
Abstract Interpretation Based Semantics of

Sequent Calculi

Gianluca Amato and Giorgio Levi

Università di Pisa, Dipartimento di Informatica
corso Italia 40, 56125 Pisa, Italy
{amato,levi}@di.unipi.it

Abstract. In the field of logic languages, we try to reconcile the proof
theoretic tradition, characterized by the concept of uniform proof, with
the classic approach based on fixpoint semantics. Hence, we propose a
treatment of sequent calculi similar in spirit to the treatment of Horn
clauses in logic programming. We have three different semantic styles
(operational, declarative, fixpoint) that agree on the set of all the proofs
for a given calculus. Following the guideline of abstract interpretation,
it is possible to define abstractions of the concrete semantics, which
model well known observables such as correct answers or groundness.
This should simplify the process of extending important results obtained
in the case of positive logic programs to the new logic languages de-
veloped by proof theoretic methods. As an example of application, we
present a top-down static analyzer for properties of groundness which
works for full intuitionistic first order logic.

1 Introduction

One of the greatest benefits of logic programming, as presented in [14], is that
it is based upon the notion of executable specifications. The text of a logic pro-
gram is endowed with both an operational (algorithmic) interpretation and an
independent mathematical meaning which agree each other in several ways. The
problem is that operational expressiveness (intended as the capability of direct-
ing the flow of execution of a program) tends to obscure the declarative meaning.
Research in logic programming strives to find a good balance between these op-
posite needs.

Uniform proofs [17] have widely been accepted as one of the main tools
for approaching the problem and to distinguish between logic without a clear
computational flavor and logic programming languages. However, that of uniform
proofs being a concept heavily based on proof theory, researches conducted along
this line have always been quite far from the traditional approach based on
fixpoint semantics. In turn, this latter tradition has brought up several important
results concerning the effective utilization of Horn clauses as a real programming
language. Among the others, problems such as compositionality of semantics [7],
modularity [5, 6], static analysis [13], debugging [8], have been tackled in this
setting. Adapting these results to the new logic languages developed via the

proof theoretic approach, such as λProlog [19] or LinLog [3], would probably
require at least two things:

– provide a fixpoint semantics for these new languages;

– generalize a great number of concepts whose definition is too much tied to
the case of Horn clauses.

This paper proposes a semantic framework which can be useful in such an ef-
fort. The main idea is to recognize proofs in the sequent calculi as the general
counterpart of SLD resolutions for positive logic programs. Thus, the three well-
known semantics (operational, declarative and fixpoint) for Horn clause logic
can be reformulated within this general setting and directly applied to all the
logic languages based on sequent calculi.

Moreover, these semantics are generalized to be parametric w.r.t. a pre-
interpretation, which is essentially a choice of semantic domains and intended
meanings for the inference rules. When a pre-interpretation is given, we have
fixed a particular property of the proofs we want to focus our attention on
(correct answers, resultants, groundness). Hence, classical abstractions such as
correct answers or resultants, used in the semantic studies of logic programs,
and abstractions for static analysis like groundness, can be retrieved in terms of
properties of proofs. Expressed in such a way, rather than referring to a compu-
tational procedure like SLD resolution, they are more easily extendable to other
logic languages.

It turns out that the most convenient way of defining pre-interpretations is
through abstract interpretation theory [11]. In this way, we provide a semantic
framework for the new proof-theoretic based logic languages to which most of
the studies we have for positive logic programs can be easily adapted.

The paper is much inspired by [7]. After some preliminaries, we introduce the
three semantic styles for sequent calculi, with respect to a particular concrete pre-
interpretation. It is shown that the three semantics coincide on the set of proofs
for a given calculus. Later, using techniques of abstract interpretation theory,
the concept of observable is introduced, as an abstraction of a set of proofs. This
gives corresponding notions of abstract semantics for sequent calculi. In general,
the properties of the abstract semantics will depend on completeness properties
of the abstract optimal semantic operators. For some observables, those that
separate sequents, there is a strict correspondence between abstract semantics
and semantics in a particular pre-interpretation induced by the observable.

Then, some examples of observables are provided: success sets, correct an-
swers, groundness. All of them are presented in the case of full first-order intu-
itionistic logic or in a yet more general setting. This gives an idea of the process
of importing well know observables for positive logic programs to broader frag-
ments of logic. This should be the first step towards a more detailed semantic
analysis of these extended languages. In particular, as an example of application
of the proposed methodology, a top-down static interpreter for groundness anal-
ysis of intuitionistic logic has been implemented in PROLOG and it is presented
in summary. Finally, possible future developments are discussed.

2

2 Proofs and Proof Schemas

2.1 Basic Definitions

Logics can be presented in several different ways: we will stick to a Gentzen-like
proof-theoretic formulation. Let us fix two languages D and G. We call clauses
the elements of D and goals the elements of G. If Γ and ∆ are two sequences of
clauses and goals respectively, Γ ։ ∆ is a sequent. If ∆ is a sequence of length
not greater than one, we have an intuitionistic sequent. In the following, we will
use the letter S and its variants to denote sequents.

A proof schema is a rooted ordered tree with sequents as nodes. Given a proof
schema p, we call hyp(p) (hypotheses) the sequence of leaves of p taken from a
pre-order visit of p and we write th(p) (theorem) for the root of p. When we
want to state that p is a proof schema with hyp(p) = S1, . . . , Sn and th(p) = S,
we write

p : S1, . . . , Sn ⊢ S . (1)

Note that a schema of height zero (when the root is also the only hypothesis)
and a schema of height one with no hypotheses are different objects. If S is a
sequent, a proof schema of S with height zero is the empty proof schema for
S, and is denoted by ǫS . This is because we assume that leaves are different
from nodes with out-degree zero. The former correspond to hypotheses, while
the latter are sequents introduced by an axiom.

Example 1. If D and G are first order languages with unary predicate symbols
p and r, the following is a proof schema

p(x)։ r(x) ·։ r(y)

·։ r(x) ∧ r(y) ·։ ∃z.p(z)

∀z.p(z)։ ∀w.r(w)

(2)

Note that it is not a proof in any of the standard logical systems. The following
are respectively a proof schema p : · ⊢ p(x)։ p(x) and the empty proof schema
p′ : q(x)։ p(x) ⊢ q(x)։ p(x) = ǫq(x)։p(x)

p : p(x)։ p(x) p′ : q(x)։ p(x) (3)

according to our convention on nodes with out-degree zero. ⊓⊔

Now, we fix a set R of proof schemas of height one. We call inference rules
the elements of R. A proof schema p, which is obtained by gluing together the
empty proof schemas and the inference rules, is called proof. A proof with no
hypothesis is said to be final. A sequent S is provable if there is a final proof
rooted at S. Finally, we call logic a triple 〈D,G,R〉.

3

Example 2. Assume R is the set of inference rules for first order logic. Then
p and p′ in the previous example are proofs. In particular, p is a final proof.
Another proof, a bit more involved, is the following

Γ ։ ∀x.p(x)

Γ ։ p(w)

Γ ։ ∃w.p(w)

(4)

where Γ is a list of sequents. ⊓⊔

In the following, we will often work with the logic Lhc of Horn clauses and
with the first order intuitionistic logic Li. However, with the exception of Sect. 5,
all the framework can be directly applied to a generic logic system. Just note
that what we traditionally call inference rule, i.e. something like

Γ ։ G1 Γ ։ G2

Γ ։ G1 ∧G2
,

should be viewed as a collection of different inference rules, one for each instance
of G1, G2 and Γ .

2.2 Semantic Operators

Given a sequent S, we denote by SchS the set of all the proof schemas rooted at
S. For each p ∈ SchS of the form

p : S1, . . . , Sn ⊢ S , (5)

we have a corresponding semantic operator p : SchS1
×· · ·×SchSn

→ SchS which
works by gluing proof schemas of the input sequents together with p, to obtain
a new proof schema of the output sequent S. If Sch is the set of all the proof
schemas, p : S1, . . . , Sn ⊢ S ∈ Sch and Xi ⊆ Sch for each i, we define a collecting
variant of the semantic operator p, defined as

p(X1, . . . , Xn) = {p(p1, . . . , pn) | ∀i. pi ∈ Xi ∩ SchSi
} . (6)

We will write p(X) as a short form for p(X, . . . ,X) with n identical copies of X
as input arguments.

