
The Abstract Domain of Parallelotopes

Gianluca Amato Francesca Scozzari
Università “G. d’Annunzio” di Chieti-Pescara – Italy

Abstract

We propose a numerical abstract domain based on parallelotopes. A parallelotope is a polyhedron whose
constraint matrix is squared and invertible. The domain of parallelotopes is a fully relational abstraction
of the Cousot and Halbwachs’ polyhedra abstract domain, and does not use templates. We equip the
domain of parallelotopes with all the necessary operations for the analysis of imperative programs, and
show optimality results for the abstract operators.

Keywords: Abstract interpretation, numerical domains, polyhedra, parallelotopes.

1 Introduction

In recent years, we have seen many different proposals of numerical domains derived

from Cousot and Halbwachs’ [7] polyhedra abstract domain. Weakly relational do-

mains, such as octagons [10] and logahedra [8], have proved to be quite efficient,

but the assertions that can be discovered using these domains are limited by many

syntactic restrictions. In order to handle more expressive constraints, Sankara-

narayanan et al. have proposed a different approach called template polyhedra [12],

which is a generalization of most weakly relational domains. For each program, the

authors fix a priori a constraint matrix A and consider all the polyhedra of the

type Ax ≤ b. The choice of the matrix is what differentiates template polyhedra

from other domains, where the matrix is fixed for all the programs (such as intervals

or octagons) or varies freely (such as polyhedra). Abstract operators on template

polyhedra have been defined by means of linear programming and can be computed

in polynomial time.

Along the same direction there are the proposals of generalized template poly-

hedra [5], which combine template polyhedra and bilinear forms, and template

parallelotopes [1,3], which are a special case of template polyhedra. A parallelo-

tope is a polyhedron defined by at most n linearly independent constraints, where

1 Email: amato@sci.unich.it, scozzari@sci.unich.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 287 (2012) 17–28

1571-0661© 2012 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.09.003
Open access under CC BY-NC-ND license.

mailto:amato@sci.unich.it
mailto:scozzari@sci.unich.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.09.003
http://dx.doi.org/10.1016/j.entcs.2012.09.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

n is the number of variables. This amounts to say that the constraint matrix of a

parallelotope is squared and invertible. In the special case of template parallelo-

topes, it is possible to derive efficient abstract operators, without resorting to linear

programming tools. While template polyhedra seem to be a valid alternative to

polyhedra from the point of view of efficiency, and to weakly relational domains

from the point of view of expressivity, a general method to find ”good” templates

still does not exist. We are aware of only two proposals for generating templates,

one in Sankaranarayanan et al. original paper [12] based on a syntactic inspection of

the program, and another one based on the statistical analysis of partial execution

traces [1,3].

In this paper we try a different approach to balance expressivity and efficiency.

Instead of restricting the syntactic form of constraints, we limit the number of

constraints to n linearly independent ones. It turns out that our abstract objects are

parallelotopes, as in [1,3], but with the fundamental difference that the constraint

matrix is not fixed a priori but may change freely, as for the polyhedra domain. We

provide the basic abstract operators, and show that the domain of parallelotopes can

be equipped with very efficient abstract operations, whose complexity is comparable

to that of octagons.

When defining the abstract operators, the main problem we need to face is that

many concrete operations are not closed with respect to parallelotopes. Moreover,

in many cases there is no unique best parallelotope which approximates the result of

the concrete operation. Therefore, we need to carefully choose, even resorting to ap-

propriate heuristics, an approximating parallelotope which brings a good precision

in the overall analysis.

2 Notation

2.1 Linear Algebra

We denote by R̄ the set of real numbers extended with +∞ and −∞. Addition and

multiplication are extended to R̄ in the obvious way, with the exception that 0 times

±∞ is 0. We use boldface for elements v of R̄n. Any vector v ∈ R̄
n is intended

as a column vector, and vT is the corresponding row vector. Given u,v ∈ R̄
n, and

a relation �� ∈ {<,>,≤,≥,=}, we write u �� v if and only if ui �� vi for each

i ∈ {1, . . . , n}. Given u ∈ R
n and i ∈ {1, . . . , n}, we write u[i �→ x] to denote a

vector v such that vi = x and vj = uj for j �= i.

