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Abstract

Among the numerical abstract domains for detecting linear relationships between program variables, the
polyhedra domain is, from a purely theoretical point of view, the most precise one. Other domains, such as
intervals, octagons and parallelotopes, are less expressive but generally more efficient. We focus our attention
on interval constraints and, using a suite of benchmarks, we experimentally show that, in practice, polyhedra
may often compute results less precise than the other domains, due to the use of the widening operator.
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1 Introduction

Many numerical abstract domains have been defined in the literature with the aim
of discovering relations among numerical variables in imperative programs. These
abstract domains differ on the shape and number of constraints on program variables
which may be represented. The most common numerical domains are the interval
[14], octagon [20] and polyhedra [15] abstract domains.
The domain Int of intervals encodes a finite set of constraints of the form x ≤ u

or l ≤ x, where x is a variable of the program and l, u are numbers representing
lower and upper bounds respectively. This is a classical example of non-relational
domain, since it is not able to explicitly represent relationships between two different
program variables.
On the contrary, the domain Poly of polyhedra is able to represent any finite set

of linear constraints on the program variables. Each linear constraint has the form
a ·x ≤ u, while a finite number of them may be represented as Ax ≤ u, where A is
the matrix of coefficients, x is the vector of program variables and u the vector of

1 Email: {gianluca.amato@unich.it, marco.rubino@unich.it}

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 334 (2018) 3–16

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.002

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.03.002
https://doi.org/10.1016/j.entcs.2018.03.002
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


upper bounds. Poly is a relational domain, since each constraint may involve many
different variables.
Finally, the domain Oct of octagons lies in-between the other two: it may repre-

sent constraints with up to two program variables, but only of the form ax+ by ≤ u

with a, b ∈ {−1, 0, 1}. These are called octagonal constraints. Oct is a typical
example of the so-called weakly relational domains. This class of domains allows
to represent constraints involving different variables, but the form of constraints is
severely limited.
The interval and octagon abstract domains are also examples of template abstract

domains [22]. This is the family of all the domains which may represent any linear
constraints a ·x ≤ u, but the set of available coefficient vectors a is chosen a priori,
and cannot change during the analysis. Each abstract object may be represented as
Ax ≤ u where A is the template matrix and u the vector of upper bounds. It may
seem the same as polyhedra, but the fundamental difference is that in the polyhedra
abstract domain the coefficient matrix A may vary freely during the analysis, while
in a template abstract domain the template matrix A is fixed. For example, for the
interval domain, A is the matrix (I | −I)T .
The widespread use of these domains is due, at least in part, to the fact that

they are implemented in two of the most famous libraries for numerical abstract
domains, namely APRON [18] and PPL [12].
There are many other template abstract domains in the literature, and there are

also examples of domains that do not fall in this category, although they are less
precise than polyhedra. For example, TVPI [23] (two variables per linear inequal-
ity) may represent a finite set of constraints of the form ax + by ≤ u without any
limitation on a and b. This is a weakly relational abstract domain, since it may en-
code relationships between two variables only, but not a template domain. Another
example is the domain Par of parallelotopes [8], implemented in the Jandom static
analyzer [3]. Abstract objects in this domain can be represented as Ax ≤ u like for
the polyhedra domain, but it is required that the coefficient matrix A is invertible.
Therefore, parallelotopes definitely have a limited expressive power if compared to
polyhedra, although they do not fall in the class of template or weakly relational
domains. There exists a template variant of the domain of parallelotopes [4,5], but
it is not be used in this paper.