Working with a semantic operator for each proof schema is quite uncomfort-
able, especially when reasoning in terms of abstractions. We can actually resort
to a unique gluing operator. Given X1 and X2 subsets of Sch, we denote by
X1 3X2 the set

X1 3X2 =
⋃

p∈X1

p(X2) . (7)

In other words, X1 3X2 is the result of gluing together each proof schema in X1

with all the “compatible” proof schemas in X2. It turns out that 3 is (roughly)
the counterpart for sequent calculi of the ⋊⋉ operator for SLD derivations defined
in [9].

4

Example 3. Consider the proof p in Lhc given by

∀x.p(x)։ p(a) ∀x.r(x)։ r(b)

∀x.p(x), ∀x.r(x)։ p(a) ∧ r(b)

∀x.p(x) ∧ ∀x.r(x)։ p(a) ∧ r(b)

(8)

and the proofs p′

p(a)։ p(a)

∀x.p(x)։ p(a)

(9)

and p′′ = ǫ∀x.r(x)։r(b). Then, the proof p(p′, p′′) is

p(a)։ p(a)

∀x.p(x)։ p(a) ∀x.r(x)։ r(b)

∀x.p(x), ∀x.r(x)։ p(a) ∧ r(b)

∀x.p(x) ∧ ∀x.r(x)։ p(a) ∧ r(b)

(10)

In particular, note that gluing with empty proofs has no effects. ⊓⊔

3 The Concrete Semantics

Given a logic L = 〈D,G,R〉, we can introduce three different styles of semantics,
similar in spirit to the operational, declarative and fixpoint semantics of classic
logic programming. We follow the idea underlying [9] of having a common set
of semantic operators for both the top-down (operational) and the bottom-up
(fixpoint) styles.

3.1 Declarative Semantics

The fundamental idea is that a logic can be viewed as a signature for Σ-algebras,
where sequents correspond to sorts and inference rules to term symbols. A Σ-
algebra gives a choice of a semantic domain for each sequent and of a semantic
function for each inference rule. Roughly, a model for a logic in a given Σ-algebra
should assign, to each sequent, an element of its corresponding semantic domain,
in such a way that this assignment is well-behaved w.r.t. the inference rules.

To be more precise, we call pre-interpretation the choice of a nonempty or-
dered set I(Γ ։ ∆) for each sequent and of a monotonic function I(r) for each
inference rule r, where if hyp(r) = S1, . . . , Sn and th(r) = S,

I(r) = I(S1)× · · · × I(Sn) → I(S) . (11)

Therefore, the concept of pre-interpretation is the same of ordered Σ-algebras
as defined in [18].

5

Given a logic L with a pre-interpretation I, an interpretation is a choice of
an element JSK ∈ I(S) for each sequent S. An interpretation is a model when,
for each inference rule

r : S1, . . . , Sn ⊢ S , (12)

the following relation holds

I(r)(JS1K , . . . , JSnK) ⊑ JSK . (13)

The notion of pre-interpretation gives us a great flexibility. In [1] it is shown how
to obtain well known semantics such as correct answers or Heyting semantics for
a generic sequent calculus.

When we talk of programming languages, the idea is that a program P cor-
responds to a sequence of clauses. Given a goal G and a model J K, the corre-
sponding semantics of G in the program P is given by JP ։ GK.

Example 4. In the logic Lhc, consider the pre-interpretation I given by

– I(S) = {true, false} with false ⊑ true;
– if r ∈ R is the inference rule r : S1, . . . , Sn ⊢ S, then I(r) is the logical

conjunction of the n input values. If r has no hypothesis, then I(r) = true.

If P is a definite logic program, i.e. a set of definite clauses, and J K is an inter-
pretation, the set

IP =
{

A |
r
~∀P ։ A

z
= true and A is a ground atomic goal

}

(14)

is a Herbrand interpretation, where ~∀P is the universal closure of the clauses in
P . Moreover, if J K is a model, IP is a Herbrand model.

Note that, given a PROLOG clause G :- B, the corresponding clause in Lhc

is the universally quantified formula ~∀.(B ⊃ G). As a result, a query G for a
definite program becomes ∃.G in Lhc. Actually, the sequent

∀x.(p(x) ⊃ q(x)), ∀x.p(x)։ ∃y.q(y) (15)

has an obvious final proof, but

p(x) ⊃ q(x), p(x)։ q(y) (16)

is not provable since free variables are never instantiated in the sequent calculus
for Lhc. ⊓⊔

A major drawback of this approach is that the process of defining a pre-
interpretation is quite arbitrary, especially for what concerns the inference rules.
In the following, we try to overcome this problem by just sticking to a specific
concrete pre-interpretation and deriving all the others by abstraction functions,
according to the theory of abstract interpretation.

Given a logic L, consider the syntactic pre-interpretation IL given by

6

– IL(S) = 〈P(SchS),⊆〉 for each sequent S;
– IL(r) is the semantic function corresponding to r ∈ R, as in (6).

Interpretations for IL are called syntactical interpretations. In the following,
these will be denoted by subsets of Sch. The convention does not rise any ambi-
guities, since if S1 6= S2, then SchS1

∩SchS2
= ∅. A syntactical model, therefore,

is a set of proof schemas closed under application of inference rules. We denote
by Int the set of all the syntactical interpretations, which is a complete lattice
under subset ordering. In the remaining of this section, when we talk of inter-
pretations or models we always refer to the syntactical ones, unless otherwise
stated.

It is possible to concisely express the condition of a syntactical interpretation
I being a model using the glue operator. The property to be satisfied is

R 3 I ⊆ I . (17)

Models form a complete lattice under the same ordering of the interpretations
(Theorem 16). However, it is not a sublattice, since the join operator and the
bottom element differ. In particular, the bottom element of the lattice of models
is what we call declarative semantics of L and we denote it by D(L).

D(L) turns out to be (Theorem 19) the set of final proofs of L. Hence, the
declarative semantics precisely captures all the terminating computations. For
a valid treatment of compositionality, we also need information about partial
computations [5]. If ǫ is the set of all the empty proof schemas, we call complete
declarative semantics of L, and we denote it by Dc(L), the least model greater
then ǫ. It is possible to prove that Dc(L) is actually the set of all the proofs of
L (Theorem 20).

3.2 Top-down and Bottom-up Semantics

The definition of the declarative semantics is non-constructive. We now present
a bottom-up construction of the least model using an operator similar to the
immediate consequence operator TP of logic programming. The TL operator,
mapping interpretations to interpretations, is defined as follows

TL(I) = I ∪ (R 3 I) . (18)

We can prove that all the results which hold for the TP operator apply to TL
as well. In particular (Theorem 17) an interpretation I is a model iff it is a
fixpoint of TL. Moreover (Theorem 18) TL is continuous, hence TL ↑ ω is its
least fixpoint. We call TL ↑ ω the fixpoint semantics of L. It trivially follows that
the fixpoint and declarative semantics do coincide. Analogously to the complete
declarative semantics, we can define a complete fixpoint semantics as Tω

L (ǫ). As
in the previous case, Tω

L (ǫ) = Dc(L). Note that inference rules are essentially
treated like Horn clauses for a predicate is a proof/1. For example, an inference
rule like

Γ ։ ϕ Γ ։ ψ

Γ ։ ϕ ∧ ψ
(19)

7

corresponds to the Horn clause

is a proof(der(Γ ։ ϕ ∧ ψ, [P1, P2])) : −

P1 = der(Γ ։ ϕ,), P2 = der(Γ ։ ψ,),

is a proof(P1), is a proof(P2)

(20)

where der(Sequent ,List of Proof Schemas) is a coding for proof schemas. In
general, we have an infinite set of ground Horn clauses, since every instance of
(19) counts as a different inference rule and variables in the logic L are coded
as ground objects at the Horn clause level. These properties play a fundamental
role when we try to modify the set of inference rules to obtain new derived logic
systems, such as uniform logics [1].