If A = (aij) is a matrix, we denote by AT its transpose. If A is invertible,

A−1 denotes its inverse, and GL(n) is the group of n × n invertible matrices. The

identity matrix in GL(n) is denoted by In and the standard basis of Rn is denoted

by {e1, . . . , en}. Clearly, any 1×n-matrix can be viewed as a vector: in particular,

we denote by ai∗ the row vector given by the i-th row of any matrix A, and by a∗i
the column vector given by the i-th column of A.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2818

2.2 Abstract interpretation

In this paper we adopt a framework for abstract interpretation which is weaker than

the common one based on Galois connections (see [6, Section 7]). Given two pre-

ordered sets (C,≤C) — the concrete domain — and (A,≤A) — the abstract domain

— we establish an abstraction–concretization relationship between them with the

use of a concretization map, which is a monotone function γ : C → A. We say that

a ∈ A is a correct approximation of c ∈ C when c ≤C γ(a). Given c ∈ C, there are

many possible abstractions. The most interesting ones are those which are minimal

w.r.t. the ordering ≤A.

A function fα : A → A is a correct abstraction of f : C → C when it preserves

correctness of approximation, i.e. when c ≤ γ(a) implies f(c) ≤C γ(fα(a)). It is

γ-complete when γ ◦ fα = f ◦ γ. It is minimal when, for any a ∈ A, there exists

no b ∈ A such that f(γ(a)) ≤A b <A fα(a), i.e. when fα(a) is a minimal correct

approximation of f(γ(a)).

3 Parallelotopes

A set P ⊆ R
n is a parallelotope 2 when there is a matrix A ∈ GL(n) and vectors

l,u ∈ R̄
n such that

P = {x ∈ R
n | l ≤ Ax ≤ u} . (1)

A parallelotope is a closed convex set.

Definition 3.1 (Representation of parallelotopes) A representation of

parallelotopes is a tuple P = 〈A, l,u〉 such that A ∈ GL(n), l,u ∈ R̄
n and l ≤ u.

We denote by ParTopen the set of all the representations of parallelotopes in R
n.

The matrix A is called the constraint matrix, while l and u are the lower and up-

per bounds respectively. We denote by γ(P) the corresponding parallelotope which,

according to Eq. 1, is γ(P) = {x ∈ R
n | l ≤ Ax ≤ u}. We say that a parallelotope

P is definable over A ∈ GL(n) if there is a representation for P whose constraint

matrix is A.

For every non-empty parallelotope P there is a representation P such that γ(P) =

P. We have ruled out the case l �≤ u because this would considerably complicate

the formalism. When we need a representation for the empty parallelotope, we will

use the symbol ε, with the proviso that γ(ε) = ∅. However, in most cases we will

only consider non-empty parallelotopes.

It is worth noting that there are many different representations which correspond

to the same parallelotope. In the following, when this does not cause ambiguities,

we will use a representation P in place of the parallelotope γ(P), and we will refer

to representations of parallelotopes simply as parallelotopes.

2 In the mathematical literature, a parallelotope is generally considered to be bound, while we are also
considering unbounded ones.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–28 19

3.1 Minimization and maximization over a parallelotope

Given a box 3 B = 〈In, l,u〉 and a vector c ∈ R
n, we have that

inf
x∈B

cTx = inf
l≤x≤u

cTx = cTv where vi =

{
li if ci ≥ 0

ui otherwise.
(2)

The computational complexity of this operation is O(n). The minimization operator

for parallelotopes may be obtained by viewing a parallelotope as a box over a non-

canonical coordinate system.

Proposition 3.2 Given a parallelotope P = 〈A, l,u〉 and a vector c ∈ R
n, we have

that

inf
x∈P

cTx = inf
l≤y≤u

cTA−1y. (3)

The computational complexity is O(n3).

Symmetric properties hold for the maximization operators.

3.2 Approximation by parallelotopes

Given a set C ∈ R
n, we are interested in approximating C with a parallelotope

P ⊇ C. In general, there is not a least parallelotope P which contains C, but there
are several (possibly infinite) minimal parallelotopes with such a property. Among

them, the choice may be done according to some heuristic.

Things change if we fix the matrix A and consider only the parallelotopes de-

finable over A, as in [3]. In this case the least parallelotope exists. As a particular

case, given a parallelotope P in R
n and a matrix A ∈ GL(n), it is interesting to

seek the least parallelotope containing P and definable over A.

