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Abstract

We present an algorithm for the removal of constraints (resp., generators) from a convex polyhedron repre-
sented in the Double Description framework. Instead of recomputing the dual representation from scratch,
the new algorithm tries to better exploit the information available in the Double Description pair, so as
to capitalize on the computational work already done. A preliminary experimental evaluation shows that
significant efficiency improvements can be obtained. In particular, a combined algorithm can be defined that
dynamically selects whether or not to apply the new algorithm, based on suitable profitability heuristics.
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1 Introduction

The domain of convex polyhedra [11] has been widely adopted in applications for the

static analysis and verification of hardware/software systems [7] leading to the speci-

fication of many operators that are meant to compute (or approximate in a safe way)

the effects of a semantic operation affecting the state of the system. When consid-

ering the Double Description (DD) framework, these operators can be implemented

in most cases (intersection, convex polyhedral hull, time elapse, projection, . . . ) by

adding some new constraints or some new generators to the available descriptions,

thereby directly exploiting the incremental nature of Chernikova’s conversion pro-

cedure [8,9,10]. In other cases (e.g., invertible affine images and preimages) it is
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even possible to directly and efficiently modify both the constraint and the gener-

ator representations, so as to fully preserve the computational work already done.

There are cases, however, when an operator on polyhedra is defined by removing

some constraints or generators, so that the information content of the other repre-

sentation is no longer up-to-date and not easily recoverable. The usual approach is

to simply discard the other representation and, if later needed, recompute it from

scratch. In this paper we propose and experimentally evaluate a new algorithm for

removing constraints (or generators) that is meant to better exploit the information

already available in the input DD pair.

The paper is structured as follows: Section 2, besides recalling a few concepts

and notations, briefly presents the DD method; Section 3 introduces the constraint

removal operation, defines the new algorithm and shows its equivalence with re-

spect to the executable specification; Section 4 provides an experimental evaluation

and proposes an integration of the new algorithm with the old one based on prof-

itability heuristics; we conclude in Section 5 by discussing potential applications

of constraint/generator removal and the extension of the removal operation to the

case of NNC polyhedra.

2 Preliminaries

The scalar product of two vectors a1,a2 ∈ R
n is denoted by aT

1a2. For each vector

a ∈ R
n and scalar b ∈ R, where a �= 0, the linear non-strict inequality constraint

c = (aTx ≥ b) defines a topologically closed affine half-space of Rn. A topologically

closed, convex polyhedron (for short, polyhedron) is defined by a finite system of

linear non-strict inequality constraints. If a polyhedron P is contained in both half-

spaces c = (aTx ≥ b) and c− = (−aTx ≥ −b) then we say that c is a singular

constraint for P and write c ∈ eq(P). We write con(C) to denote the polyhedron

P ⊆ R
n described by the finite constraint system C. Formally, we define

P = con(C) := {
p ∈ R

n
∣∣ ∀c = (aTx ≥ b) ∈ C : aTp ≥ b

}
.

A vector r ∈ R
n such that r �= 0 is a ray of a non-empty polyhedron P ⊆ R

n if,

for every point p ∈ P and every non-negative scalar ρ ∈ R+, it holds p + ρr ∈ P.
The empty polyhedron has no rays. If both r and −r are rays of P, then we say

that r is a singular ray (or line) of P and write r ∈ lines(P). By Minkowski and

Weyl theorems [18], the set P ⊆ R
n is a polyhedron if and only if there exist finite

sets R,P ⊆ R
n of cardinality r and p, respectively, such that 0 /∈ R and

P = gen
(
(R,P )

)
:=

{
Rρ+ Pπ ∈ R

n

∣∣∣∣ ρ ∈ R
r
+,π ∈ R

p
+,

p∑
i=1

πi = 1

}
.

When P �= ∅, we say that P is described by the generator system G = (R,P ): the

vectors of R and P are rays and points of P, respectively.
The Double Description method due to Motzkin et al. [17], by exploiting the

duality principle, allows for a combination of the two approaches outlined above:
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a conversion procedure computes each representation starting from the other one.

If P = con(C) = gen(G), then we say that (C,G) is a DD pair for polyhedron

P. A DD pair is in minimal form if both C and G are minimal, i.e., they contain

no redundant element. 4 In a DD pair (C,G) in minimal form for polyhedron P,
each non-singular constraint c = (aTx ≥ b) ∈ C defines a facet of P given by

F := {p ∈ P | aTp = b }. We say that the non-singular constraints c, c′ ∈ C are

adjacent in P, denoted adjacentP(c, c′), if the corresponding facets are adjacent.