The fixpoint construction is essentially a bottom-up process. Real inter-
preters, on the contrary, follow a top-down approach, since it is generally more
efficient. We consider here a transition system (Sch, 7−→) that emulates such a
behavior. Assume p : S1, . . . , Sn ⊢ S is a proof schema and r : S′

1, . . . , S
′
m ⊢ Si is

an inference rule. We can define a new proof schema p′ = p(ǫS1
, . . . , r, . . . , ǫSn

)
just replacing Si in the hypotheses of p with the inference rule r. We write
p 7−→ p′ when the above conditions are satisfied. In general, it is possible to
replace more than one hypothesis, hence we have the following transition rule

p 7−→ p(r1, . . . , rn) when

{

p : S1, . . . , Sn ⊢ S,

ri ∈ R ∪ ǫ and th(ri) = Si for each 1 ≤ i ≤ n.

(21)
We call complete operational semantics of L the interpretation

Oc(L) = {p ∈ Sch | ∃S. ǫS 7−→⋆ p} . (22)

It is possible to give a collecting variant of the operational semantics con-
struction, via a fixpoint operator UL on interpretations which uses the gluing
semantic operator:

UL(I) = I 3 (R∪ ǫ) . (23)

The idea is that UL(I) contains all the proof schemas derived by I with a step
of the transition system, i.e.

UL(I) = {p′ | ∃p ∈ I. p 7−→ p′} . (24)

Actually, we can prove (Theorem 22) that Uω
L (ǫ) = Oc(L). Moreover (Theorem

23), we have Uω
L (ǫ) = Dc(L). Hence, all the different styles of semantics do

coincide.
From the implementation viewpoint, the great advantage of the top-down

operational semantic w.r.t. the bottom-up fixpoint one is that we do not need to
compute the entire semantics if we are only interested in part of it. An interpreter
for a logic language typically works with a program P and a goal G, trying to
obtain the proofs of the sequent P ։ G. The semantics of every other sequent in
the logic is computed only if it is needed for computing the semantics of P ։ G.

8

We call query whatever sequent in the logic L. According to this definition, a
query is a pair made of a program and a goal. We define the operational behavior
of L as a function B(L) : Query → Int such that

B(L)Q = {p ∈ Sch | ǫQ 7−→⋆ p} . (25)

In other words, B(L)Q is the set of proofs for the sequent Q in the logic L. The
fixpoint operator UL can be used to compute B(L) since it is B(L)Q = Uω

L ({ǫQ}),
as shown in Theorem 22.

There is an immediate result of compositionality for B. For each sequent S,
consider the set R = {ri}i∈I of all the inference rules rooted at S, such that
ri : Si,1, . . . , Si,mi

⊢ S. We have

B(L)S =
⋃

i∈I

ri
(

B(L)Si,1
, . . . ,B(L)Si,mi

)

. (26)

Unfortunately, this result is not what we desire in most of the cases, as shown
by the following example.

Example 5. When we work in Lhc, the above compositionality result gives us
the following property:

B(Lhc)P։G1∧G2
= B(Lhc)P։G1

∧B(Lhc)P։G2
. (27)

However, the classical result of and-compositionality for definite logic programs
(w.r.t. correct answers or other observables) says that the semantics of G1 ∧ G2
can be derived from the semantics of G1 and G2. Since goals in definite programs
become existentially quantified in our setting, we would like a relationship be-
tween P ։ ~∃.G1 ∧G2, P ։ ~∃.G1 and P ։ ~∃.G2. Unfortunately, this cannot be
derived directly from (26). ⊓⊔

Note that UL works with proofs with hypotheses. For this reason, it is not
possible to retrieve only terminated computations using this fixpoint operator.
This is not a flaw in the definition of the operator, but an intrinsic limit of all
the kinds of top-down semantic refinements.

4 Abstraction Framework

The previous semantics are by far too detailed for most of the needs. However,
it is now possible to use the techniques of abstract interpretation [11] to de-
velop a range of abstract semantics for sequent calculi. We begin by defining the
fundamental concept of observable.

Definition 6 (Observable). An observable is a triple (D,α, γ) where D (the
abstract domain) is an ordered set w.r.t. the relation ⊑ and α : Int → D (the
abstraction function) is a monotonic function with γ as right adjoint.

9

Since α and γ in (D,α, γ) uniquely determine each other [12], we will often
refer to an observable just by the abstraction function.

An abstract interpretation for a logic L is an element of the abstract domain
D. Given an interpretation I, it is possible to define an abstract counterpart
α(I). Hence, it is possible to define abstract denotational, operational and fix-
point semantics as the abstractions of the corresponding concrete semantics.
The question is whether it is possible to derive such abstract semantics working
entirely in the abstract domain.

Example 7. Given a logic L, take as abstract domain Ds the powerset of all the
sequents with the standard ordering, and as abstraction function the following

αs(I) = {S | ∃p ∈ I. th(p) = S and hyp(S) = ∅} . (28)

The right adjoint of α is the function

γs(A) = {p | hyp(S) 6= ∅ or th(p) ∈ A} . (29)

We call (Ds, αs, γs) the observable of success sets, since it abstracts a set of
proofs in the set of the theorems they prove. ⊓⊔

4.1 Abstract Semantic Operators

The only two operators we use in the specification of the concrete semantics are
union and gluing. Once we define an abstraction, we have an abstract operator
∪α correct w.r.t. ∪, defined as

⋃

α
{Aj | j ∈ J} = α

(

⋃

{γ(Aj) | j ∈ J}
)

. (30)

In general, ∪α is the least upper bound of those elements in D which are the
image of some interpretation I. Moreover, it is a complete operator, i.e.

⋃

α
{α(Ij) | j ∈ J} = α

(

⋃

{Ij | j ∈ J}
)

for each collection {Ij}j∈J of interpretations.
We could define an abstract operator 3α correct w.r.t. 3 as done for ∪α in

(30). However, 3 is never used in all its generality. Hence we prefer to consider
the optimal abstract counterparts of the two unary operators I 7→ R 3 I and
I 7→ I 3 (R ∪ ǫ). We define

R 3α A = α(R 3 γ(A)) , (31)

A3α (R∪ ǫ) = α(γ(A) 3 (R∪ ǫ)) . (32)

When either R 3α A or A 3α (R ∪ ǫ) is complete, we say that the observable
is respectively denotational or operational, following the terminology introduced
in [2]. If, for each inference rule r ∈ R, there is an abstract operator r̃ correct

10

w.r.t. r as defined in (6), a correct abstract operator for R 3 A can be defined
as

R 3̃A =
⋃

α
r∈R

r̃(A) . (33)

Moreover, if all the r̃’s are optimal or complete, the same holds for (33).

Example 8. With respect to the observable αs, consider an inference rule r :
S1, . . . , Sn ⊢ S. The corresponding optimal abstract operator rαs

is given by

rαs
(X1, . . . , Xn) =

{

{S} if Si ∈ Xi for each i = 1 . . . n

∅ otherwise
(34)

and it can be proved to be complete. Then, it turns out that the observable
of success sets is denotational. An observable which is both operational and
denotational is that of plain resultants, defined as

αr(I) = {〈S, (S1, . . . , Sn)〉 | ∃p ∈ I. p : S1, . . . , Sn ⊢ S} . (35)

with the obvious ordering by subsets. Note that what is generally called resultant
is the reduced product [12] of αr and the observable of computed answers. ⊓⊔

4.2 Pre-interpretations and Observables

By means of the observables we want to recover the great generality given by
the use of pre-interpretations, but in a more controlled way, in order to simplify
the definition and comparison of different semantics.

Given a logic L and an observable (D,α, γ), we have a corresponding pre-
interpretation Iα given by

– Iα(S) = 〈{x ∈ D | x ⊑ α(SchS)},⊑〉, where ⊑ is the ordering for D;
– Iα(r) = α ◦ r ◦ γ.

The idea is that, with the use of pre-interpretations, we break an abstract in-
terpretation in pieces, each one relative to a single sequent. If A is an abstract
interpretation, a corresponding interpretation J K w.r.t. Iα is

JSKα = A ∩α α(SchS) , (36)

for each sequent S, where ∩α is the optimal abstract operator which is correct
w.r.t. ∩. On the other side, given J Kα, we have the abstract interpretation

A =
⋃

α
{JSKα | S is a sequent} . (37)

However, in general, (36) and (37) do not form a bijection. Actually, an inter-
pretation w.r.t. Iα always keeps separate the semantics for different sequents,
while the same does not happen for abstract interpretations.