Definition 3.3 (Approximation operator) The approximation operator on

parallelotopes αA : ParTopen → ParTopen is defined as

αA(P)
def
= 〈A, l,u〉 where li = inf

x∈P
ai∗x , ui = sup

x∈P
ai∗x . (4)

Theorem 3.4 Given a parallelotope P and A ∈ GL(n), αA(P) is the least paral-

lelotope definable over A which contains P . The computational complexity is O(n3).

3.3 Ordering of parallelotopes

It is possible to define a pre-order over representations of parallelotopes in such a

way that P ≤ P ′ iff γ(P) ⊆ γ(P ′). The idea is that if γ(P) ⊆ γ〈A′, l′,u′〉, then
γ〈A′, l′,u′〉 should contain the least parallelotope definable over A′ which contains

γ(P).

3 We represent a box as a parallelotope with the identity constraint matrix.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2820

Definition 3.5 Given parallelotopes P = 〈A, l,u〉 and P ′ = 〈A′, l′,u′〉, we define

P ≤ P ′ iff l′ ≤ l′′ and u′′ ≤ u′, where 〈A′, l′′,u′′〉 = αA’(P).

Theorem 3.6 Given parallelotopes P and P ′, we have that P ≤ P ′ iff γ(P) ⊆
γ(P ′). Moverover, ≤ is a pre-order. The computational complexity is O(n3).

This theorem allows us to state the precise abstract framework we use in this

paper. The concrete domain is the powerset of Rn, ordered by set inclusion. The

abstract domain is the set ParTopen ∪{ε}, where the ordering over parallelotopes is

extended to ε in such a way that ε ≤ P for each P ∈ ParTopen. Finally, we take γ

as concretization map.

4 Abstract operators on parallelotopes

We now consider the operations on ℘(Rn) commonly used when defining the col-

lecting semantics of imperative programming languages, and for each of them we

introduce a correct approximation on parallelotopes. Computing operations on par-

allelotopes essentially amounts to:

(i) choosing a resulting constraint matrix A;

(ii) computing bounds l and u to get a correct approximation of the result.

Once A is fixed, computing the best bounds is quite easy. However, there are

generally several possible alternatives for A, which lead to results which are set-

theoretically incomparable. From a theoretical perspective, in evaluating the pre-

cision of an abstract operator, we will look for the following properties, in order of

preference:

(i) γ-completeness, if possible, i.e. when the result of the concrete operator is a

parallelotope;

(ii) minimality, i.e. we compute one of the minimal parallelotopes which approxi-

mate the concrete result;

(iii) relative optimality, i.e. we fix a matrix A and compute the least parallelotope

definable over A which approximates the concrete result.

It is easy to check that γ-completeness implies minimality which, in turn, implies

relative optimality. The choice between competing minimal parallelotopes may only

be done under the basis of heuristic considerations, and validation requires extensive

tests.

4.1 Invertible linear assignment

Linear assignment is used to analyze the behavior of the statement xi = c1x1+ . . .+

cnxn + b. The concrete linear assignment operation assign(i, c, b) : ℘(Rn) → ℘(Rn)

is defined as

assign(i, c, b)(X) = {x[i �→ cTx+ b] | x ∈ X}.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–28 21

If ci �= 0, then assign(i, c, b) is invertible and, most importantly, maps a parallelotope

to a parallelotope. In this special case, it is possible to implement the abstract

operator along the line of [7]. Intuitively, the operation assign(i, c, b) corresponds to
the assignment x′i = cTx+ b, where x′i is the value of xi after the assignment. From

this equation, it is possible to recover xi as a function of x′i and the other elements

of x, namely xi = (x′i−
∑

j �=i cjxj − b)/ci. Replacing the variable xi with the above

definition we get the solution.

Definition 4.1 Given c ∈ R
n such that ci �= 0 and b ∈ R, we define the abstract

linear assignment assignα(i, c, b) as

assignα(i, c, b)〈A, l,u〉 = 〈A− 1

ci
a∗i(c− ei)T , l+

b

ci
a∗i,u+

b

ci
a∗i〉 .

Theorem 4.2 The operation assignα(i, c, b) is correct and γ-complete. The com-

putational complexity is O(n2).

The case when ci = 0 will be treated after the non-deterministic assignment.

4.2 Non-deterministic assignment

Consider the non-deterministic assignment operation forget(i) : ℘(Rn) → ℘(Rn)

defined as

forget(i)(C) = {x+ αei | x ∈ C, α ∈ R} .

