
Sum of abstract domains

Gianluca Amato, Simone Di Nardo Di Maio, and Francesca Scozzari

Università di Chieti-Pescara – Italy
{gamato,simone.dinardo,fscozzari}@unich.it

Abstract. In the abstract interpretation theory, program properties are
encoded by abstract domains, and the combination of abstract domains
leads to new properties to be analyzed. We propose a new method to
combine numerical abstract domains based on the Minkowski sum. We
provide a general framework equipped with all the necessary abstract
operators for static analysis of imperative languages.

1 Introduction

The theory of abstract interpretation [8, 9] is based on the notion of abstract
domain. The choice of the abstract domain determines the properties to be
analyzed, the precision of the analysis and, in most cases, its computational
complexity. In the literature on abstract interpretation, we find a large number
of numerical abstract domains, such as intervals [7], polyhedra [11], octagons
[15], zonotopes [13], parallelotopes [3] and polyhedra template [16]. The choice
of an abstract domain is mainly guided by a trade off between analysis precision
and complexity.

Abstract domains can also be combined or refined to obtain new abstract do-
mains. The very first and fundamental method to combine two abstract domains
is Cousot and Cousot reduced product [9]. Other methods include powerset [9],
quotient [6], open products [5] and donut domains [12]. In many cases domain
combinators cannot be applied blindly, but the resulting domain needs some
tweaking, such as the design of specific abstract operators or an ad-hoc repre-
sentation for abstract objects.

In this paper we introduce a new domain combinator based on the Minkowski
sum. Given two sets A,B ⊆ Rn, the (Minkowski) sum of A and B is the subset
of Rn given by

A+ B = {a+ b ∈ Rn | a ∈ A, b ∈ B} ,
where a + b is the vector addition of the points a and b. In other words, the
Minkowski sum is the union of all the translations of the points in A by a point
in B. For instance, given the segments

A = {(x, 0) ∈ R2 | 0 ≤ x ≤ 1}
B = {(0, y) ∈ R2 | 0 ≤ y ≤ 1}

the Minkowski sum A + B is the unit square C = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤
y ≤ 1}.

In our proposal, given any two numerical abstract domains A and B, we define
a new abstract domain A + B whose abstract objects are defined as the sum of
an object in A and an object in B.

The Minkowski sum is well-suited to define a domain combinator, since it
enjoys many geometric and algebraic properties (commutes with convex hull,
distributes over the scalar product, admits an identity element and an annihi-
lator) which greatly help in defining the abstract operators in the sum domain.
Moreover, sum is not idempotent, so that, for an abstract domain A, in the gen-
eral case we have that A 6= A + A. This allows the construction of a new domain
even from a single abstract domain. In this way, the sum combinator may be
used as a domain refinement operator.

Minkowski sum has also been recently used to define the numerical abstract
domain of zonotopes, which are bounded polyhedra generated as the sum of a
finite number of segments. In some way, the sum domain combinator may be
thought of as the lifting of the zonotope construction to the level of abstract
domains.

In the rest of the paper we describe the theoretical foundation of the sum of
abstract domains. Its abstract operators are designed by exploiting the opera-
tors of the original abstract domains, thus ensuring ease of implementation. A
prototype has been developed for the Jandom static analyzer [2, 1, 4]. We show
some experiments for the special case of the sum of the interval and parallelotope
domains, and discuss some heuristics which may be used to enhance precision.

2 Notations

2.1 Linear Algebra

We denote by R the set of real numbers extended with +∞ and −∞. Addition
and multiplication are extended to R in the obvious way. We use boldface for
elements v of Rn. Any vector v ∈ Rn is intended as a column vector, and vT is
the corresponding row vector. Given u,v ∈ Rn, and a relation ./ ∈ {<,>,≤,≥
,=}, we write u ./ v if and only if ui ./ vi for each i ∈ {1, . . . , n}. We denote
by infu∈A f(u) the greatest lower bound in R of the set {f(u) | u ∈ A} and by
R(m,n) the set of real matrices with m rows and n columns.