Adjacency between faces is defined in [3].

The conversion procedure, denoted (Cout,Gout) ← conversion(Cin), maps an in-

put constraint system Cin into an output DD pair (Cout,Gout) in minimal form:

starting from an initial DD pair (Cuniv,Guniv) representing the whole vector space,

the procedure incrementally adds each of the constraints in Cin as described above.

We will write (Cmin,Gmin)← simplify(C,G) to denote the simplification step, which

enforces the minimal form by removing redundancies from the input DD pair (C,G).
The algorithm for incremental constraint addition (and the conversion procedure)

can be adapted to handle the dual case, when adding a generator to a DD pair.

2.1 Low Level Encoding of Polyhedra

In the DD framework, polyhedra in R
n are generally mapped to polyhedral cones in

R
n+1 via homogenization: the known term of constraints is associated to an extra

space dimension ξ and the positivity constraint pos = (ξ ≥ 0) is added. Homogeniza-

tion allows for a more uniform handling of constraints and generators (for instance,

all points of the polyhedron become rays of the cone). The basic step of conversion

procedures based on Chernikova’s algorithm [8,9,10] is the incremental addition of

a new homogeneous constraint c = (aTx ≥ 0) to a DD pair (C,G) describing a

polyhedral cone P. The set of rays G is partitioned into three components G+, G0,

G−, based on the sign of the scalar product of the rays with constraint c (those in

G0 are the saturators of constraint c); the new generator system is computed as

G′ := G+ ∪ G0 ∪ G�, where

G� :=
{
(aTr+)r− − (aTr−)r+

∣∣ r+ ∈ G+, r− ∈ G−, adjacentP(r+, r−)
}
.

The definition of adjacency for rays is obtained from that for constraints, by ex-

ploiting duality. Implementations adopt different strategies for the computation of

the adjacency relation and for detecting redundancies: a common approach is to

systematically maintain saturation information [13,15,19].

In the following, to simplify exposition, we will specify and describe the algo-

rithms in terms of polyhedra, so that the mapping to polyhedral cones and the

special handling of the positivity constraint will be transparent.

4 Actual implementations are usually based on a stronger minimality concept, taking into special account
singular constraints and generators (i.e., equalities and lines).
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3 Constraint/Generator Removal for the DD Method

In this section we propose a new algorithm for removing a set of constraints from a

DD pair in minimal form. Note that the same algorithm can be easily adapted, by

exploiting duality properties of polyhedra representations, to the case of the removal

of a set of generators.

A first observation that should be made is that there is no well defined notion

of removing a singular constraint from a polyhedron, as shown by the following

example.

Example 3.1 Consider the polyhedron P = {0} ⊆ R
2 (the origin of the two

dimensional vector space). This polyhedron can be described by the constraint

systems C1 = {x = 0, y = 0} and C2 = {x = 0, x + y = 0}, which are both in

minimal form. Depending on the chosen syntactic representation, the removal of

constraint x = 0 leads to the computation of two different polyhedra.

To avoid the problem above, in the following we will only consider the removal

of non-singular constraints, i.e., we will assume that all the equality constraints

in the input DD pair in minimal form are left untouched. Note that, in many

practical contexts, such an assumption is plainly justified; for instance, for the case

of the widening operation on polyhedra, variants of the standard widening have been

proposed where the more precise polyhedral convex hull is used whenever there is

a change in the affine dimension of the polyhedron [4].

The straightforward approach (see Algorithm 1) to implement constraint re-

moval requires the computation of a generator system from the set Ckept of con-

straints that have not been removed, using the conversion procedure by Chernikova.

While being based on what was meant to be an incremental algorithm, this ap-

proach recomputes the new generator system from scratch, completely disregarding

the generator system component of the input DD pair. In the following we will refer

to Algorithm 1 as the naive algorithm.

Algorithm 1 Naive removal of a set of constraints

Require: a DD pair (Cin,Gin) in minimal form defining Pin �= ∅;

Require: a set Crem ⊆ Cin of constraints such that Crem ∩ eq(Pin) = ∅.

Ensure: a DD pair (Cout,Gout) in minimal form defining Pout = con(Cin \ Crem).