First note that, even if P is a parallelotope, forget(i)(P) may fail to be a parallelo-

tope.

A naive definition of forgetα(i)(〈A, l,u〉) would replace the bounds of the lines

j such that aji �= 0 with −∞ and +∞. However, this generally yields a gross

approximation.

Example 4.3 Consider the parallelotope given by the inequalities 0 ≤ x1 + x2 ≤ 0

and 0 ≤ x1 − x2 ≤ 0, which consists of a single point {(0, 0)}. After a non-

deterministic assignment to x2, if we apply the naive procedure described above, we

get −∞ ≤ x1 + x2 ≤ +∞ and −∞ ≤ x1 − x2 ≤ +∞ which is the entire space.

However, by adding the two inequalities, we get the new constraint 0 ≤ 2x1 ≤ 0,

which does not contain x2 and thus is preserved by non-deterministic assignments.

Therefore, we need to make explicit the constraints hidden in P which do not

contain the variable xi we want to forget. The problem is that, in general, there

are more entailed constraints than we can represent with a parallelotope. We need

a way to choose between competing constraints.

Example 4.4 Consider the parallelotope given by the inequalities −1 ≤ x1 + x2 +

x3 ≤ 1, −1 ≤ x1 + x2 − x3 ≤ 1 and −1 ≤ x1 − x2 + x3 ≤ 1. By considering all the

pairs of inequalities and simplifying, we get the implicit constraints −1 ≤ x2 ≤ 1,

−1 ≤ x3 ≤ 1 and −1 ≤ x2 − x3 ≤ 1. The problem is that the linear forms x2,

x3 and x2 − x3 are not linearly independent, hence we cannot keep all of them in

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2822

the result. Note that although x2 − x3 is a linear combination of x2 and x3, the

constraint −1 ≤ x2−x3 ≤ 1 is not implied by the other two: we lose precision when

we omit one of them.

In order to overcome the above problems, we propose the following operator.

First note that we may ignore the rows in P which are unbounded (i.e. with infinite

lower and upper bounds) or whose i-th entry is zero: the first remain unbounded,

while the second are not affected by the assignment. Thus, in the following, we

will focus on the remaining rows only, whose indexes are in J = {j | aji �= 0, lj �=
−∞ ∨ uj �= ∞}. The idea is to transform the rows in J in such a way that they

remain independent and there is exactly one row whose i-th entry is not zero. Thus,

we choose a row r ∈ J and consider the linear combinations R = {ajiar∗ − ariaj∗ |
j ∈ J \ {r}} ∪ {ar∗}. Since the rows in J are linearly independent, it follows that

their linear combinations are still linearly independent, and thus R is a set of |J |
linearly independent rows. Moreover, all the rows in R are independent from the

rows of A not in J . Combining them together, we get the resulting matrix A′.
The last step is to ensure that P ′ ≥ P , by computing the new bounds (with the

exception of ar∗ which must become an unbounded row).

The main question is how to choose the index r in J . Our intuition is that it is

better to choose an index r such that both lr and ur are finite, possibly equal, since

we will get better bounds in P ′. In fact, when we choose a row r whose lower and

upper bounds coincide, then the forgetα(i) abstract operator is γ-complete. The

detailed procedure is shown in Algorithm 1.

Algorithm 1 The forgetα(i) abstract operator
Require: 〈A, l,u〉 ∈ ParTopen, i ∈ {1, . . . , n}
1: J = {j | aji �= 0, lj �= −∞∨ uj �= ∞}
2: if J = ∅ then
3: return 〈A, l,u〉
4: end if
5: 〈A′, l′,u′〉 ← 〈A, l,u〉
6: J0 ← {j ∈ J | lj = uj ∈ R}
7: J1 ← {j ∈ J | lj , uj ∈ R}
8: if J0 �= ∅ then
9: r ← an element in J0
10: else if J1 �= ∅ then
11: r ← an element in J1
12: else
13: r ← an element in J
14: end if
15: for all j ∈ J \ {r} do
16: a′

j∗ ← ajiar∗ − ariaj∗
17: (mr,Mr) ← if aji < 0 then (ur, lr) else (lr, ur)
18: (mj ,Mj) ← if −ari < 0 then (uj , lj) else (lj , uj)
19: l′j ← ajimr − arimj

20: u′
j ← ajiMr − ariMj

21: end for
22: l′r ← −∞
23: u′

r ← +∞
24: return 〈A′, l′,u′〉

Theorem 4.5 The operator forgetα(i) described in Algorithm 1 is correct and min-

imal. It is γ-complete when J0 �= ∅. The computational complexity is O(n2).