2.2 Abstract interpretation

In this paper we adopt a framework for abstract interpretation which is weaker
than the common one based on Galois’ connections/insertions (see [10, Sec-
tion 7]). Given a poset (C,≤C) — the concrete domain — and a set A — the
abstract domain — we establish an abstract–concrete relationship between them
with the use of a concretization map, which is just a function γ : A→ C.

We say that a ∈ A is a correct abstraction of c ∈ C when c ≤C γ(a). In
general, a given c ∈ C has many correct abstractions. We say that a ∈ A is a
minimal correct abstraction of c ∈ C when a is a correct abstraction of c and

2

there is no a′ ∈ A such that c ≤C γ(a′) <C γ(a). Moreover, a ∈ A is an optimal
abstraction of c ∈ C when c ≤C γ(a′) implies γ(a) ≤C γ(a′).

A function fA : A→ A is a correct abstraction of f : C→ C when it preserves
correctness of abstractions, i.e. when c ≤C γ(a) implies f(c) ≤C γ(fA(a)). It is a
minimal correct abstraction of f : C→ C when it is correct and, for any a ∈ A,
fA(a) is a minimal correct approximation of f(γ(a)). Analogously we define the
concept of optimal abstraction for f . Composition preserves correctness, but not
minimality and optimality. The best precision is reached when fA is γ-complete,
i.e., when γ(fA(a)) = f(γ(a)).

An abstraction function is a map α : C → A such that c ≤C γ(α(c)). When
an abstraction function exists (which is quite common), a correct abstraction
of f : C → C may be defined as α ◦ f ◦ γ. An abstraction function is minimal
when, for each c ∈ C, α(c) is a minimal correct abstraction of c. In this case,
α◦f ◦γ is a minimal correct abstraction of f . Analogously we define the concept
of optimal abstraction function.

The abstract–concrete relationship induces a pre-order ≤A on A defined as
a1 ≤A a2 iff γ(a1) ≤C γ(a2). Note that γ is a monotone map from (A,≤A)
to (C,≤C). When ≤A is a partial order and α is optimal, we have the classical
framework based on Galois’s insertions. A widening on A is a map ∇ : A×A→ A
such that a, a′ ≤A a∇a′ and for every sequence x0, . . . , xi, . . . in A, the sequence
y0 = x0 ≤A · · · ≤A yi+1 = yi∇xi+1 ≤A · · · is not strictly increasing.

2.3 Numerical domains

In the following, we recall the definition of several standard numerical abstract
domains, i.e, abstractions of the concrete domain (℘(Rn),⊆). We consider fixed
the dimension n of the concrete domain. A set A ⊆ Rn is called a closed box
when there are l,u ∈ Rn such that A = {x ∈ Rn | l ≤ x ≤ u}, a parallelotope
when there are an n × n invertible matrix A and l,u ∈ Rn such that A =
{x ∈ Rn | l ≤ Ax ≤ u}, a zonotope when there is A ∈ R(m,n) such that
A =

{
A
(
1
ε

)
| ε ∈ [−1, 1]m−1

}
and a polyhedral set when there is A ∈ R(m,n)

and b ∈ Rm such that A = {x ∈ Rn | Ax ≤ b}.
The abstract objects of the interval, parallelotope, zonotope and polyhedral

domains are, respectively, closed boxes, parallelotopes, zonotopes and polyhedral
sets. Abstract objects are ordered by set inclusion, and the concretization map is
the identity. In actual implementations, a finite representation is used for these
abstract objects, but this is not relevant to our paper.

3 Combining domains by Minkowski sum

One of the most important operations in geometry, in particular in convexity
theory, is the Minkowski sum of two sets.

Definition 1 (Minkowski sum). Given two sets A,B ⊆ Rn, the Minkowski
sum A+ B ⊆ Rn is defined as:

A+ B = {a+ b ∈ Rn | a ∈ A, b ∈ B} .

3

It is immediate to see that every element of the interval domain is the Minkowski
sum of (possibly unbounded) segments. Moreover, any zonotope is the Minkowski
sum of a finite number of bounded segments.