11

Example 9. Consider the observable (D,α, γ) where D = {true, false}, false ⊑
true and

α(I) =

{

true if ∃p ∈ I. hyp(p) = ∅

false otherwise
(38)

The corresponding pre-interpretation Iα is the same as the one defined in Ex-
ample 4. Given the interpretation J K such that

q
S̄

y
= true for a given sequent

S̄ and JSK = false for each S 6= S̄, the composition of (36) and (37) is the
interpretation J K′ such that

JSK′ =
(

⋃

α
{JS′K | S′ is a sequent}

)

∩α true = true (39)

for each sequent S. ⊓⊔

Given an observable α, we say that it separates sequents when

– γ(α(SchS)) = SchS for each sequent S;
– γ(α(

⋃

S XS)) =
⋃

S γ(α(XS)) if XS ⊆ SchS for each sequent S.

If α separates sequents, (36) and (37) form a bijection (Theorem 24) between
the abstract interpretations which are in the image of α and the interpretations
J K such that JSK is in the image of α for each sequent S. From this point of
view, it seems that observables are even more general than pre-interpretations.
On the other side, abstractions only cover a subset of all the pre-interpretations,
those whose abstraction function has a right adjoint.

Example 10. It is easy to prove that αs separates sequents. The corresponding
pre-interpretation Iαs

is isomorphic to the pre-interpretation I given in Example
4. Note that, thanks to abstract interpretation theory, we automatically obtain
an optimal candidate for the abstract semantic functions from the choice of the
abstract domain.

4.3 Abstract Semantics

We say that an abstract interpretation A is an abstract model when the corre-
sponding interpretation J Kα for Iα given by (36) is a model. In formulas, this
means that, for each inference rule r : S1, . . . , Sn ⊢ S,

α (r (γ(A ∩α α(SchS1
)), . . . , γ(A ∩α α(SchSn

)))) ⊑ A ∩α α(SchS) . (40)

In turn, this is equivalent to say that γ(A) is a syntactic model (Theorem 25).
We would like to define the abstract declarative semantics Dα(L) as the least

abstract model for L. However, since our abstract domain is a poset, we are
not guaranteed that such an element exists. Nevertheless, when we work with a
denotational observable, we have (Theorem 30):

– Dα(L) = α(D(L)), where Dα(L) is the least abstract model;

12

– Dc,α(L) = α(Dc(L)), where Dc,α(L) is the least abstract model greater than
α(ǫ).

Other conditions, such as surjectivity of α, imply the existence of Dα(L) (The-
orem 29), whether or not α is denotational. However, in this case, we cannot be
sure of the stated correspondence with α(D(L)).

As in the concrete case, we want to recover Dα(L) as the least fixpoint of a
continuos operator. If the observable is denotational, we define by

TL,α(A) = A ∪α (R 3α A) , (41)

an abstract operator which is complete w.r.t. TL. Then, by well known results
of abstract interpretation theory [12],

TL,α ↑ ω = α(TL ↑ ω) = Dα(L) , (42)

Tω
L,α(α(ǫ)) = α(Tω

L (ǫ)) = Dc,α(L) , (43)

which are the required equalities.
Finally, let us come to the abstract operational semantics. In general, since

we do not have an abstraction on the level of the single derivation, we can only
abstract the collecting operational semantics given by UL. If 3 is operational,
we define

UL,α(A) = A3α (R∪ ǫ) , (44)

which is a complete abstract operator w.r.t. UL. It is a well known result of
abstract interpretation theory that

Uω
L,α(α(ǫ)) = α(Uω

L (ǫ)) = α(Dc(L)) , (45)

Uω
L,α(α({ǫQ})) = α(Uω

L ({ǫS})) = α(B(L)Q) . (46)

Therefore, we have a top-down collecting construction of the abstract declarative
semantics and of the operational behavior of L.

Generally, if we replace the first equality with a “greater than” disequality in
the equations (42), (43), (45) and (46), they become true for every observable α.
In this case, the semantics computed in the abstract domain are correct w.r.t.
the real abstract semantics.

5 Examples

Now that the theory is well established, we can focus our attention on its appli-
cations. We will recover two of the most common abstractions used in the field of
logic programming, but working within the framework of the sequent calculus.
The advantage is that our definitions do not depend on any computational pro-
cedure used to interpret the language. In turn, this makes it easier to extend the
abstractions to different logic languages. Actually, the observables we are going
to discuss are general enough to be applied to the full first-order intuitionistic

13

logic. The drawback of this approach is that observables like computed answers,
which rely on a specific computational mechanism, are not directly expressible.

In the following, we will assume to work in the domain of first-order intu-
itionistic logic. This means that 〈D,G〉 is a first-order language, while Term and
Var are the corresponding sets of first-order terms and variables. To simplify the
notation, in the forthcoming discussions we assume that, in each sequent, there
is at most one quantification for each bound variable.

Here is a summary of the inference rule schemas we use for the sequent
calculus of first-order intuitionistic logic.

Γ1, B, Γ2, C ։ D

Γ1, C, Γ2, B ։ D
interchange

Γ1, B,B ։ C

Γ1, B ։ C
contraction

Γ,B ։ B
id

Γ,⊥։ ⊥
trueR

Γ ։ ⊥

Γ ։ B
⊥R

Γ ։ B

Γ ։ B ∨ C
∨R1

Γ ։ B

Γ ։ C ∨B
∨R2

Γ,B ։ D Γ,C ։ D

Γ,B ∨ C ։ D
∨ L

Γ,B1, B2 ։ C

Γ,B1 ∧B2 ։ C
∧ L

Γ ։ B Γ ։ C

Γ ։ B ∧ C
∧R

Γ ։ B Γ,C ։ E

Γ,B ⊃ C ։ E
⊃ L

Γ,B ։ C

Γ ։ B ⊃ C
⊃ R

Γ,B[x/t]։ C

Γ, ∀x.B ։ C
∀L

Γ ։ B[x/v]

Γ ։ ∀x.B
∀R

Γ,B[x/v]։ C

Γ, ∃x.B ։ C
∃L

Γ ։ B[x/t]

Γ ։ ∃x.B
∃R

provided that the variable v does not occur in the lower sequents of the ∃L and
∀R schemas and B is an atomic formula in the id schema. When we want to
denote a well defined inference rule, which is an instance of one of these schemas,
we append appropriate indexes to the name of the schemas, like in ∃RΓ,∃z.ϕ,t(a)

for
Γ ։ ϕ[z/t(a)]

Γ ։ ∃z.ϕ
.

5.1 Correct Answers

First of all, we want to extend the standard notion of correct answer for Horn
clauses to the general case of first order intuitionistic logic. Given a goal G and
a program P in pure logic programming, a correct answer θ is a function (sub-
stitution) from the variables in G to terms, with the interesting property that

14

~∀P։ Gθ is provable. Since the real logical meaning of evaluating G in a program
P is that of proving the closed sequent ~∀P ։ ~∃G, we can think of an extension
of the concept of correct answer to generic sequents Γ ։ ϕ as a mapping from
existentially quantified variable in ϕ to terms. We require that Γ ։ ϕ{θ} is
provable for an appropriate notion of substitution {θ}.

However, note the following facts:

– if we only work with Horn clauses and a sequent Γ ։ ∃x.ϕ is provable, we
know that there exists a term t such that Γ ։ ϕ[x/t] is provable. This is not
true in the general case. Therefore, we can think of using partial functions
mapping variables to terms, so that we can choose not to give an instance
for some of the variables;

– consider the two sequents S = Γ ։ ∃x.ϕ and S′ = Γ ։ (∃x.ϕ) ⊃ ψ. The
role of the two existential quantifiers is completely different. In the first case
we are actually looking for a term t to substitute into the x. In the second
case, we are producing a new object a, forcing the fact that ϕ[x/a] holds. To
be more precise, in a proof for S, we introduce the formula ∃x.ϕ with the rule
∃R or ⊥R, while in a proof for S′ we introduce it by ∃L. As a consequence,
we want to restrict our attention to the first kind of existential quantifiers.