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–28 23

4.3 Non-invertible assignment

We consider again the assignment operator assign(i, c, b) when ci = 0. In this

case, all the constraints involving the variable xi need to be discharged after the

assignment, possibly replaced by other implied constraints. Note that if ci = 0

we have assign(i, c, b) = assign(i, c, b) ◦ forget(i). This suggests to use the abstract

forget operation to make implied constraints explicit.

Algorithm 2 The non-invertible assignα(i, c, b) abstract operator
Require: 〈A, l,u〉 ∈ ParTopen, i ∈ {1, . . . , n}, c ∈ R

n, b ∈ R, ci = 0
1: 〈A′, l′,u′〉 ← forgetα(i)〈A, l,u〉
2: choose an index j with a′

ji �= 0

3: for all s such that a′si �= 0 and s �= j do
4: a′

s∗ ← a′
s∗ − a′si/a

′
jia

′
j∗

5: end for
6: a′

j∗ ← ei − c

7: l′i ← b
8: u′

i ← b

9: return 〈A′, l′,u′〉

The procedure is shown in Algorithm 2. Given a parallelotope P , we first com-

pute 〈A′, l′,u′〉 = forgetα(i)(P) and choose a row j in A′ with a′ji �= 0. Lines 3–5

ensure that a′
j∗ is the unique line with a non-zero i-th element. They do not change

the parallelotope, since operate on unbounded rows. Then, we may replace a′
j∗

with ei − c , lj and uj with b. Since the j-th row of A is unbounded, we do not

lose precision when we replace it. Thanks to the steps 3–5, the final matrix A′ is
invertible.

Theorem 4.6 The operator assignα(i, c, b) described in Algorithm 2 is correct and

minimal. The computational complexity is O(n2).

4.4 Refinement by linear inequality

Given b ∈ R
n and c ∈ R, consider the operation over ℘(Rn) given by

refine(b, c)(X) = {x | x ∈ X ∧ xT c ≤ b} ,

which we will call linear refinement. In general, the linear refinement of a parallelo-

tope is not a parallelotope.

Algorithm 3 The refineα(c, b) abstract operator
Require: 〈A, l,u〉 ∈ ParTopen, c ∈ R

n, b ∈ R

1: y ← solution of ATy = c
2: if ∃j. yj �= 0 ∧ li = −∞∧ ui = +∞ then
3: aj∗ ← c
4: uj ← b
5: return 〈A, l,u〉
6: else
7: 〈In, l′,u′〉 ← refineα(y, b)〈In, l,u〉 {using operator on boxes}
8: return 〈A, l′,u′〉
9: end if

Given a parallelotope P = 〈A, l,u〉, we first investigate if there exists an un-

bounded row of A such that, if we replace that row with c, then the matrix is still

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2824

invertible. This amounts to computing a vector y ∈ R
n such that ATy = c and

look for an index j such that yj �= 0. When it does not exists, we simply compute

the least parallelotope P ′ containing refine(c, b)(P) and definable over A. We re-

call from [3] that, if refine(y, b)〈In, l,u〉 = 〈In, l′,u′〉, then P ′ = 〈A, l′,u′〉. Hence,

we may use the known refine operator over boxes to define a refine operator over

parallelotopes.

Theorem 4.7 The operator refineα(c, b) described in Algorithm 3 is correct and

relatively optimal. The computational complexity is O(n3).

4.5 Union

Let us come to the abstract union of parallelotopes. If we fix a matrix M , the least

parallelotope definable over M which contains the parallelotopes PA = 〈A, l,u〉 and
PB = 〈B, j,k〉 can be easily obtained by αM(PA) and αM(PB) simply selecting, for

each row in M , the least lower bound and the greatest upper bound. By choosing

M to be either A or B, we can use this method for a simple and fast implementation

of abstract union. The biggest drawback of this choice is that it does not generate

new constraints.

We now propose a more complex variant of abstract union, inspired by the

recently developed inversion join operator [11]. The main idea of the algorithm

is to generate a bunch of candidate linear forms. The corresponding constraints

are obtained from the candidate linear forms by computing the lowest and upper

bounds on PA and PB. We then assign to each constraint a priority.