Precision of abstract domains
The aim of this paper is to experimentally compare a selection of abstract do-

mains, including intervals, octagon, polyhedra and parallelotopes, from the point of
view of the attainable precision of the analysis. Comparing the precision of abstract
domains at the theoretical level is difficult, because a greater expressive power of a
domain does not always produce a more precise overall analysis.
A numerical abstract domain is formalized as a set A of abstract properties pre-

ordered by ≤A and endowed with a monotone (w.r.t. the subset ordering in ℘(Rn))
concretization map γ : A → ℘(Rn), where n is the number of program variables. We
say that domain A is more expressive than B, and we write A > B, if the image of
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γA is a strict superset of the image of γB.
According to the expressive power, we have Poly > Oct > Int and Poly > Par >

Int, while octagons and parallelotopes are incomparable. Obviously, the more ex-
pressive a domain is, the more accurately it may track, at least in principle, the
values of program variables during the program execution. If we compare two anal-
yses performed using the domains A and B with A > B, we would expect the
analysis using A to find more constraints or more precise bounds than the analysis
using B. However, expressiveness of a domain does not tell the whole story. At least
other two factors may influence the result of the analysis: abstract operators and
widening.
If abstract operators are not the best correct approximations of the concrete

ones, the result of the analysis may not be as precise as it could. While abstract
operators for intervals, polyhedra and octagons are generally implemented as the
best correct abstraction of the concrete operators, this does not happen for paral-
lelotopes. The reason is that for many operators on parallelotopes there is no best
correct abstraction. This is because, given a subsets of Rn, in general there is no
least parallelotope which approximates it, but there are many minimal competing
ones, and heuristic considerations are used to choose among different minimal pos-
sibilities. Note that the same also happens for polyhedra (for example, there is no
best polyhedral approximation for a sphere), but this is not a big problem for static
analysis since most of the operations used in this context transform polyhedra into
polyhedra (therefore, abstract operators in Poly are mostly γ-complete [7]).
However, a greater impact on the precision of an analysis is arguably given by

widening. For template domains, the implementation of widening is straightforward:
since the number and form of constraints is fixed and finite, we just need to enlarge
bounds to infinity to force termination of the analysis. However, for non-template
domains, constraints may freely change at each iteration. Therefore, widening op-
erators have more freedom and may try different solutions to determine a stable set
of constraints. For the polyhedra domain, the most common widenings in use are
the so-called standard widening described in [15] and later refined in [17], and the
widening described in [11]. In the following, they will be called the H79 and BHRZ03
widening, adopting the names used in the PPL.
The widening H79 maintains all the constraints of the polyhedra in the previous

iteration, under the condition that the constraint is satisfied by all the points in the
polyhedra of the current iteration. The widening BHRZ03 improves on the standard
widening by combining four different heuristic techniques, derived from upper bound
operators. Both widenings present cases where they lose precision in such a way that
the resulting analysis is less precise than what may be attained even with the much
simpler interval domain. A detailed example appears in [21].
The widening on parallelotopes differs from the ones on polyhedra, since it dy-

namically chooses the whole coefficient matrix to be used for the result, either the one
of the preceding iteration or the one of the new iteration, according to an heuristic
which evaluates the distance between the parallelotopes in two successive iterations.
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Performance of abstract domains
From the theoretical point of view, it is easy to study the computational com-

plexity, in space and time, of the abstract operators. Most operations on intervals
are linear in the number of variables. For octagons and parallelotopes operations
are at most cubic on the number of variables, while polyhedra have a worst-case
exponential complexity on the number of variables.
However, just knowing how each abstract operator behaves does not give a com-

plete account of the performance of a domain in a real analysis. In particular,
predicting the behavior of polyhedra is difficult because the cost of operations heav-
ily depends on the complexity of the polyhedra found during the analysis. Therefore,
there are cases when polyhedra are faster than octagons, and cases in which they
are much slower.
Another factor which may influence performance is the convergence speed of the

analysis. From this point of view, any attempt to improve precision by reducing the
effect of widening and narrowing (for example, delayed widening or widening with
threshold [13]) generally increases the time required for the analysis.

