control-flow graph, but on the variables. Successive
approximations of the program are considered, where later approximations con-
sider more variables than former ones. The result of an approximation is used
within the successive approximations to restrict the results. If in a program node
it turns out that i ≥ 0, then the same should hold for all the successive approxi-
mations. This approach requires to modify the standard abstract interpretation
procedure to use results from the previous restrictions, but the modifications
may also be applied immediately to our localized strategies.

Halbwachs and Henry [20] propose a procedure to improve the result of static
analysis which consists in successive static analysis phases. After each phase, the
result of some special nodes are chosen, and another analysis is restarted from
that point. As for guided static analysis, the standard analysis procedure is
considered as a black box, and therefore can be combined with localization.

While localized narrowing seems to be more precise, we believe that combin-
ing localized widening with the optimizations in [20] is not worth, and we would
obtain essentially the same results of localized widening, since both proposals
essentially improve the result of nested loops. For an experimental comparison,
see Section 4. We think, however, that localized widening is simpler to implement
and may be easily integrated with other techniques.

Finally, localization may directly exploit any improvement to the design and
implementation of widening operators (such as delayed widening, widening with

14

threshold [9], lookahead widening [17], etc. . .), since we use standard definitions
for widening, although applied in a different way.

4.1 Examples and Experiments

We have performed three different experiments to validate our techniques, and
we plan to make more in the future. In these experiments we have used three
tools: Interproc, Pagai and our prototype Jandom2.

Jandom implements both localized widening and narrowing, and is the suc-
cessor of our previous analyzer Random [7, 3]. Random implements many nu-
merical abstract domains, included the recent parallelotopes [6] and template
parallelotopes [4, 2, 5, 1].

Interproc [22] performs inter-procedural analysis of a simple imperative
language. It support standard abstract interpretation analysis, policy iteration
for intervals and guided static analysis. Pagai [21] is a path-sensitive static
analyzer. It implements several different techniques, such as lookahead widening,
guided static analysis, path focusing, and the optimizations to narrowing in [20].

As a first experiment, we tried to understand whether localized widening or
narrowing was in use in other analyzers (apart from Random and our proto-
type). Therefore, we tried the program nested in Figure 1, and the programs in
Figure 3 in Interproc and Pagai, using standard abstract interpretation over
the domain of closed polyhedra. In Interproc we used delayed widening with 4
delays and a two step descending sequence. None of the two analyzers, with this
standard settings, were able to prove the optimal invariant. After this experi-
ment, and given the current literature, we are confident that localized narrowing
and widening have never been implemented before.

Later, we used Pagai on the same programs, but selecting different known
optimization techniques, and comparing the results with that of localized widen-
ing and narrowing. The aim was not to provide a full evaluation, but to give an
idea of the kind of programs that may benefit from localization or other tech-
niques. Table 1 reports the result of the comparison, using the domains of strict
convex polyhedra. The results show that localized narrowing with the hybrid
policy proves the required invariant for all the programs, but this is hardly
surprising since programs were chosen ad-hoc. Lookahead widening and guided
static analysis do not work very well with this examples, but this was expected
since the aim of these optimizations is different than ours. The optimized nar-
rowing in [20] behaves better, since it was developed to improve precision on
nested loops too.

As a rough evaluation of the overhead of our strategies, we count the number
of times that the widening and narrowing operators are executed. It happens
that, for all the programs in Table 1, using the localized widening only, we
execute 8 widenings and 4 narrowings, using the localized narrowing with the
continue policy we execute 8 widenings and 8 narrowings, and using the localized
narrowing with the hybrid policy, we execute 11 widenings and 8 narrowings.

2 https://github.com/amato-gianluca/Jandom

15

program loc widening continue hybrid guided lookahead narrowing

nested yes yes yes no no yes
nested2 no yes yes no yes no
hybrid no no yes no no yes

hh yes no yes no no yes

Table 1. Results of the comparison (loc widening=localized widening, con-
tinue=localized narrowing with continue policy, hybrid=localized narrowing with hy-
brid policy, guided=guided static analysis, lookahead=lookahead widening, narrow-
ing=optimized narrowing in [20]).

Finally, we implemented localized widening in Pagai. As a testament of the
simplicity of the idea, the core of the implementation, which is everything but
user-interface, only required to modify one line of code. This was possible since
Pagai puts a widening on each head node, as required in Theorem 1. Using
Pagai we executed the benchmarks of the Mälardalen WCET research group
[19], which contains programs such as sorts, matrix transformations, fft, simple
loops, etc. . . We compare the result of standard abstract interpretation with and
without localized widening.