Given a formula ϕ, a variable x is said to be a query variable for ϕ if the
subformula ∃x.ϕ′ positively occurs in ϕ for some ϕ′. A (candidate) answer θ for
ϕ is a function from the query variables of ϕ to Term such that

– if ∃x.ϕ′ positively occurs in ϕ, θ(x) does not contain any variable which is
quantified in ϕ′;

– θ is idempotent, i.e. its domain (the set of variables for which θ is defined)
and range (the set of variables which occur in its image) are disjoint.

Let us point out that, when ϕ has no positive existentially quantified variables,
it has only a trivial candidate answer.

Given an answer θ for ϕ, we define the instantiation ϕ{θ} of ϕ via θ by
induction on the structure of the goals, as follows:

⊥{θ} = ⊥

A{θ} = A if A is an atomic goal

(ϕ′ ⊕ ϕ′′){θ} = ϕ′{θ} ⊕ ϕ′′{θ} for each binary logical symbol ⊕

(∀x.ϕ){θ} = ∀x.(ϕ{θ})

(∃x.ϕ){θ} = ϕ[x/θ(x)]{θ} if θ(x) is defined

(∃x.ϕ){θ} = ∃x.ϕ{θ} if θ(x) is undefined.

In other words, ϕ{θ} is obtained by replacing every existentially quantified sub-
formula ∃x.ϕ′ in ϕ such that θ(x) 6= ⊥ with ϕ′[x/θ(x)].

An answer for ϕ is said to be a correct answer for the sequent Γ ։ ϕ when
Γ ։ ϕ{θ} is provable. Given the standard functional ordering ≤ for candidate
answers, it is easy to check (Theorem 32) that, if θ is a correct answer for the
sequent S and θ′ ≤ θ, then θ′ is a correct answer, too. A correct answer for ϕ is
total when its domain coincides with the set of query variables for ϕ.

15

Example 11. Given the goal G = ∀x.∃y.p(x, y), the answers θ = {y f(x)},
θ′ = {y a} and θ′′ = {} give origin to the instantiated goals G{θ} =
∀x.p(x, f(x)), G{θ′} = ∀x.p(x, a) and G{θ′′} = G. It turns out that θ and
θ′′ are correct answers for the sequent ∀x.p(x, f(x))։ G.

Note that θ = {x y} is not a candidate answer for G = ∃x.∀y.p(x, y),
since y is a bound variable in ∀y.p(x, y).

Assume we want to restrict ourselves to the fragment of Horn clauses. Let
P be a pure logic program and let G be a definite goal. A correct answer θ
(in the classical framework) for G in P is said total when it is idempotent and
dom(θ) = vars(G). Then, the two different definitions of total correct answers do
coincide.

For example, let us consider the program p(X,X) and the goal p(X,Y). The
substitution {X/Y} is a (non total) correct answer in the classical setting, but
{x/y} is not a candidate answer for the sequent ∀x.p(x, x) ։ ∃x.∃y.p(x, y).
However, the equivalent correct answer {X/Z, Y/Z} is total, and corresponds to
a correct answer in our setting, too.

5.2 Groundness

A first order term t is ground when it contains no variables. If θ is a candidate
answer for ϕ, a variable x is ground in θ if θ(x) is ground. We also say that
θ is grounding for x. A typical problem of static analysis is to establish which
variables are forced to be ground in all the correct answers for a sequent S. There
are many studies on this subject for the case of Horn clauses (see, for example,
[4]), and some works for hereditary Harrop formulas, too (see [15]).

Given the set Gr = {g, ng}, a groundness answer for a formula ϕ is a partial
function β from the query variables of ϕ to Gr. Note that we do not assume
any ordering between g and ng. Given a candidate answer θ for ϕ, we define a
corresponding groundness answer αg(θ), according to the following:

αg(θ)(x) =

⊥ if θ is undefined in x,

g if θ is grounding for x,

ng otherwise

(47)

If θ is a correct answer for S, then αg(θ) is called a correct groundness answer
for S. Given the obvious functional ordering for groundness answers, it turns out
that if β is correct for S and β′ ≤ β, then β′ is correct (see Theorem 33).

16

Example 12. Let us give some examples of sequents and their corresponding
correct groundness answers:

sequent groundness answers
∀y.p(y)։ ∃x.p(x) {x/g} {x/ng}

∀y.p(a, y) ∧ p(y, b)։ ∃x.p(x, x) {x/g}
p(a) ∨ r(b)։ ∃x.p(x) ∨ r(x) {x/g}

⊥։ ∃x.p(x) {x/g} {x/ng}
∀y.p(y, y)։ ∀x1.∃x2.p(x1, x2) {x1/ng}
∀y.p(y, y)։ ∃x1.∃x2.p(x1, x2) {x1/g, x2/g}, {x1/ng, x2/ng}

∃y.p(y)։ ∃x.p(x) {x/⊥}
p(t(a))։ ∃x.p(r(x)) ∅

Note that we only give the maximal correct groundness answers, according with
the functional ordering.

We are interested in effectively computing the set of correct groundness an-
swers for a given input sequent. Using the theory presented in this paper, we
have developed a top-down analyzer for groundness, which works for the full
intuitionistic first-order logic. It is based on the idea that, given a proof of the
sequent S, it is possible to derive a groundness answer for S by just examining
the structure of the proof. In particular if p = r(p1, . . . , pn), it is:

ganswer(p)(x) =

g if r = ∃RΓ,∃x.ϕ,t and t is ground,

ng if r = ∃RΓ,∃x.ϕ,t and t is not ground,

{ganswer(pi)(x)} if r 6= RS,x,t and x appears in pi,

⊥ otherwise.

(48)
In general, if p is a final proof for S, we are not guaranteed that ganswer(p)

is a correct groundness answer for S. For example, if S = ∃x.t(x) ։ ∃y.t(y)
and p is the obvious corresponding final proof, it is ganswer(p) = {x/g}, while
the only correct answer is {x/⊥}. However, if β is a correct groundness answer
for S, we can find a final proof p of S such that ganswer(p) ≥ β. As a result,
if I is the set of final proofs for S, then ↓ {ganswer(p) | p ∈ I} contains all
the correct groundness answers for S (see Theorem 34). In the language of the
theory of abstract interpretation, it means that ↓ {ganswer(p) | p ∈ I} is a
correct approximation of the set of correct groundness answers.

Now, let us consider the function αt which abstracts a formula ϕ with the
same formula, where terms have been replaced by the set of variables occurring
in them. We can trivially lift αt to work with sequents.

If we name by 〈D′,G′〉 the new language image of 〈D,G〉 via αt, we can define
a domain of groundness with set resultants Drg such as

Drg = P↓{〈S, β,R〉 | S is a sequent in 〈D′,G′〉,

R = {S1, . . . , Sn} is a finite set of sequents in 〈D′,G′〉,

β is a groundness answer for S} .

(49)

17

ordered by

〈S, β,R〉 ≤ 〈S′, β′, R′〉 iff S = S′ ∧ β ≤ β′ ∧R ⊇ R′ (50)

We can define an abstraction from syntactical interpretations to the domain of
groundness with resultants as

αrg(I) = {〈αt(S), β, {αt(S1), . . . , αt(Sn)}〉 | there exists p : S1, . . . , Sn ⊢ S in I

with ganswer(p) = β}

(51)

We obtain an observable which can be effectively used for top-down analysis of
groundness. The analyzer we have developed in PROLOG and which can be found
at the URL http://www.di.unipi.it/~amato/papers/sas2000final.pl is an
implementation of this observable, with some minor optimizations.