Relative precision
In this paper, we will focus on comparing the precision of analyses run with the

same algorithm but different domains. However, we do not compare directly the
results as returned by the analysis, for two reasons. First of all, we would get many
cases of incomparable results. Second, domains such as parallelotopes and polyhedra
find many complex constraints involving a lot of variables which, although may be
useful to track the execution of the program, are not particularly useful in the final
result.
Generally, simpler constraints are more easily applicable. For example, interval

constraints may be used to prove that some run-time errors, such as division by
zero or out-of-bound access to array, do not occur in practice. In case it is needed,
simple program transformations may replace complex expressions with new synthetic
variables, so that every interesting constraint in the original program becomes an
interval constraint in the transformed one. Moreover, interval constrains are the
largest set of constraints which can be explicitly represented in all the domains. For
these reasons, we think that evaluating the precision of the analysis only on the
interval constraints is a valuable approach.
We also include for completeness a different comparison on octagonal constraints.

These constraints are useful, for example, to check for out-of-bound array accesses
when arrays are created with a dimension known at run-time only. However, since
new synthetic variables may be created to transform all problems to interval check-
ing problems, we think this comparison is not as relevant as the one on interval
constraints.
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2 Experimental Evaluation

We have carried out an experimental evaluation to compare the relative precision of
different numerical abstract domains w.r.t. the interval constraints. We have con-
sidered the following domains: intervals, octagons, polyhedra, parallelotopes and a
reduced product of parallelotopes and intervals. For parallelotopes, several variants
are available which differ in the heuristics used for the abstract operations which do
not have a best correct abstraction. In particular, we have used the variant Par+axes

[6], where abstract operations prefer to generate parallelotopes whose constraint
matrix contains interval constraints. On the contrary, in the reduced product of
parallelotopes and intervals we have used the variant Par−axes, where abstract oper-
ations generate parallelotopes which hardly use interval constraints. For polyhedra,
since we are interested in the impact of widening in the actual precision, we consider
two variants, one with the H79 widening and another one with BHRZ03.
Benchmarks were performed using the Jandom static analyzer [3] on the ALICe

benchmarks [19]. Jandom is an analyzer for simple imperative programs, linear tran-
sitions systems and Java bytecode. Intervals, parallelotopes and their product are
natively implemented in Jandom. For octagons and polyhedra we use the implemen-
tation in the PPL.
The test-suite comprises a total of 108 models (linear transition systems) with

a total of 326 locations, 161 of which are loop heads. Each model has at most 11
different locations, 4 loop heads and 10 variables. Most of the models (102 out of
108) are part of the ALICe benchmarks, the remaining 6 are taken from our previous
work.
For each model a classical two-phase analysis is performed, consisting of an

ascending chain with widening and a descending chain with narrowing. Widening
and narrowing are applied on all loop heads. For polyhedra, the trivial narrowing
which always returns the previous value of the descending chain is used. A delay
is applied for both widening and narrowing. We have experimented with different
values of the delay: for widening, we have used values between 0 and 6, while for
narrowing values between 0 and 3. Further experiments carried out with bigger
narrowing delays are not shown here, since there are practically no improvements.
All results are reproducible by running the NSAD17Comparison program in the

nsad17 branch of Jandom, which is available on GitHub 2 .

2.1 Effect of delayed widening and narrowing on interval constraints

Table 1 shows, for each domain and for each setting of delays, the number of non-
trivial interval constraints found by the analysis. Given an abstract object S and
a program variable x, we determine the maximum value of the linear form x in S.
If it is a real number or −∞ (which is possible when S is empty), we have found a
non-trivial interval constraint. The same is repeated with the linear form −x. The
value which appears in the table is obtained by summing the number of non-trivial

2 https://github.com/jandom-devel/Jandom
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Narrowing
delay

Widening
delay Domains 0 1 2 3 4 5 6

0

Intervals 889 890 907 919 919 920 923
Octagons 878 878 880 899 922 920 920

Parallelotopes 847 848 876 883 884 884 884
Par−axes � Int 905 921 935 946 962 961 980

Polyhedra H79 783 771 729 752 778 794 800
Polyhedra BHRZ03 779 785 791 807 826 838 846