We introduce a new operator for combining two numerical abstract domains
into a new domain whose objects are the sum of the abstract objects of the
constituent domains.

Definition 2 (Sum of abstract domains). Given two numerical abstract do-
mains A and B, we define a new abstract domain called the (Minkowski) sum of
A and B, which is:

A + B = {〈A+B〉 | A ∈ A, B ∈ B}

with concretization map:

γA+B(〈A+B〉) = γA(A) + γB(B) .

We use the notation 〈A+B〉 instead of (A,B), since the former better conveys
the real purpose of the pair. We stress out that 〈A+B〉 is only a formal sum.

Example 3. Let A ∈ Int and B ∈ Parallelotope with

A = {0 ≤ x ≤ 1, 0 ≤ y ≤ ∞}
B = {0 ≤ y ≤ 2, 0 ≤ x− y ≤ 2}

as depicted in Fig. 1(a) and 1(b). Then, 〈A + B〉 is an abstract object in Int +
Parallelotope such that

γ(〈A+ B〉) = {0 ≤ x ≤ 3, 0 ≤ y ≤ ∞, x− y ≤ 3}

as depicted in Fig. 1(c). It is neither an interval nor a parallelotope nor a zonotope
(since it is unbounded and has constraints on three different linear forms).

3.1 Ordering

The subset ordering ⊆ on the concrete domain induces a pre-order ≤A+B on
A + B. This is not a partial order, since different objects in A + B represent the
same concrete object. For example, in Int + Int, the objects 〈[0, 1] + [0, 1]〉 and
〈[0, 0] + [0, 2]〉 both represent the interval [0, 2] ⊆ R.

Moreover, given objects 〈A+B〉 and 〈A′+B′〉, deciding whether 〈A+B〉 ≤A+B

〈A′ +B′〉 is not an easy task. There are some sufficient conditions which ensure
the required property, such as A ≤A A′ and B ≤B B′. When A and B are both
abstractions of a domain C (often C is the polyhedra domain), then we may
compute, on the domain C, the representation of A,B,A′, B′, the Minkowski
sums A + B and A′ + B′, and check if the ordering holds. However, in the
general case, an algorithm for deciding ≤A+B must be especially designed for a
given instance of the sum combinator. In any case, we will show later that this
is not required for the analysis.

4

−1 1 2 3 4 5 6

2

4

6

(a) Unbounded Box

−1 1 2 3 4 5 6

2

4

6

(b) Parallelotope

−1 1 2 3 4 5 6

2

4

6

(c) Minkowski Sum

Fig. 1. Minkowski sum of a box and a parallelotope.

3.2 Sum of standard domains

The following proposition summarizes some basic results when combining inter-
vals, zonotopes, parallelotopes and polyhedra. It is worth noting that, in general,
for an abstract domain A we have that A + A 6= A. This is the case for the ab-
stract domain of parallelotopes, since the sum of two parallelotopes is not, in
general, a parallelotope, as shown in Figure 1. Moreover, given two domains A
and B such that A is an abstraction of B, it may well happen that the sum of A
and B is more concrete than both domains, as shown in the next theorem.

Theorem 4. The abstract domains Int, Zonotope and Polyhedra are closed by
Minkowski sum, that is:

– Int + Int = Int
– Zonotope + Zonotope = Zonotope
– Polyhedra + Polyhedra = Polyhedra

Moreover, the following inclusions are strict:

– Zonotope (Int + Zonotope
– Parallelotope (Int + Parallelotope
– Parallelotope (Parallelotope + Parallelotope

Figure 1 shows the counterexamples for the second part of the theorem. Note
that, the box in Figure 1(a) is also a parallelotope, and the parallelotope in
Figure 1(b) is also a zonotope, while their sum fails to be a zonotope.

4 Abstract operators

We now consider the operations on ℘(Rn) commonly used when defining the
collecting semantics of imperative programming languages, and for each of them
we introduce a correct approximation. We show that some abstract operators
are γ-complete, provided the corresponding abstract operators on the component
domain are also γ-complete.