Begin

Ckept ← Cin \ Crem
(Cout,Gout)← conversion(Ckept)

End

The goal of the new algorithm is to exploit, as far as possible, the information

encoded in the input DD pair, so as to capitalize on the computational work al-

ready done. For this reason, in the following we will refer to it as the incremental

algorithm. To get an idea on how this incremental algorithm should work, let us

consider as simple examples the two polyhedra in the left hand side of Figure 1.

First consider polyhedron P1, which is a trapezium whose DD pair is composed by
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Fig. 1. Examples of constraint removal

four constraints and four vertices. Suppose that we need to remove the constraint

corresponding to facet BC, so as to obtain the triangle OAD. When reasoning in

terms of generators, the removal of BC corresponds to the addition of vertex D

(which also causes vertices B and C to become redundant). In particular, vertex

D is a generator obtained by combining the constraints that define facets OC and

AB, which are those constraints that are adjacent to the one being removed; also,

the generator D violates the constraint being removed. Now consider trapezium

P2 and suppose we need to remove the constraint corresponding to facet GH; by

doing this, we obtain an unbounded polyhedron described by two vertices (E and

F ) and two rays (along the directions EH and FG). When reasoning in terms of

generators, we need to add these two rays (which also causes vertices H and G to

become redundant). As before, the two rays can be seen as originating from the

constraints adjacent to the one being removed (facets EH and FG); also, they were

violating the removed constraint.

The observations made when discussing the examples in Figure 1 lead to the

specification of Algorithm 2. Here we first select in Cadj those constraints that are

adjacent to at least one of the constraints being removed: these constraints are

added to the singular ones to form constraint system Cconv, which is fed to the

Chernikova’s conversion procedure, obtaining the generator system Gconv. Then, we
select into Gadd the generators that violate a constraint being removed: 5 these are

added to the input generator representation Gin to obtain a generator representation

for the output polyhedron. Finally, the DD pair is put in minimal form by procedure

‘simplify’.

The following result states the equivalence of the two algorithms.

Theorem 3.2 (Algorithm 2 is correct) The DD pairs computed by Algorithm 1

and Algorithm 2 represent the same polyhedral cone.

Compared to Algorithm 1, Algorithm 2 requires an application of the conver-

sion procedure too, but this is applied to a potentially smaller description (Cconv):
depending on the input, this could result in significant efficiency gains, although

there are corner cases which result in a loss of efficiency. Note that the cost of the

call to ‘simplify’ is usually dominated by the computation of Gconv.
5 In Figure 1, the polyhedron described by (Cconv ,Gconv) for P1 (resp., P2) is shown on the right hand
side as P3 (resp., P4); the generators in Gadd are highlighted.
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Algorithm 2 Incremental removal of a set of constraints

Require: same as for Algorithm 1.

Ensure: same as for Algorithm 1.

Begin

Ceq ← Cin ∩ eq(Pin)

Ckept ← Cin \ Crem
Cadj ←

{
c ∈ Ckept

∣∣ ∃c′ ∈ Crem . adjacentPin
(c, c′)

}
Cconv ← Ceq ∪ Cadj
(Cconv,Gconv)← conversion(Cconv)
Gadd ← { g ∈ Gconv | ∃c ∈ Crem . g violates c }
(Cout,Gout)← simplify(Ckept,Gin ∪ Gadd)

End

It is worth stressing that, when describing the new algorithm, our main goal is

to provide an executable specification of a procedure for removing constraints that

makes better use of information already available in the input DD pair. Probably,

such a specification can be further optimized for speed.

For instance, the final call to procedure ‘simplify’ checks for redundant genera-

tors in the whole system Gin ∪ Gadd. On the contrary, a specialized implementation

may distinguish between the generators in Gin, since those that saturate none of the
removed constraints are known to be not redundant.

Another opportunity for further optimization, which is currently under inves-

tigation, is based on the following observation. When removing many constraints

using Algorithm 2, all of the adjacent ones are merged into a single system of

constraints Cconv and converted from scratch to obtain Gconv. A fully incremen-

tal approach would rather compute a separate subsystem of adjacent constraints

for each removed constraint and perform many conversions. A priori, it is unclear

which one of the two options above could be more efficient: on the one hand, the

fully incremental approach deals with smaller subsystems; on the other hand, since

some adjacent constraints will appear in more than a single subsystem, some com-

putation will be uselessly repeated many times and the overall conversion cost could

be higher. An interesting tradeoff is to partition the set of constraints to be removed

into smaller subsets having only a few adjacent constraints in common.