Example 13. By applying our analyzer to the sequents in the Example 12 we
obtain precisely the same set of correct groundness answers, with the following
exceptions:

sequent groundness answers
∃y.p(y)։ ∃x.p(x) {x/g}
p(t(a))։ ∃x.p(r(x)) {x/ng}

The previous example shows two different situations in which we lose pre-
cision. The first one is due to the fact that we abstract a term with the set of
its variables, loosing the information about the functors. To solve this problem,
the only solution is to improve our domain. The second situation arises from
the interaction between positively and negatively occurring existential quanti-
fiers, and can be addressed by improving the precision of the ganswer function.
It should be possible to define a complete ganswer function, such that if p is a
final proof for S, then ganswer(p) is a correct groundness answer for S. How-
ever, this involves examining the interaction between different quantifiers, and
can possibly lead to a further generalization of the notion of correct answers, as
a graph, linking quantifiers which produce “objects”, introduced by ∀R and ∃L,
and quantifiers which consume “objects”, introduced by ∀L and ∃R.

If we restrict ourselves to Horn clauses logic, the abstraction function is quite
precise, and we obtain a domain which, although expressed with a different
formalism, has the same precision of Pos [16, 10].

6 Conclusions and Future Works

The usefulness of a general semantic framework strictly depends on its ability
to be easily instantiated to well known cases while suggesting natural extensions
to them. In the case of a framework which we want to use as a reference for the
development of procedures for static analyses, we also require that theoretical
descriptions can be implemented in a straightforward way.

18

In this paper we presented a semantic framework for sequent calculi mod-
eled around the idea of the three semantics of Horn clauses and around abstract
interpretation theory. With particular reference to groundness and correct an-
swers, we have shown that well known concepts in the case of Horn clauses
can be obtained as simple instances of more general definitions valid for much
broader logics. This has two main advantages. First of all, we can instantiate the
general concepts to computational logics other then Horn clauses, such as hered-
itary Harrop formulas. Moreover, the general definitions often make explicit the
logical meaning of several constructions (such as correct answers), which are oth-
erwise obscured by the use of small logical fragments. We think that, following
this framework as a sort of guideline, it is possible to export most of the re-
sults for positive logic programs to the new logic languages developed following
proof-theoretic methods.

Regarding the implementation of static analyzers from the theoretical de-
scription of the domains, not all the issues have been tackled. While a top-down
analyzer can often be implemented straightforwardly, like our interpreter for
groundness, the same definitely does not hold for bottom-up analyzers. Since for
a bottom-up analysis we have to build the entire abstract semantics of a logic,
we need a way to isolate a finite number of “representative sequents” from which
the semantics of all the others can easily be inferred: it is essentially a problem
of compositionality.

We are actually studying this problem and we think that extending the no-
tion of a logic L with the introduction of some rules for the decomposition of
sequents will add to the theoretical framework the power needed to easily de-
rive compositional TL operators, thus greatly simplifying the implementation of
bottom-up analyzers.

Moreover, the problem of groundness analysis for intuitionistic logic could
be further addressed. The precision we can reach with the proposed domain can
be improved by refining the abstraction function, and the implementation of the
analyzer could be reconsidered to make it faster. Finally, it should be possible
to adapt the domain to work with intuitionistic linear logic.

We think that our approach to the problem of static analyses of logic pro-
grams is new. There are several papers focusing on logic languages other than
Horn clauses [15] but, to the best of our knowledge, the problem has never been
tackled before from the proof-theoretic point of view. An exception is [20], which,
however, is limited to hereditary Harrop formulas and does not come out with
any real implementation of the theoretical framework.

References

[1] G. Amato. Uniform Proofs and Fixpoint Semantics of Sequent Calculi. DRAFT.
Available at the following URL: http://www.di.unipi.it/~amato/papers/,
1999.

[2] G. Amato and G. Levi. Properties of the lattice of observables in logic program-
ming. In M. Falaschi and M. Navarro, editors, Proceedings of the APPIA-GULP-
PRODE’97 Joint Conference on Declarative Programming, pages 175–187, 1997.

19

[3] J. M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[4] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean functions
for dependency analysis: Algebraic properties and efficient representation. In
B. Le Charlier, editor, Proc. Static Analysis Symposium, SAS’94, volume 864 of
Lecture Notes in Computer Science, pages 266–280. Springer-Verlag, 1994.

[5] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for
Logic Programs. Theoretical Computer Science, 122(1–2):3–47, 1994.

[6] A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Modular logic programming.
ACM Transactions on Programming Languages and Systems, 16(4):1361–1398,
July 1994.

[7] M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs.
Information and Computation, 1999. To appear.

[8] M. Comini, G. Levi, and G. Vitiello. Modular abstract diagnosis. In Interna-
tional Workshop on Tools and Environments for (Constraint) Logic Programming,
ILPS’97 Postconference Workshop, 1997.

[9] M. Comini and M. C. Meo. Compositionality properties of SLD-derivations.
Theoretical Computer Science, 211(1 & 2):275–309, 1999.

[10] A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. Sixth IEEE Symp. on
Logic In Computer Science, pages 322–327. IEEE Computer Society Press, 1991.

[11] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238–252,
1977.

[12] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic
Programs. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

[13] S. K. Debray. Formal bases for dataflow analysis of logic programs. In G. Levi,
editor, Advances in logic programming theory, pages 115–182. Clarendon Press,
Oxford, 1994.

[14] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition.

[15] F. Malésieux, O. Ridoux, and P. Boizumault. Abstract compilation of λProlog.
In J. Jaffar, editor, Joint International Conference and Symposium on Logic Pro-
gramming, pages 130–144, Manchester, United Kingdom, June 1998. MIT Press.

[16] K. Marriott and H. Sondergaard. Abstract Interpretation of Logic Programs: the
Denotational Approach. In A. Bossi, editor, Proc. Fifth Italian Conference on
Logic Programming, pages 399–425, 1990.

[17] D. Miller, F. Pfenning, G. Nadathur, and A. Scedrov. Uniform proofs as a foun-
dation for Logic Programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[18] B. Möller. On the Algebraic Specification of Infinite Objects – Ordered and
Cntinuous Models of Algebraic Types. Acta Informatica, 22:537–578, 1985.

[19] G. Nadathur and D. Miller. An Overview of λProlog. In Kenneth A. Bowen and
Robert A. Kowalski, editors, Fifth International Logic Programmiong Conference,
pages 810–827. MIT Press, 1988.

[20] P. Volpe. Abstractions of uniform proofs. In M. Hanus and M. Rodriguez-Artalejo,
editors, Algebraic and Logic Programming, Proc. 5th International Conference,
ALP ’96, volume 1139 of Lecture Notes in Computer Science, pages 224–237.
Springer-Verlag, 1996.

20

A Proofs

A.1 Concrete Semantics

Lemma 14. Given a proof schema p : S1, . . . , Sn ⊢ S, the semantic operator p
defined as

p(X) = {p(p1, . . . , pn) | pi ∈ X ∩ SchSi
for each i} (52)

is continuous and coadditive.

Proof. Let {Xj}j∈IN be a chain of interpretations. Consider a proof schema p′ ∈
p(∪j∈INXj). It is

p′ = p(p1, . . . , pn)

where pi ∈ (∪j∈INXj) ∩ SchSi
= ∪j∈IN(Xj ∩ SchSi

) for each i. Since {Xj}j∈IN is
a chain, there exists an n ∈ IN such that pi ∈ Xn ∩ SchSi

for each i. As a result,
p ∈ p(Xn) ⊆ ∪j∈IN p(Xj).

Now, take a collection {Xj}j∈J of interpretations and p′ ∈ ∩j∈J p(Xj). Since
p(p1, . . . pn) is different from p(p′1, . . . , p

′
n) if there is at least an index i such that

pi 6= p′i, then p′ = p(p1, . . . , pn) with pi ∈ Xj ∩ SchSi
for all j and i. Hence,

p′ ∈ p(∩j∈JXj).

Lemma 15. The gluing operator 3 is

– additive w.r.t. its first argument,
– continuous and coadditive w.r.t. its second argument.

Proof. The proof that 3 is left-additive easily follows by its definition. With
respect to the second argument, the continuity and coadditivity of 3 directly
follows from the fact that, given p ∈ Sch, p as a function on subset of proof
schemas is continuous and coadditive (see Lemma 14).

Theorem 16. Models form a sub-meet-semilattice of Int with the same top ele-
ment.