We analyzed a total of 114 functions. In 29 of these we improved the results
of the analysis. In particular, there are a total of 379 head nodes, and for 164
of them we improved the result. In no case we got worse results than standard
widening. This improvement was obtained by reducing at the same time the
number of iterations. With the standard widening the analysis took a total of
19522 ascending steps and 23415 descending steps, while with localized widening
we had 19363 ascending steps and 22528 descending steps. Nonetheless, the
analysis with localized widening took 5.25 seconds, against 4.49 seconds of the
classic analysis. We argue that it took more time despite a reduction in the
number of steps since the join operator is more costly than widening.

We also compared the results of localized widening and the refined narrowing
in [20]. For the 379 heads nodes, we got more precise results in 91 cases, worse
results in 2 cases, while we had incomparable results in other 2 cases.

Overall, the results of localized widening are excellent, because it can improve
precision even considerably without incurring in performance penalties.

More evaluations should be performed on localized narrowing. Potentially it
can improve precision much more than localized widening alone. However, the
performance penalty it may incur is bigger. Also, its implementation is more
difficult, and that is why we have not performed a similar comparison in Pagai
as for localized widening.

5 Conclusions

We have shown two strategies for improving precision of abstract interpretation.
Localized widening is simple, effective and has negligible computational cost.

16

Therefore, can be easily implemented in already existent abstract analyzers. Lo-
calized narrowing is more complex, potentially slower but generally more precise
than localized widening. More experiments should be conducted to check the
power and applicability of the latter.

References

1. Gianluca Amato, James Lipton, and Robert McGrail. On the algebraic structure of
declarative programming languages. Theoretical Computer Science, 410(46):4626–
4671, 2009.

2. Gianluca Amato, Maurizio Parton, and Francesca Scozzari. Deriving numerical ab-
stract domains via principal component analysis. In Radhia Cousot and Matthieu
Martel, editors, 17th International Symposium, SAS 2010, Perpignan, France,
September 14-16, 2010, Proceedings, volume 6337 of Lecture Notes in Computer
Science, pages 134–150. Springer, Berlin Heidelberg, 2010.

3. Gianluca Amato, Maurizio Parton, and Francesca Scozzari. A tool which mines
partial execution traces to improve static analysis. In H Barringer and et al.,
editors, First International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418 of Lecture Notes in Computer Science, pages
475–479. Springer, Berlin Heidelberg, 2010.

4. Gianluca Amato, Maurizio Parton, and Francesca Scozzari. Discovering invariants
via simple component analysis. Journal of Symbolic Computation, 47(12), 2012.

5. Gianluca Amato and Francesca Scozzari. Observational completeness on abstract
interpretation. Fundamenta Informaticae, 106(2–4):149–173, 2011.

6. Gianluca Amato and Francesca Scozzari. The abstract domain of parallelotopes. In
Jan Midtgaard and Matthew Might, editors, The Fourth International Workshop
on Numerical and Symbolic Abstract Domains (NSAD 2012), volume 287 of Elec-
tronic Notes in Theoretical Computer Science, pages 17–28. Elsevier, November
2012.

7. Gianluca Amato and Francesca Scozzari. Random: R-based Analyzer for Numerical
Domains. In Nikolaj Bjrner and Andrei Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning 18th International Conference, LPAR-18,
Mérida, Venezuela, March 11-15, 2012. Proceedings, volume 7180 of Lecture Notes
in Computer Science, pages 375–382. Springer, 2012.

8. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer Programming,
72(1–2):3–21, 2008.

9. Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jèrôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static analyzer
for large safety-critical software. In Proceedings of the ACM SIGPLAN 2003 Con-
ference on Programming Language Design and Implementation (PLDI’03), pages
196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

10. François Bourdoncle. Efficient chaotic iteration strategies with widenings. In Dines
Bjørner, Manfred Broy, and Igor V. Pottosin, editors, Formal Methods in Program-
ming and Their Applications, International Conference Academgorodok, Novosi-
birsk, Russia June 28 July 2, 1993 Proceedings, volume 735 of Lecture Notes in
Computer Science, pages 128–141. Springer, Berlin Heidelberg, 1993.