1

Intervals 889 890 907 919 919 920 923
Octagons 878 878 880 899 922 920 920

Parallelotopes 850 851 881 886 886 887 887
Par−axes � Int 912 926 940 953 963 966 983

Polyhedra H79 921 909 863 879 885 889 893
Polyhedra BHRZ03 901 907 909 912 921 923 927

2

Intervals 889 890 907 919 919 920 923
Octagons 878 878 880 899 922 920 920

Parallelotopes 850 851 881 886 886 887 887
Par−axes � Int 914 928 939 955 965 968 985

Polyhedra H79 930 918 870 886 888 892 896
Polyhedra BHRZ03 909 912 914 920 925 927 931

3

Intervals 889 890 907 919 919 920 923
Octagons 878 878 880 899 922 920 920

Parallelotopes 850 851 881 889 889 890 890
Par−axes � Int 910 925 942 952 962 965 982

Polyhedra H79 930 918 870 886 888 892 896
Polyhedra BHRZ03 909 912 914 920 925 927 931

Table 1
Number of non-trivial interval constraints found by the analysis

interval constraints found for each location of each model.
The case with narrowing delay 0 is very unfavorable for polyhedra, since it means

that no descending chain is performed at all. It is shown only for completeness, but
it is not particularly interesting in practice. Actually, if we exclude the polyhedra
domain, delayed narrowing seems to have a very marginal benefit. Results for in-
tervals and octagons, in particular, do not show any improvements with delayed
narrowing. The fact that descending chains are generally quite short was already
observed in [1,2].
The situation is very different for delayed widening. In this case all of the do-

mains, with the exception of polyhedra with H79 widening, gradually improve pre-
cision when delay increases. There are some minor exceptions to this rule, like
octagons which lose precision when delay increases from 4 to 5, and Par−axes � Int
which also loses precision when narrowing delay is 0 and widening delay increases
from 4 to 5. Finally, polyhedra with H79 widening hardly combines with delayed
widening: precision is lost moving from delay 0 to delay 2. From delay 3 onward
the analysis recovers some lost precision, but it never comes back to the precision it
had with delay 0.
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2.2 Comparing domains w.r.t. interval constraints

By comparing the result of the different domains, we see that, starting from widening
delay 2, the reduced product of parallelotopes and intervals is the domain able to
find the greatest number of non-trivial interval constraints. Polyhedra with standard
widening is the best when no delayed widening is in use, while it is the worst with a
high delay. Its results are in any case smaller than the best results with Par−axes� Int

Obviously, for a given variable, location and model, two domains may find non-
trivial interval constraints with different bounds. In Table 2 we have shown some
results which try to take into account this fact. In this table, for each widening and
narrowing delay and for each domain, we show the number of non-trivial interval
constraints found by the domain whose bounds are no worse than the bounds inferred
by the other domains. We only show results for delayed narrowing 1 and 2 which
are the most significant cases. Although numbers are slightly different, they are in
line with the results shown in Table 1.

Narrowing
delay

Widening
delay Domains 0 1 2 3 4 5 6

1

Intervals 856 857 873 877 877 878 881
Octagons 854 854 856 871 893 891 890

Parallelotopes 825 826 856 855 855 856 856
Par−axes � Int 893 908 922 930 940 942 955

Polyhedra H79 917 905 858 874 877 881 885
Polyhedra BHRZ03 901 907 909 912 921 922 925

2

Intervals 856 857 873 877 877 878 881
Octagons 853 853 855 870 892 890 890

Parallelotopes 825 826 856 854 854 855 855
Par−axes � Int 891 904 917 930 940 942 953

Polyhedra H79 924 909 863 879 878 882 886
Polyhedra BHRZ03 909 912 914 920 925 927 931