4 Experimental Evaluation

In Tables 1 and 2 we report part of the results of a preliminary experimental evalu-

ation aimed at comparing the efficiency of the incremental algorithms with respect

to the naive ones. 6 We considered some of the examples of the ppl lcdd tool,

which is part of the Parma Polyhedra Library [6]. The original ppl lcdd tool takes

as input a constraint (resp., generator) representation of a convex polyhedron and

produces as output the dual generator (resp., constraint) representation, thereby

6 The tests have been performed on a laptop with an Intel Core i7-3632QM CPU, 16 GB of RAM and
running GNU/Linux.
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Removing constraints naive comp incremental comp

test size rem sat sp time conv add sat sp time

ccc6.ext 211

1 2G 145K t/o 16 1 5K 468 0.000

5 2G 149K t/o 55 5 8M 28K 0.100

10 2G 150K t/o 77 10 42M 81K 0.652

cut32-16.ext 368

1 2G 126K t/o 16 1 7K 639 0.000

5 2G 88K t/o 49 5 53M 54K 0.840

10 2G 100K t/o 71 10 2G 263K 25.076

cyclic14-8.ext 240

1 22M 72K 0.628 8 1 2K 311 0.000

5 23M 75K 0.628 23 15 63K 6K 0.004

10 26M 85K 0.760 39 54 980K 26K 0.040

reg600-5-m.ext 2360

1 24M 3M 2.900 6 2 374K 5K 0.052

5 24M 3M 2.892 11 4 388K 10K 0.048

10 25M 3M 2.932 19 15 423K 37K 0.060

cyclic17-8.ine 17

1 285K 2K 0.008 17 165 720K 5K 0.012

5 17K 275 0.000 13 112 50K 3K 0.004

10 56 72 0.004 8 9 184 157 0.000

kkd38-6.ine 38

1 28M 48K 0.612 8 2 60K 137 0.000

5 13M 29K 0.280 9 4 46K 255 0.000

10 4M 14K 0.096 9 4 30K 285 0.000

mit31-20.ine 31

1 131M 22K 1.260 31 3651 234M 141K 1.592

5 767K 4K 0.024 27 1231 3M 38K 0.068

10 7K 806 0.004 22 131 26K 4K 0.036

sampleh8.ine 66

1 266M 263K 6.724 26 266 190M 34K 1.320

5 190M 212K 5.052 46 1940 258M 278K 3.636

10 116M 156K 3.032 49 3361 190M 378K 2.832

trunc10.ine 112

1 67M 193K 1.668 21 11 764K 6K 0.012

5 67M 191K 1.656 57 98 15M 56K 0.292

10 63M 188K 1.596 102 1242 62M 313K 1.580

Table 1
Removing constraints: naive vs incremental

solving the facet/vertex enumeration problem. For our experiments, we modified

the tool so that, after having computed the DD pair, it removes a few constraints

(resp., generators) using the algorithms under evaluation: in Table 1, we consider

the case where 1, 5 and 10 constraints are removed. For space reasons, we omitted

all of the smaller tests as well as several tests which turn out to be minor variations

(often, the dual) of other tests; we also omitted most of the bigger tests, since their

computational cost is well beyond the chosen timeout threshold.

The first two columns (‘test’ and ‘size’) report the name of the benchmark and

the size of the input representation. Hence, the test having name ‘ccc6.ext’ is for an

input polyhedron described by 211 constraints (when counting constraints at the

implementation level, we include the positivity constraint). For each test we have

three rows, corresponding to different numbers of constraints removed, which are

reported in column ‘rem’. The next three columns are measures taken on the naive

algorithm: besides timings (in seconds), we also report the number of saturation

inclusion tests, in column ‘sat’, and the number of scalar products, in column ‘sp’.