In general, the candidate linear forms are not linearly independent. At the end,

we will select exactly n linearly independent constraints, according to their priorities

(where 0 is the highest one).

The priority is chosen according to the values of the bounds. In order of pref-

erence, we will select: equality constraints, constraints which are saturated both in

PA and PB, and so on. This order is mostly dictated by heuristic considerations.

Algorithm 4 computes the bounds and assigns the priorities for a given linear form

v.

Algorithm 4 Bounds and priorities for the linear form v (Sketch)
Require: PA, PB ∈ ParTopen, v ∈ R

n

1: lv ← inf{x ∈ PA | vTx}
2: uv ← sup{x ∈ PA | vTx}
3: jv ← inf{x ∈ PB | vTx}
4: kv ← sup{x ∈ PB | vTx}
5: if lv = uv = jv = kv then
6: p ← 0
7: else if lv = jv ∈ R and uv = kv ∈ R then
8: p ← 1
9: else if . . . then

10:
... {other tests}

11: else
12: p ← +∞
13: end if
14: return 〈min(lv , jv),max(uv , kv), p〉

We now describe how to generate the candidate linear forms for the abstract

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–28 25

union. Obvious candidates are the rows of the matrices A and B. Moreover, we

also generate new linear forms using (a part of) the inversion join algorithm. Given

two constraints in PA and/or PB, the inversion join computes a new linear form

obtained as a linear combination of the two constraints, under the condition that

they form an inversion. The complete procedure is illustrated in Algorithm 5.

Algorithm 5 The abstract union operator
Require: PA = 〈A, l,u〉 ∈ ParTopen, PB = 〈B, j,k〉 ∈ ParTopen
1: Q ← ∅ {a priority queue}
2: for all i ∈ {1, . . . , n} do
3: 〈c, d, p〉 ← result of Algorithm 4 applied to ai∗
4: add 〈ai∗, c, d〉 to Q with priority p
5: end for
6: same procedure of lines 2–5 applied to rows in B
7: for all v1,v2 rows of A and B do
8: {here we check if v1 and v2 form an inversion}
9: h1 ← inf{x ∈ PA | v1x}
10: h2 ← inf{x ∈ PA | v2x}
11: i1 ← inf{x ∈ PB | v1x}
12: i2 ← inf{x ∈ PB | v2x}
13: if h1, i1, h2, i2 ∈ R and v1, v2 are linearly independent

and ((h1 < i1 ∧ h2 > i2) ∨ (h1 > i1 ∧ h2 < i2)) then
14: {we know that v1 and v2 form an inversion}
15: w ← v1 + h1−i1

i2−h2
v2 {w is the linear form obtained by inversion join}

16: 〈c, d, p〉 ← result of Algorithm 4 applied to w
17: add 〈w, c, d〉 to C with priority p
18: end if
19: end for
20: same procedure of lines 7–18 applied to upper bounds
21: same proc. of lines 7–18 applied to lower bounds for v1 and upper bounds for v2
22: same proc. of lines 7–18 applied to upper bounds for v1 and lower bounds for v2
23: 〈R, l′,u′〉 ← empty set of constraints
24: while |R| < n do
25: extract 〈w, c, d〉 from C with maximal priority
26: if w is linearly independent from R then
27: add 〈w, c, d〉 to 〈R, l′,u′〉
28: end if
29: end while
30: return 〈R, l′,u′〉

Theorem 4.8 The abstract union operator described in Algorithm 5 is correct and

relatively optimal. The computational complexity is O(n4).

4.6 Widening

Given two parallelotopes PA and PB, we first compute αA(PB) = 〈A, j ′,k′〉 and

then apply, separately for each row in A, a standard widening which extrapolates

unstable bounds to infinity. We define 〈A, l,u〉∇〈B, j,k〉 = 〈A, l′,u′〉 where, for

each i ∈ {1, . . . , n}, we have that:

l′i =

{
−∞ if j′i < li

li otherwise
u′i =

{
∞ if k′i > ui

ui otherwise.

We will combine this widening operator with delayed widening, to ensure that the

union operator is initially applied, and new constraints can be generated.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2826

5 Experiments and conclusions

We show some simple examples to give a rough idea of the potentialities and limits

of the new domain, using our implementation of parallelotopes in RANDOM [4,2].