Proof. We need to prove that, given a collection {Ij}j∈J of models for a logic L,
the interpretation

⋂

j∈J Ij is a model, too. This easily follows from the fact that 3
is right-coadditive, as proved in Lemma 15. Moreover, the greatest interpretation
I = Sch is trivially a model. This completes the proof of the theorem.

Theorem 17. An interpretation I is a model iff it is a fixpoint of TL.

Proof. It is straightforward, since by common properties of join-semilattices, it
is

R3 I ⊆ J ⇐⇒ J ∪R3 I = J .

When J = I, we have the required equivalence.

Theorem 18. The TL operator is continuous.

Proof. Immediate, since TL is obtained by composing continuous functions.

21

Theorem 19. The fixpoint semantics TL ↑ ω is the set of all the final proofs
for the logic L.

Proof. We prove by induction that TL ↑ n is the set of all the proofs of height
at most n in L. For n = 0, we have TL ↑ 0 = ∅, and ∅ is exactly the set of proofs
(with no hypotheses) of height zero.

Let us prove the required equality for n+1. Given a proof p of height at most
n+ 1, p has the form r(p1, . . . , pn) where r : S1, . . . , Sn ⊢ S ∈ R and p1, . . . , pn
are proofs of height n at most. By inductive hypotheses, pi ∈ TL ↑ n for each I.
Therefore

p ∈ r(TL ↑ n) ⊆ TL ↑ (n+ 1) (53)

and half of the required equality is proved. Now, take p ∈ TL ↑ (n + 1). There
are two cases:

– if p ∈ TL ↑ n, then, by inductive hypothesis, p is a proof whose height is not
greater than n;

– if p ∈ R 3 TL ↑ n, then p = r(p1, . . . , pn) with r ∈ R and pi ∈ TL ↑ n for
each i. Since each pi is a proof with height n at most, p has height less or
equal to n+ 1.

Theorem 20. The fixpoint semantics Tω
L (ǫ) is the set of all the proofs for the

logic L.

Proof. The proof proceed like for the previous theorem, with the only difference
that T 0

L(ǫ) = ǫ, the set of all the proofs of height zero.

Lemma 21. The UL operator is additive.

Proof. Immediate, since UL is obtained by composing additive functions.

Theorem 22. The operational behavior B(L)Q and the operational semantics
Oc(L) coincide with Uω

L (ǫQ) and U
ω
L (ǫ).

Proof. We prove, by induction on n, that Un
L(X) is the set of all the proof

schemas derivable from X in n steps, i.e.

Un
L(X) = {p | ∃p′ ∈ X.p′ 7−→n p} (54)

For n = 0, the property (54) trivially holds. Now, assume (54) holds for n
and let us prove it for n+1. Given p derivable in n+1 steps from X, there exists
p′ derivable in n steps such that p′ 7−→ p. By inductive hypothesis, p′ ∈ Un

L(X)

and p ∈ p′(R ∪ ǫ) ⊆ U
(
Ln+ 1)(X). On the other side, if p ∈ U

(
Ln+ 1)(X), then

p ∈ p′(R ∪ ǫ) with p′ ∈ Un
L(X). Since p′(R ∪ ǫ) = {p | p′ 7−→ p}, by inductive

hypotheses, p is derivable from p′ in n+ 1 steps.
If we consider that UL(X) ⊇ X and we instantiate (54) with X = {ǫQ} and

X = ǫ, we obtain the proof of the theorem.

Theorem 23. The complete fixpoint and declarative semantics coincide.

22

Proof. We prove by induction on n that Un
L(ǫ) is the set of all the proofs whose

height is not greater than n. As a result, Tn
L (ǫ) = Un

L(ǫ) for each n, and this
trivially implies the theorem.

For n = 0 the property is trivial. Assume that the property holds for n and
let us prove it for n+1. Let p be a proof with height n+1 at most. We obtain a
new proof p′ of the same sequent just cutting the tree at the level n. The original
proof p can be obtained by p′ replacing some of the hypothesis of the latter with
the inference rules which have been dropped when cutting the tree. This can
be accomplished with a step of the transition system, hence p′ 7−→ p with p′ of
height not greater then n, i.e. p′ ∈ Un

L(ǫ). It trivially follows p ∈ Un+1
L (ǫ).

On the converse, assume p ∈ Un+1
L (ǫ), i.e. p = p′(r1, . . . , rn) with p′ :

S1, . . . , Sn ⊢ S ∈ Un
L(ǫ), ri ∈ R ∪ ǫ and th(ri) = Si for each i. By inductive

hypothesis, the height of p′ is not greater than n. It is obvious that the height
of p is at most equal to the height of p′ plus one, hence it is n+ 1 at most.

A.2 Abstract Semantics

Theorem 24. If the observable (D,α, γ) separates sequents, then the equations
(36) and (37) form a bijection between the abstract interpretations which are in
the image of α and the interpretations J Kα such that JSKα is in the image of α
for each sequent S.

Proof. Take an interpretation J Kα for the pre-interpretation Iα. It is enough to
prove that, for each sequent S,

(

⋃

α
S′=Γ։∆

JS′Kα

)

∩α α(SchS) = α(γ(JSKα)) . (55)

We have

(

⋃

α
S′=Γ։∆

JSK′α

)

∩α α(SchS) = α

(

γ

(

⋃

α
S′

JS′Kα

)

∩ γ(α(SchS))

)

[since γ(α(SchS)) = SchS]

= α

(

γ

(

α

(

⋃

S′

γ(JS′Kα)
)

∩ SchS

))

[since α separates sequents and γ(JS′Kα) ⊆ SchS′)]

= α

(

⋃

S′

γ(JS′Kα) ∩ SchS

)

[since γ(JS′Kα) ⊆ SchS′]

= α(γ(JSKα))

23

as we were looking for. We also need to prove that, given an abstract interpre-
tation A, it is

⋃

α
S=Γ։∆

(A ∩α α(SchS)) = α(γ(A)) . (56)

The proof is the following

⋃

α
S=Γ։∆

(A ∩α α(SchS)) =
⋃

α
S

(α(γ(A) ∩ γ(α(SchS))))

[since
⋃

α
is the abstract join for the image of α]

= α(
⋃

S

(γ(A) ∩ SchS))

= α

(

γ(A) ∩
⋃

S

SchS

)

= α(γ(A)).

Theorem 25. A is an abstract model according to equation (40) iff γ(A) is a
model.

Proof. First of all, given two abstract interpretation A1 and A2, it is γ(A1 ∩α

A2) = γ(A1)∩γ(A2). Then, since γ preserves the greatest lower bounds, we have
for each abstract interpretation A and inference rule r : S1, . . . , Sn ⊢ S,

Equation (40) holds

⇐⇒ α(r(γ(A) ∩ γ(α(SchS1
)), . . . , γ(A) ∩ γ(α(SchSn

)))) ⊑ A ∩α α(SchS)

⇐⇒ α(r(γ(A) ∩ SchS1
, . . . , γ(A) ∩ SchSn

)) ⊑ A ∩α α(SchS)

[by equation (6)]

⇐⇒ r(γ(A) ∩ SchS1
, . . . , γ(A) ∩ SchSn

) ⊆ γ(A) ∩ SchS

[by adjoint properties and equation (6)]

⇐⇒ {r} 3 γ(A) ⊆ γ(A)

Since this holds for every r, by left-additiveness of 3 we have the required result.

A.3 Abstract Interpretation in Declarative Settings

Abstract intepretation techniques have been widely employed to provide abstrac-
tion of denotational and operational semantics. We will give here some accounts
on how to use them in declarative settings.

When we work with declarative semantics, we generally have a poset (I,≤)
of interpretations and a M ⊆ I of models. We assume that M is characterized
as the set of prefixpoints of some monotone operator T : I → I.

Given an abstraction (a Galois connection) 〈I, γ, α,A〉, we call (A,⊑) the
poset of abstract interpretations. If we want to talk of abstract models, the natural
way to do it is saying that A is an abstract model when γ(A) is a model. However,

24

the T operator has a corresponding optimal abstract operator Tα defined as
Tα = α ◦ T ◦ γ. The question arises whether there is some connection between
abstract models and prefixpoints of Tα.

Theorem 26. A is an abstract model iff it is a prefixpoint of Tα.