In the following we fix two numerical abstract domains A and B and their
sum A + B.

5

4.1 Union

Abstract union on the sum domain can be defined component-wise from the
abstract unions of the two original domains.

Definition 5 (Abstract union). Given A1, A2 ∈ A and B1, B2 ∈ B, we define
the abstract union ∪A+B as:

〈A1 +B1〉 ∪A+B 〈A2 +B2〉 = 〈(A1 ∪A A2) + (B1 ∪B B2)〉 .

Theorem 6. The abstract union is correct.

4.2 Linear transformations

A linear (homogeneous) assignment has the form xi := aTx where a ∈ Rn and
x is the vector of program variables. Linear assignments (even multiple linear
assignments) may be represented as linear transformations in Rn. If M is a
square real matrix of order n and A ⊆ Rn, we consider the operator

M · A = {Ma | a ∈ A} .

The abstraction of · in A + B may be easily recovered by its abstraction on A
and B.

Definition 7 (Linear assignment). Given A ∈ A, B ∈ B and M ∈ R(n, n)
we define the abstract linear transformation as:

M ·A+B 〈A+B〉 = 〈M ·A A+M ·B B〉 .

Theorem 8. The abstract linear assignment operator is correct. Moreover, it is
γ-complete if the corresponding abstract operators on A and B are γ-complete.

4.3 Translations

Given b ∈ Rn and A ⊆ Rn, consider the translation operator

A+ b = A+ {b} = {a+ b | a ∈ A} .

As for linear transformations, it is easy to determine a correct abstraction of +
in the abstract domain A + B starting from correct abstractions in A and B, but
there is not a single abstract version which could be considered the canonical
one.

Definition 9 (Abstract translation). Given A ∈ A, B ∈ B, b ∈ Rn and
w ∈ R, we define the abstract sum (weighted by w) as

〈A+B〉+A+B
w b = 〈(A+A wb) + (B +β (1− w)b)〉 .

In this definition, the weight w determines in which part of the two abstract
objects A and B we need to apply the translation. It may be applied entirely on
A (w = 1), entirely in B (w = 0) or divided between them.

Theorem 10. The abstract translation operator is correct. Moreover, it is γ-
complete if the corresponding abstract operators on A and B are γ-complete.

6

4.4 Non-deterministic assignment

Given i ∈ {1, . . . , n}, we define the concrete operator forgeti : ℘(Rn) → ℘(Rn)
as

forgeti(A) = {x ∈ Rn | a ∈ A ∧ ∀j 6= i. xi = ai} .
This simulates the effect of a non-deterministic assignment xi :=?.

Definition 11. Given i ∈ {1, . . . , n}, we define the non-deterministic assign-
ment as

forgetA+B
i (〈A+B〉) = 〈forgetAi (A) +B〉

or
forgetA+B

i (〈A+B〉) = 〈A+ forgetBi (B)〉 .

Both definitions are correct, and the choice between them follows by heuristic
considerations. We will talk about this later in the paper.

Theorem 12. The abstract non-deterministic assignment is correct. Moreover,
it is γ-complete if the corresponding abstract operator on A (for the first form)
or B (for the second form) is γ-complete.

4.5 Refinement by linear inequality

The concrete refinement by linear inequality refine(a,b), with a ∈ Rn and b ∈ R,
is the intersection of a subset of Rn with an half-space. Formally:

refine(a,b)(A) = A ∩ {x ∈ Rn | aTx ≤ b} .

In the following, we extend this definition to the case b = ±∞ with the obvious
interpretation.

Definition 13. Given a ∈ Rn and b ∈ R, we define the abstract refinement by
linear inequality as

refineA+B
(a,b)(〈A+B〉) = 〈refineA(a,b−d2)(A) + refineB(a,b−d1)(B)〉

where d1, d2 ∈ R such that d1 ≤ infx∈A a
Tx and d2 ≤ infx∈B a

Tx. Moreover,
we define

refineA+B
(a,+∞)(〈A+B〉) = (〈A+B〉)

refineA+B
(a,−∞)(〈A+B〉) = C

where C is any correct approximation of ∅ (i.e., any value in A + B).