Table 2
Number of non-trivial interval constraints found by the analysis which have the best bounds w.r.t. other

domains

The results for narrowing delay 1 or 2 are very similar. Figure 1 graphically
shows the values contained in the first row only of Table 2, where narrowing delay is
set to 1. It is immediate to see that the number of better interval constraints bounds
found by Polyhedra BHRZ03 strictly rises when increasing the widening delay. The
same does not happen for the Polyhedra H79 which outperforms the other domains
only for small widening delays.
In Table 4 we show the same data from a different perspective. For each selection

of delay for widening and narrowing, and for each domain, the table contains a pair
+m/−n. Here, +m (−n) means that the given domain has found, for m (n) interval
constraints, a bound which is strictly better (worse) than the one found by Polyhedra
BHRZ03.
The experiment shows that all the domains (with the only exception of Polyhedra

H79 with widening delay at least 2) are able to find at least one interval constraint
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Fig. 1. Graphical representation for narrowing delay 1 in Table 2

with better bounds than Polyhedra BHRZ03, in other words we have that m > 0

almost in all cases. On the other side, comparing the positive and negative numbers
we see that, in most case, n is almost the double of m. The only exception is the
domain Par−axes � Int where we have that m > n when the widening delay is not 0.
In particular, increasing the widening delay, the number of interval constraints with
better bounds increases, till the point that m is almost the double of n.
This comparison suggests that parallelotopes, while it might not be a good do-

main when used alone, is able to improve the precision of other abstract domains
when used in a reduced product.

2.3 Octagonal constraints

Table 3 is the analogous of Table 2 for octagonal constraints. We have omitted the
analogous of Table 1 since we do not think it is relevant: all the domains find many
non-trivial sub-optimal octagonal constraints, just as combination of two interval
constraints.
We see that polyhedra give more precise bounds than Oct itself (with the excep-

tion of narrowing delay 0 which, as stated before, is not fair for polyhedra). Intervals
and parallelotopes give the worst results, while octagons and Par−axes � Int are com-
parable. However, we think that an hypothetical reduced product of parallelotopes
and octagons would take the top spot.
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Narrowing
delay

Widening
delay Domains 0 1 2 3 4 5 6

0

Intervals 1897 1900 1944 1971 1960 1963 1981
Octagons 2533 2513 2522 2602 2678 2676 2670

Parallelotopes 1988 1991 2077 2089 2081 2081 2080
Par−axes � Int 2448 2494 2499 2500 2553 2523 2556

Polyhedra H79 2507 2471 2303 2420 2476 2530 2598
Polyhedra BHRZ03 2453 2482 2505 2581 2648 2714 2781

1

Intervals 1888 1892 1936 1954 1952 1955 1973
Octagons 2520 2502 2509 2584 2665 2661 2658

Parallelotopes 1992 1996 2090 2091 2089 2092 2091
Par−axes � Int 2455 2497 2546 2555 2621 2595 2622

Polyhedra H79 2948 2905 2708 2778 2738 2755 2821
Polyhedra BHRZ03 2861 2880 2888 2915 2919 2957 3008

2

Intervals 1888 1892 1936 1953 1952 1955 1973
Octagons 2516 2498 2505 2580 2661 2657 2656

Parallelotopes 1988 1992 2090 2087 2086 2089 2088
Par−axes � Int 2445 2484 2527 2548 2622 2591 2600

Polyhedra H79 2969 2923 2720 2788 2741 2758 2824
Polyhedra BHRZ03 2882 2896 2904 2934 2927 2968 3021

3

Intervals 1888 1892 1936 1953 1952 1955 1973
Octagons 2516 2498 2505 2577 2658 2654 2653

Parallelotopes 1992 1996 2090 2093 2092 2095 2094
Par−axes � Int 2431 2477 2533 2515 2610 2583 2614

Polyhedra H79 2969 2923 2720 2788 2741 2758 2824
Polyhedra BHRZ03 2882 2896 2904 2934 2927 2968 3021