17

11. A. Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie Putot.
A policy iteration algorithm for computing fixed points in static analysis of pro-
grams. In Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK,
July 6-10, 2005. Proceedings, volume 3576 of Lecture Notes in Computer Science,
pages 462–475, Berlin Heidelberg, 2005. Springer.

12. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Programming,
pages 106–130, Paris, France, 1976. Dunod.

13. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252. ACM Press, New York, NY,
USA, January 1977.

14. Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In Maurice Bruynooghe and
Martin Wirsing, editors, Programming Language Implementation and Logic Pro-
gramming, 4th International Symposium, PLILP ’92 Leuven, Belgium, August 26–
28, 1992, Proceedings, volume 631 of Lecture Notes in Computer Science, pages
269–295. Springer, Berlin Heidelberg, 1992. Invited paper.

15. Thomas Martin Gawlitza and Helmut Seidl. Solving systems of rational equations
through strategy iteration. ACM Transactions on Programming Languages and
Systems, 33(3):1–48, April 2011.

16. Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in
linear relation analysis. In Kwangkeun Yi, editor, Static Analysis, 13th Interna-
tional Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006. Proceedings, vol-
ume 4134 of Lecture Notes in Computer Science, pages 144–160, Berlin Heidelberg,
2006. Springer.

17. Denis Gopan and Thomas Reps. Lookahead widening. In Thomas Ball and
Robert B. Jones, editors, Computer Aided Verification, 18th International Con-
ference, CAV 2006, Seattle, WA, USA, August 17-20, 2006. Proceedings, volume
4144 of Lecture Notes in Computer Science, pages 452–466, Berlin Heidelberg,
2006. Springer.

18. Denis Gopan and Thomas Reps. Guided static analysis. In Hanne Riis Nielson and
Gilberto Filé, editors, Static Analysis, 14th International Symposium, SAS 2007,
Kongens Lyngby, Denmark, August 22-24, 2007., volume 4634 of Lecture Notes in
Computer Science, pages 349–365. Springer, Berlin Heidelberg, 2007.

19. Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET benchmarks – past, present and future. In Björn Lisper, edi-
tor, Proc. 10th International Workshop on Worst-Case Execution Time Analysis
(WCET2010), pages 137–147, Brussels, Belgium, July 2010. OCG.

20. Nicolas Halbwachs and Julien Henry. When the decreasing sequence fails. In An-
toine Miné and David Schmidt, editors, Static Analysis, 19th International Sym-
posium, SAS 2012, Deauville, France, September 11-13, 2012. Proceedings, volume
7460 of Lecture Notes in Computer Science, pages 198–213, Berlin Heidelberg,
2012. Springer.

21. Julien Henry, David Monniaux, and Matthieu Moy. PAGAI: A path sensitive static
analyser. Electronic Notes in Theoretical Computer Science, 289:15–25, 2012.

22. Bertrand Jeannet. Interproc Analyzer for Recursive Programs with Numerical
Variables. INRIA, 2004. Software and documentation are available at the fol-

18

lowing URL: http://pop-art.inrialpes.fr/interproc/interprocweb.cgi. Last
accessed: 2013-04-03.

23. Bertrand Jeannet and Antoine Miné. APRON: A library of numerical abstract do-
mains for static analysis. In Ahmed Bouajjani and Oded Maler, editors, Computer
Aided Verification, 21st International Conference, CAV 2009, Grenoble, France,
June 26 – July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer
Science, pages 661–667. Springer, Berlin Heidelberg, 2009.

24. David Monniaux and Laure Gonnord. Using bounded model checking to focus
fixpoint iterations. In Eran Yahav, editor, Static Analysi, 18th International Sym-
posium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings, volume 6887
of Lecture Notes in Computer Science, pages 369–385. Springer, Berlin Heidelberg,
2011.

25. David Monniaux and Julien Le Guen. Stratified static analysis based on variable
dependencies. In Damien Massé and Laurent Mauborgne, editors, Proceedings of
the Third International Workshop on Numerical and Symbolic Abstract Domains,
NSAD 2011, volume 288 of Electronic Notes in Theoretical Computer Science,
pages 61–74. Elsevier, December 2012.

26. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analy-
sis of linear systems using mathematical programming. In Radhia Cousot, editor,
Verification, Model Checking, and Abstract Interpretation, 6th International Con-
ference, VMCAI 2005, Paris, France, January 17-19, 2005. Proceedings, volume
3385 of Lecture Notes in Computer Science, pages 25–41. Springer, Berlin Heidel-
berg, January 2005.

19