Suffixes K, M and G stand for 103, 106 and 109; when using these scaling suffixes,

numbers are rounded upwards (i.e., we provide upper bounds). For each invocation

G. Amato et al. / Electronic Notes in Theoretical Computer Science 307 (2014) 3–15 9



Removing generators naive comp incremental comp

test size rem sat sp time conv add sat sp time

ccc6.ext 32

1 438K 3K 0.008 31 405 770K 16K 0.016

5 67K 2K 0.004 27 221 169K 9K 0.004

10 8K 690 0.000 22 50 20K 3K 0.000

cut32-16.ext 32

1 773K 4K 0.012 31 415 2M 18K 0.024

5 126K 2K 0.004 27 293 321K 11K 0.008

10 13K 839 0.000 22 69 35K 4K 0.000

cyclic14-8.ext 14

1 21K 314 0.000 13 84 49K 2K 0.004

5 168 72 0.000 9 10 584 222 0.000

10 12 32 0.000 4 6 270 82 0.000

reg600-5-m.ext 600

1 15M 713K 1.016 17 16 6M 10K 0.072

5 15M 704K 1.008 54 69 6M 46K 0.088

10 15M 692K 0.972 89 119 6M 81K 0.096

cyclic17-8.ine 935

1 741M 930K t/o 8 3 8K 3K 0.000

5 730M 909K t/o 39 5 3M 24K 0.080

10 730M 915K t/o 69 27 55M 178K 1.644

kkd38-6.ine 252

1 629K 32K 0.072 6 4 3K 2K 0.000

5 622K 31K 0.068 13 11 7K 3K 0.004

10 614K 31K 0.068 16 10 8K 3K 0.004

mit31-20.ine 18553

1 3G 118K t/o 19 3 354K 57K 0.032

5 3G 118K t/o 71 3 41M 120K 0.756

10 3G 118K t/o 302 0 1G 242K t/o

sampleh8.ine 13865

1 915M 1M t/o 9 1 130K 14K 0.020

5 913M 1M t/o 27 15 447K 210K 0.080

10 917M 1M t/o 53 51 29M 801K 1.248

trunc10.ine 290

1 2G 713K 18.000 10 1 16K 411 0.000

5 390M 220K 2.508 19 34 39K 11K 0.004

10 394M 270K 2.724 19 17 182K 11K 0.008

Table 2
Removing generators: naive vs incremental

of the removal algorithms, a timeout is set on 30 seconds of CPU time; if the

timeout expires, we report ‘t/o’ in the ‘time’ column and columns ‘sat’ and ‘sp’

will contain lower bounds. The next five columns report measures taken on the

incremental algorithm. Besides the columns ‘sat’, ‘sp’ and ‘time’ described above,

we also report the cardinality of Cconv in column ‘conv’ and the cardinality of Gadd
in column ‘add’. Significant time improvements (above 0.2 seconds) are highlighted

using underlining.

Table 2 shows the results obtained for the same tests when removing 1, 5 and

10 generators. The reader is warned that, in this case, some of the columns have to

be interpreted dually; namely, ‘size’ is the cardinality of Gin, ‘rem’ is the cardinality

of Grem, ‘conv’ is the cardinality of Gconv and ‘add’ is the cardinality of Cadd.
The measurements reported allow for a few observations:

• the naive removal algorithm, while performing reasonably well on many tests,

sometimes suffers high computational costs, leading to 6 timeouts in Table 1 and

9 timeouts in Table 2;

• since we are removing relatively few constraints or generators, the incremental

algorithm usually performs much better: the timeout threshold is reached only
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once, in Table 2;

• occasionally, there are cases where the incremental algorithm turns out to be

slower than the naive one (see, for instance, the rows for tests ‘cyclic17-8.ine’ and

‘mit31-20.ine’ in Table 1); this happens because the constraints removed from the

input polyhedra are adjacent to almost all of the constraints that are kept, as can

be seen by comparing the value in column ‘conv’ (i.e., the cardinality of Cconv)
with the difference of ‘size’ and ‘rem’ (i.e., the cardinality of Ckept).
Obviously, the observations above hold for the considered tests, which are not

meant to be fully representative of the typical pattern for removing constraints (or

generators) that can be found in other specific applications. In particular, most of

the considered tests are characterized by the fact that one of the two representations

is much smaller than the other: this usually causes one of the two conversions to

require a significantly higher computation time.

4.1 Dynamic selection of the computational strategy

The observations made above suggest that an interesting balance in efficiency could

be obtained by combining the naive and the incremental algorithms into a third

one, where the choice of the computational strategy is taken dynamically. The

combined algorithm, for the case of constraints removal, is shown as Algorithm 3: it

uses helper function ‘profitable’ to perform a heuristic guess about the profitability

of using the incremental rather than the naive algorithm. The profitability test

intuitively compares the sizes of constraint systems Cconv and Ckept, falling back to

the naive computation if Cconv is not small enough. Since the profitability check is

based on both the input descriptions as well as intermediate results, we will refer

to Algorithm 3 as the introspective algorithm for constraint removal.