Consider the program cousot78 in Figure 1, taken from [7]. The parallelotope

cousot78 = function()
{
i = 2
j = 0
while (TRUE) {
if (i*i==4)
i = i+4

else {
j = j+1
i = i+2

} } }

karr76 = function(k)
{
i = 2
j = k+5
while (TRUE) {

i = i+1
j = j+3

}
}

absval = function (x) {
assume(x>=-100)
assume(x <=100)
y = x
if (y<=0) y = -y
if (y<=69) y = y

}

Fig. 1. Example programs

domain is able to prove that, in the last line of the while, the inequalities i+2j ≥ 6

and j ≥ 0 hold. However, since it is not able to represent more than two constraints,

it cannot prove that 2j − i ≤ −2. For the program karr76, taken from [9], it can

prove the invariants 3i − j + k = 1 and i ≥ 2. Finally, the program absval, taken

from [10], is an example where our domain performs poorly, since it cannot prove

that, inside the last if, x is between −69 and 69.

While the theoretical work is mostly complete, and we also got interesting and

non-trivial minimality results, more work should be devoted to evaluate the domain

in practice and to study its combination with other numerical domains. Encouraged

by the results of our early experiments, we plan to conduct an extensive test of the

parallelotope domain, in order to improve the heuristics (especially the choice of pri-

orities in Algorithm 4, which seems of utter importance to achieve good precision),

and to better understand its weak points. In some cases, the limit on the number

of constraints appears too restrictive. For instance, in the cousot78 example we

were not able to prove that i ≥ 2, essentially because we are already using two

constraints to prove 2i − j ≤ −2 and j ≥ 0. We strongly believe that the domain

of parallelotopes could benefit from being coupled with intervals or with a weakly

relational domain, such as octagons, to keep track of additional constraints, while

remaining fully relational.

References

[1] Amato, G., M. Parton and F. Scozzari, Deriving numerical abstract domains via principal component
analysis, SAS 2010, Proceedings, LNCS 6337, Springer, 2010 pp. 134–150.

[2] Amato, G., M. Parton and F. Scozzari, A tool which mines partial execution traces to improve static
analysis, RV 2010. Proceedings, LNCS 6418, Springer, 2010 pp. 475–479.

[3] Amato, G., M. Parton and F. Scozzari, Discovering invariants via simple component analysis, Journal
of Symbolic Computation 47 (2012).

[4] Amato, G. and F. Scozzari, Random: R-based Analyzer for Numerical DOMains, LPAR-18, 2012.
Proceedings, LNCS 7180, Springer, 2012 pp. 375–382.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–28 27

[5] Colón, M. and S. Sankaranarayanan, Generalizing the template polyhedral domain, in ESOP 2011,
Proceedings , LNCS 6602, Springer 2011 pp. 176–195.

[6] Cousot, P. and R. Cousot, Abstract interpretation frameworks, Journal of Logic and Computation 2
(1992), pp. 511–549.

[7] Cousot, P. and N. Halbwachs, Automatic discovery of linear restraints among variables of a program,
in: POPL ’78, Proceedings (1978), pp. 84–97.

[8] Howe, J. M. and A. Simon, Logahedra: A new weakly relational domain, in ATVA 2009, Proceedings.,
LNCS 5799, Springer, 2009 pp. 306–320.

[9] Karr, M., Affine relationships among variables of a program, Acta Informatica 6 (1976), pp. 133–151.

[10] Miné, A., The octagon abstract domain, Higher-Order and Symbolic Computation 19 (2006), pp. 31–
100.

[11] Sankaranarayanan, S., M. Colón, H. B. Sipma and Z. Manna, Efficient strongly relational polyhedral
analysis, in VMCAI, Proceedings., LNCS 3855 (2006), pp. 111–125.

[12] Sankaranarayanan, S., H. B. Sipma and Z. Manna, Scalable analysis of linear systems using
mathematical programming, in VMCAI, Proceedings., LNCS 3385, Springer, 2005 pp. 25–41.

G. Amato, F. Scozzari / Electronic Notes in Theoretical Computer Science 287 (2012) 17–2828

	Introduction
	Notation
	Linear Algebra
	Abstract interpretation

	Parallelotopes
	Minimization and maximization over a parallelotope
	Approximation by parallelotopes
	Ordering of parallelotopes

	Abstract operators on parallelotopes
	Invertible linear assignment
	Non-deterministic assignment
	Non-invertible assignment
	Refinement by linear inequality
	Union
	Widening

	Experiments and conclusions
	References