Proof. If A is an abstract model, by definition T (γ(A)) ≤ γ(A). Therefore,
Tα(A) = α(T (γ(A))) ⊑ α(γ(A)) ⊑ A.

On the contrary, assume Tα(A) ⊑ A. We have α(T (γ(A))) ⊑ A, hence
T (γ(A)) ≤ γ(A) and A is an abstract model.

Now, if A is an abstract model, γ(A) is a model by definition. It would be
useful if the converse were true, i.e. if given a model I, α(I) were an abstract
model. This is false in general. However, the following holds

Theorem 27. Given an abstraction 〈I, γ, α,A〉 complete w.r.t. T and a prefix-
point I of T , then α(I) is a prefixpoint of Tα.

Proof. The proof is quite easy. If I is a prefixpoint of T , then Tα(α(I)) =
α(T (I)) ⊑ α(I), thus α(I) is a prefixpoint of Tα.

It is important to observe that this theorem cannot be strengthened. Neither
of the two implication can be transformed in logical equivalence without affecting
the validity of the theorem.

Lemma 28. If I is a (complete) meet-semilattice, then M is a (complete) sub-
semilattice of I.

Proof. Assume X ⊆M such that
∧

X exists. Then, for each x ∈ X, it is

T
(

∧

X
)

≤ T (x) ≤ x .

As a result,

T
(

∧

X
)

≤
∧

X ,

and this concludes the proof.

Theorem 29. If I is a (complete) meet-semilattice and α is surjective, then
abstract models form a (complete) meet-semilattice, too.

Proof. Since α is surjective, by properties of Galois insertions, A is a (complete)
meet-semilattice. By rephrasing the previous lemma for the abstract domain A,
we have that abstract models form a (complete) sub-semilattice of A.

Theorem 30. Assume α is complete w.r.t. T and mx is the least model greater
than x ∈ I. Then, α(mx) is the least abstract model greater then α(x).

Proof. Assume A is an abstract model greater than α(x). We need to prove that
A ⊒ α(mx). By adjoint considerations A ⊒ α(x) iff γ(A) ≥ x. Hence, γ(A) is a
model greater than x. By definition of mx, it turns out that γ(A) ≥ mx, hence
A ⊒ α(mx).

25

A.4 Correct Answers

Lemma 31. If θ is a correct answer for the sequent Γ ։ G then Γ ։ G is
provable.

Proof. We start by extending, in the obvious way, the notion of candidate answer
and of instance operator {θ} to sequents. Afterward, we prove that if θ is a correct
answer for a sequent S, then S is provable.

We define a family of functions “liftS” on proofs, depending on a sequent S,
such that liftS , applied to a proof p of S{θ}, gives a proof liftS(p) of S. Moreover,
if p is final, the same holds for lift(p). We need to specify the sequent S in lift
since, in general, there is more than a sequent with the same instance via θ.

The fundamental property of the intuitionistic logic exploited by lift is that
inference rules do not change the positivity of occurrences of subformulas in the
sequents, if we consider a positive occurrence in a sequent S as a positive occur-
rence in its consequent or a negative occurrence in its antecedents. Moreover, the
inference rule schemas only depends from the main connectives of the formulas.
Hence, we can define liftS(p) to mimic the inference rules used in p. The only
exception is when we have a right introduction of an existential quantifier.

Assume p is a proof of S{θ} with S = Γ ։ G, we define liftS as the function
mapping:

– Γ{θ}։ G{θ} to Γ ։ G;

– id
Γ{θ}, A{θ}։ A{θ}

to id
Γ,A։ A

;

–

·
·
· p1

Γ{θ}։ G1{θ}

·
·
· p2

Γ{θ}։ G2{θ}
∧R

Γ ։ (G1 ∧G2){θ}
to

·
·
· liftΓ։G1

(p1)

Γ ։ G1

·
·
· liftΓ։G2

(p2)

Γ ։ G2
∧R

Γ ։ G1 ∧G2

,

and similarly for the ∨R and ⊃ R rule schemas;

–
·
·
· p

Γ{θ}։ (∃x.G){θ}
to

·
·
· liftΓ։G[x/θ(x)](p)

Γ ։ G[x/θ(x)]
∃R

Γ ։ ∃x.G
,

if θ(x) 6= ⊥, since (∃x.G){θ} = G[x/θ(x)]{θ}. Note that this is possible since
we are assuming that θ(x) does not contain any variable which is quantified
in G;

–

·
·
· p

Γ{θ}։ G[x/t]{θ}
∃R

Γ{θ}։ (∃x.G){θ}
to

·
·
· liftΓ։G[x/t](p)

Γ ։ G[x/t]
∃R

Γ ։ ∃x.G
,

if θ(x) = ⊥;

26

–

·
·
· p1

Γ{θ}։ G[x/a]{θ}
∀R

Γ{θ}։ (∀x.G){θ}
to

·
·
· liftΓ։G[x/a](p1)

Γ ։ G[x/a]
∀R

Γ ։ ∀x.G
,

since if a does not occur in Γ{θ}։ (∀x.G){θ}, it does not occur in Γ ։ ∀x.G
as well;

–

·
·
· p1

Γ{θ}, G1{θ}, G2{θ}։ G{θ}
∧L

Γ{θ}, (G1 ∧G2){θ}։ G{θ}
to

·
·
· lift(p1)

Γ,G1, G2 ։ G
∧L

Γ,G1 ∧G2 ։ G
,

and similarly for the ∨L and ⊃ L rule schemas;

–

·
·
· p1

Γ{θ}, G1[x/t]{θ}։ G{θ}
∀L

Γ{θ}, (∀x.G1){θ}։ G{θ}
to

·
·
· liftΓ։G1[x/t](p1)

Γ,G1[x/t]։ G
∀L

Γ, ∀x.G1 ։ G
;

–

·
·
· p1

Γ{θ}, G1[x/a]{θ}։ G{θ}
∃L

Γ{θ}, (∃x.G1){θ}։ G{θ}
to

·
·
· liftΓ։G1[x/a](p1)

Γ,G1[x/a]։ G
∃L

Γ, ∃x.G1 ։ G
,

since if a does not occur in Γ{θ}։ (∀x.G){θ}, it does not occur in Γ ։ ∀x.G
either.

It is routine to check that all the operations are well defined and that liftS(p) is
final if p is final. Hence, this proves the lemma.

Theorem 32. If θ is a correct answer for Γ ։ ϕ and θ′ ≤ θ, then θ′ is a correct
answer, too.

Proof. Let K be the set of variables such that θ′(x) = ⊥ and θ(x) 6= ⊥. Thanks
to the idempotency of correct answers, it is easy to check that

ϕ{θ} = (ϕ{θ′}){θ |K} . (57)

Then, by Lemma 31, we have that ϕ{θ′} is provable, hence θ′ is a correct answer
for Γ ։ ϕ.

A.5 Groundness

Theorem 33. If β and β′ are groundness answers for a sequent S with β′ ≤ β
and β is correct, then β′ is correct, too.

Proof. Let K be the set of variables such that β′(x) = ⊥ and β(x) 6= ⊥. If β
is a correct groundness answer for S = Γ ։ G, there exists a final proof p of

27

Γ ։ G{θ} with β = αS(θ). Thanks to the idempotency of correct answers, it is
easy to check that

G{θ} = (G{θ |Var\K}){θ |K} = G′{θ |K} (58)

Then, by lemma 31, we obtain a final proof p′ = liftG{θ|Var\K}(p) of the sequent
S′ = Γ ։ G{θ |Var\K}. In other words, this means that θ |Var\K is a correct
answer for S. Since αS(θ |Var\K) = β′, this proves the theorem.

Theorem 34. Given a sequent S in the first-order intuitionistic logic Li, it is

↓ {ganswer(p) | p ∈ BLi
(S)} ⊇ {αS(θ) | θ is a correct answer for S} . (59)

Proof. Given a correct answer θ for S = Γ ։ G, there is a final proof p of
Γ ։ G{θ}. We can apply the liftS operator defined in the previous lemma to
obtain a final proof p′ of S. It is easy to check that ganswer(p′) ≥ αS(θ), and
this proves the theorem.

28