Algorithm 3 Introspective removal of a set of constraints

Require: same as for Algorithm 1.

Ensure: same as for Algorithm 1.

Begin

Ceq ← Cin ∩ eq(Pin)

Ckept ← Cin \ Crem
Cadj ←

{
c ∈ Ckept

∣∣ ∃c′ ∈ Crem . adjacentPin
(c, c′)

}
Cconv ← Ceq ∪ Cadj
if profitable(Cconv, Ckept) then

(Cconv,Gconv)← conversion(Cconv)
Gadd ← { g ∈ Gconv | ∃c ∈ Crem . g violates c }
(Cout,Gout)← simplify(Ckept,Gin ∪ Gadd)

else

//Fallback to naive computation

(Cout,Gout)← conversion(Ckept)
end if

End
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Removing constraints naive comp introspective comp

test size rem sat sp time conv add sat sp time

ccc6.ext 211

1 2G 145K t/o 16 1 5K 468 0.000

5 2G 149K t/o 55 5 8M 28K 0.100

10 2G 150K t/o 77 10 42M 81K 0.656

cut32-16.ext 368

1 2G 126K t/o 16 1 7K 639 0.000

5 2G 88K t/o 49 5 53M 54K 0.832

10 2G 100K t/o 71 10 2G 263K 24.968

cyclic14-8.ext 240

1 22M 72K 0.632 8 1 2K 311 0.000

5 23M 75K 0.664 23 15 63K 6K 0.004

10 26M 85K 0.784 39 54 980K 26K 0.040

reg600-5-m.ext 2360

1 24M 3M 2.944 6 2 374K 5K 0.048

5 24M 3M 2.888 11 4 388K 10K 0.048

10 25M 3M 3.008 19 15 423K 37K 0.060

cyclic17-8.ine 17

1 285K 2K 0.008 17 — 286K 2K 0.012

5 17K 275 0.000 13 — 17K 275 0.004

10 56 72 0.000 8 — 161 72 0.000

kkd38-6.ine 38

1 28M 48K 0.624 8 2 60K 137 0.000

5 13M 29K 0.280 9 4 46K 255 0.000

10 4M 14K 0.092 9 4 30K 285 0.000

mit31-20.ine 31

1 131M 22K 1.404 31 — 131M 22K 0.952

5 767K 4K 0.020 27 — 767K 4K 0.036

10 7K 806 0.004 22 — 8K 806 0.020

sampleh8.ine 66

1 266M 263K 6.936 26 266 190M 34K 1.408

5 190M 212K 5.248 46 — 190M 212K 4.816

10 116M 156K 3.052 49 — 116M 156K 2.744

trunc10.ine 112

1 67M 193K 1.652 21 11 764K 6K 0.016

5 67M 191K 1.680 57 — 67M 191K 1.668

10 63M 188K 1.608 102 — 63M 188K 1.588

Table 3
Naive vs introspective: removal of constraints

In Table 3 we show the results obtained by the introspective algorithm for remov-

ing constraints for the same tests of Table 1 with the following, tentative heuristics:

profitable(Cconv, Ckept) :=
(
# Cconv ≤ 1

2
# Ckept

)

Since the profitability check can be implemented efficiently, the introspective

algorithm incurs very little overhead when falling back to the naive algorithm (the

fallbacks are reported by showing the values of column ‘conv’ in boldface and no

value at all for column ‘add’): hence, the introspective algorithm is able to exploit

almost all the significant efficiency gains of the incremental algorithm, while avoid-

ing most of the cases where the incremental algorithm incurs a slowdown. Note

that in a few cases (e.g., when removing more than a single constraint in tests

‘sampleh8.ine’ and ‘trunc10.ine’) the heuristics causes a fallback that was not re-

ally needed, possibly preventing more significant efficiency gains. It is therefore

clear that the implementation of the profitability heuristics should be tailored to

the specific application at hand and, in general, can not ensure a decrease of the

computation time.

G. Amato et al. / Electronic Notes in Theoretical Computer Science 307 (2014) 3–1512



An alternative approach for combining the naive and the incremental algorithms

is to exploit the availability of multiple processing units and run both algorithms

in different threads, stopping as soon as any of the two terminates.