Table 3
Number of non-trivial octagonal constraints found by the analysis which have the best bounds w.r.t. other

domains.
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Narrowing
delay

Widening
delay Domains 0 1 2 3 4 5 6

1

Intervals +56/-101 +54/-104 +65/-101 +64/-99 +55/-99 +55/-99 +54/-99

Octagons +56/-103 +53/-106 +53/-106 +59/-100 +65/-93 +62/-93 +58/-93

Parallelotopes +53/-129 +51/-132 +62/-115 +63/-120 +56/-122 +56/-122 +52/-122

Par−axes � Int +58/-56 +58/-47 +65/-43 +72/-44 +74/-45 +69/-39 +72/-32

Polyhedra H79 +33/-17 +19/-21 +0/-51 +0/-38 +0/-44 +0/-42 +0/-42

Polyhedra BHRZ03 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0

2

Intervals +51/-104 +49/-104 +60/-101 +59/-102 +54/-102 +53/-102 +52/-102

Octagons +51/-107 +48/-107 +48/-107 +51/-101 +61/-94 +57/-94 +53/-94

Parallelotopes +49/-133 +47/-133 +58/-116 +59/-125 +55/-126 +54/-126 +50/-126

Par−axes � Int +53/-61 +54/-52 +60/-48 +66/-46 +72/-47 +66/-41 +68/-34

Polyhedra H79 +32/-17 +18/-21 +0/-51 +0/-41 +0/-47 +0/-45 +0/-45

Polyhedra BHRZ03 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0 +0/-0

Table 4
Number of interval constraints for which a domain improves/degrades bounds w.r.t. polyhedra with BHRZ03 widening.
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Narrowing
delay

Widening
delay Domains 0 1 2 3 4 5 6

0

Intervals 37 ± 8 33 ± 3 39 ± 7 42 ± 4 51 ± 5 53 ± 5 57 ± 4

Octagons 624 ± 269 477 ± 57 741 ± 340 551 ± 44 810 ± 439 657 ± 55 698 ± 71

Parallelotopes 1426 ± 27 1594 ± 26 1685 ± 17 1966 ± 16 2228 ± 95 2420 ± 29 2781 ± 22

Par−axes � Int 3915 ± 27 4251 ± 52 4776 ± 38 5194 ± 54 5077 ± 24 6133 ± 27 7035 ± 52

Polyhedra H79 591 ± 106 669 ± 150 768 ± 136 753 ± 37 907 ± 98 974 ± 99 1214 ± 42

Polyhedra BHRZ03 803 ± 161 1004 ± 605 737 ± 88 1011 ± 327 1097 ± 82 1356 ± 131 2357 ± 291

1

Intervals 33 ± 5 34 ± 3 40 ± 5 48 ± 9 49 ± 3 48 ± 3 63 ± 9

Octagons 528 ± 104 553 ± 34 539 ± 70 738 ± 283 619 ± 23 730 ± 264 777 ± 95

Parallelotopes 1435 ± 30 1605 ± 24 1716 ± 20 1982 ± 10 2268 ± 22 2592 ± 144 2884 ± 19

Par−axes � Int 4133 ± 30 4468 ± 63 5029 ± 10 5407 ± 43 5488 ± 43 6522 ± 48 7311 ± 55

Polyhedra H79 719 ± 85 642 ± 25 812 ± 95 880 ± 136 947 ± 106 1155 ± 190 1258 ± 65

Polyhedra BHRZ03 804 ± 113 867 ± 124 978 ± 138 1007 ± 91 1115 ± 136 1384 ± 108 2362 ± 97

2

Intervals 31 ± 4 38 ± 5 77 ± 88 44 ± 6 51 ± 9 109 ± 119 55 ± 5

Octagons 484 ± 74 537 ± 41 633 ± 233 582 ± 46 609 ± 34 786 ± 285 825 ± 289

Parallelotopes 1428 ± 14 1604 ± 29 1717 ± 23 2028 ± 95 2325 ± 125 2550 ± 48 2889 ± 40

Par−axes � Int 4400 ± 7 4741 ± 30 5300 ± 13 5719 ± 137 5777 ± 35 6662 ± 26 7613 ± 18