5 Discussion

The standard widening [11,14] is likely to be the most well known operation on

the domain of convex polyhedra whose implementation is based on the removal of

constraints. Using widening ‘∇’, a post-fixpoint of the monotonic operator ‘F �’ (the

abstract semantics function) can be obtained as the limit of an increasing iteration

sequence computed as follows:

Pi+1 := Pi ∇
(Pi 
 F �(Pi)

)
.

Widening is thus a good candidate for the application of algorithms for constraint

removal that preserve the DD pair, such as the one proposed in this paper, because

both representations of Pi are used when computing the next iterate Pi+1: the

generators are used when computing the convex polyhedral hull ‘
’ in the second

argument; the constraints are used when computing the widening itself. These

benefits are even more relevant when using a framework such as [2], where each

program point is potentially a widening point, and [1], where widening is intertwined

with narrowing and each loop may be analyzed several times.

Besides the standard widening, several less well known uses of constraint or

generator removal can be found by inspecting the available literature. Each of these

could be considered as a potential application of the algorithms proposed in this

paper and may be the subject of further investigation to assess the profitability of

the new algorithm for the considered context.

Miné [16] considers the problem of inferring sufficient conditions for a program

property to hold. The proposed approach is modeled as a polyhedral analysis com-

puting an under-approximation of the backward semantics of the program. In this

setting, constraints removal is used to implement a safe under-approximation of

backward affine tests. Similarly, in order to ensure the convergence of the under-

approximation, [16] defines a lower widening which is similar to the standard widen-

ing used when computing over-approximations, but discards unstable generators

rather than unstable constraints. By exploiting the duality of polyhedra repre-

sentation, this new widening can be easily implemented by removing some of the

generators from the polyhedron and hence could potentially benefit from the exis-

tence of more efficient algorithms for generator removal.

Fhrese [12] illustrates two techniques that are meant to manage the complexity

of constraint descriptions in polyhedral computations. The first technique aims at

limiting the number of bits used in the arbitrary precision integer coefficients used

to represent the constraints; to this end, the constraints having huge coefficients are

first identified and then replaced in the polyhedral description by other constraints

having smaller coefficient, but still preserving the soundness of the approximation.

This replacement step could be implemented by combining the decremental con-
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straint removal algorithm proposed in this paper with the usual incremental con-

straint addition, thereby obtaining a polyhedron having both representations up to

date. The second technique is a more direct one, in that it limits the number of

constraints in the polyhedral representation by removing the less significant ones.

Several variations for constraint selection are proposed (volumetric, slack, angle),

which are then applied in two alternative procedures: a construction procedure,

where the most significant constraints are added to the universe polyhedron; and a

deconstruction procedure, where the least significant constraints are removed from

the starting polyhedron. Depending on the final number of constraints obtained, a

decremental constraint removal algorithm might become competitive with respect

to incremental constraint addition.

In this paper we only considered topologically closed polyhedra. Not Necessarily

Closed (NNC) polyhedra can be specified by allowing for strict inequalities in the

constraint description (resp., closure points in the generator description [5]). Some

care should be taken when trying to properly define the constraint or generator

removal operators on the domain of NNC polyhedra. To start with, the DD pair has

to be fully minimized as proposed in [5], so as to remove all kinds of redundancies.

However, full minimization is not enough, as shown by the following example.

Example 5.1 Consider the NNC polyhedron P ⊆ R
2 defined by the constraint

system C = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y < 2}. Note that P can also be defined

by the constraint system C′ = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + 2y < 3}, and both C
and C′ are in minimal form. Depending on the chosen syntactic representation, the

removal of constraint x ≤ 1 leads to the computation of different NNC polyhedra.

In order to avoid the problem above, one possibility is to specify that the removal

of a non-strict constraint from an NNC polyhedron is obtained by first tightening

the constraint to be strict and then removing the strict constraint. In the example

above, we first add strict constraint x < 1 (so that constraints x + y < 2 and

x+2y < 3 become redundant and are discarded from the input DD pairs) and then

remove it, thereby obtaining NNC polyhedron P ′ = con
({0 ≤ x, 0 ≤ y ≤ 1}). A

dual example can be devised for generator removal: in this case, the workaround is

to transform closure points into points before removing them. We plan to extend

the algorithms presented in this paper to the case of NNC polyhedra, based on these

amended specifications.
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