Polyhedra H79 676 ± 49 719 ± 55 753 ± 61 889 ± 125 982 ± 94 1025 ± 109 1338 ± 152

Polyhedra BHRZ03 821 ± 88 785 ± 42 854 ± 139 948 ± 101 1078 ± 88 1762 ± 1128 3008 ± 1399

3

Intervals 31 ± 7 33 ± 2 37 ± 3 42 ± 4 49 ± 6 53 ± 6 59 ± 8

Octagons 626 ± 275 546 ± 80 503 ± 78 560 ± 67 706 ± 135 794 ± 302 720 ± 12

Parallelotopes 1429 ± 5 1625 ± 21 1709 ± 9 1996 ± 30 2294 ± 67 2552 ± 49 2942 ± 70

Par−axes � Int 4509 ± 29 4866 ± 10 5455 ± 29 5925 ± 16 6102 ± 68 7030 ± 178 7971 ± 99

Polyhedra H79 771 ± 126 758 ± 90 851 ± 145 906 ± 77 1049 ± 157 1123 ± 54 1248 ± 33

Polyhedra BHRZ03 886 ± 102 896 ± 126 1267 ± 908 1011 ± 156 1129 ± 132 1443 ± 176 3017 ± 1323

Table 5
Mean execution time and standard deviation of the analyses in milliseconds.
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2.4 Performance

In Table 5 we show the execution time of the analyses in milliseconds. Each analysis
has been performed 5 times on a Intel Core i5-2400K with 8 Gb of RAM. The mean
execution times and standard deviations are reported. The reported values comprise
both the time required to convert the model into an equation system and the time
required to solve the resulting equation system. It does not include neither loading
of models from disk, nor parsing.
For intervals and octagons, widening delays do not have a big impact on perfor-

mance. The opposite is true for the two variants of polyhedra. This is probably due
to the fact that replacing widening with polyhedral hull gives origin to more com-
plex polyhedra which severely harm performance of subsequent abstract operators.
Narrowing delay has no big impact on execution time for any domain.
From the point of view of performance, the execution time of intervals, octagons

and polyhedra are as expected. Intervals are much faster than anything else. For low
values of widening delays, speed of octagons and polyhedra is comparable, but for
high value of delays, octagons are faster. Parallelotopes and their reduced product
with intervals are the slowest domains. Although this contrasts with the theoretical
results, actually it is due to the fact that while octagons and polyhedra are part of
the PPL, which is written in C++ and highly optimized, parallelotopes are written
in Scala with a functional style which is not particularly well suited for this kind of
application.
Actually, also intervals are written natively in Scala, but since the algorithms in

this case are very simple, this is probably an advantage, since using the implemen-
tation in the PPL would incur in the overhead of calling native code from the Java
Virtual Machine.
Some results have a very high standard deviation. This is probably due to some

artifact of the Java Virtual Machine, such as garbage collection.

3 Conclusion

We have compared the relative precision of polyhedra, intervals, octagons, paral-
lelotopes and a reduced product of parallelotopes and intervals w.r.t. the interval
constraints on the ALICe benchmarks using the Jandom static analyzer. We have
shown that, although the polyhedra domain is theoretically the most precise for
inferring linear relationships, in practice the less expressive domains can find more
precise results, in particular the reduced product of parallelotopes and intervals. We
have also shown that delayed widening generally improves precision of the results
up to a certain value (around 3, 4) with the exception of the polyhedra domain with
standard widening, where it has a detrimental effect. Finally, we have shown that
delayed narrowing has no significant effect on the precision of the analysis, with the
exception of polyhedra domain which, lacking a narrowing operator, needs at least
a delay of one during the descending phase to take a step.
As a future work, we plan to perform more experiments using techniques to

improve the precision of the analysis, such as localized widening and narrowing [9],
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widening with threshold [13], lookahead widening [16] and warrowing [10].
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