This operator needs a way to determine a lower bound for the value that a linear
form may assume in every abstract object of the domains A and B. If this is not
possible, both d1 and d2 may be considered to be −∞, and the refine operator
turns out to be the identity.

Theorem 14. The operator refineA+B
(a,b) is correct.

7

i = 0
x = 0
y = 0
while (i <= 4) {

i = i+1
if (?) x = i−1 else x = i
if (?) y = i−1 else y = i

}
(a) Example program.

2 4 6

2

4

6

x

y

(b) Possible values for
variables x and y at the
last program point of the
loop.

Fig. 2. Example program.

4.6 Widening and Narrowing

Given A1, A2 ∈ A and B1, B2 ∈ B we can use the widening/narrowing opera-
tors of the individual numerical abstract domains to devise widening/narrowing
operators for the Minkowski sum.

Definition 15. The abstract widening for A + B is defined as

〈A1 +B1〉∇A+B〈A2 +B2〉 = 〈A1∇AA2 +B1∇BB2〉

and the abstract narrowing for A + B is defined as

〈A1 +B1〉
∇A+B〈A2 +B2〉 = 〈A1

∇AA2 +B1
∇BB2〉 .

Theorem 16. The abstract operator ∇A+B is a widening and
∇A+B is a nar-

rowing.

Note that widening is defined component-wise. This means that, at widening
points, the increasing chains we get are of the form

〈A0 +B0〉 ≤A+B 〈A1 +B1〉 ≤A+B 〈A2 +B2〉 ≤A+B . . .

with A0 ≤A A1 ≤A A2 . . . and B0 ≤A B1 ≤A B2 Both the chains of Ai’s
and Bi’s eventually stop increasing, since they are constrained by ∇A and ∇B.
Therefore, if we can decide ≤A and ≤B, then we known when to stop the analysis
even if, in the general case, we cannot decide ≤A+B.

5 An example

Consider the program in Figure 2(a) and the graph in Figure 2(b) which depicts
the possible values for variables x and y at the end of the loop’s body. The convex
hull of these points, which is the shaded area in the figure, may be described

8

i = x = y = 0
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

while (i <= 4) {
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

i = i+1
[i = 0, x = 0, y = 0] + [i = 1, x = 0, y = 0]

if (?)
x = i−1
[i = 0, x = −1, y = 0] + [i = 1, x = i, y = 0]

else
x = i
[i = 0, x = 0, y = 0] + [i = 1, x = i, y = 0]

[i = 0,−1 ≤ x ≤ 0, y = 0] + [i = 1, x = i, y = 0]

if (?) y = i−1 else y = i
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [i = 1, x = i, y = i]

}

Fig. 3. Annotated program after the 1st loop iteration.

as the sum of the box {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0} and the parallelotope
{1 ≤ i ≤ 5, x = i, y = i}. Using the domain Int + Parallelotope, we are able to
infer this property, although we need to refine the raw domain operators with
heuristics specifically tailored for this specific combination.

The main tunable aspect of the operators we have described in the previous
section is the value of the weight w in translations and abstractions. Choosing
w randomly may lead to very bad precision. For the moment, assume we choose
w = 0 for the increment i = i + 1 and w = 1 for all the other assignments.
Figure 3 shows the candidate invariants reached after a single iteration of the
while loop. Using the standard domain operators, before entering the while loop
we get the invariant {i = 0, x = 0, y = 0} + {i = 0, x = 0, y = 0} which is
preserved by the loop’s guard. The increment to i, according to the chosen value
w = 0, yields {i = 0, x = 0, y = 0}+ {i = 1, x = 0, y = 0}.

The true branch of the first non-deterministic conditional statement leads
to {i = 0, x = −1, y = 0} + {i = 1, x = i, y = 0} while the else branch leads
to {i = 0, x = 0, y = 0} + {i = 1, x = i, y = 0}. The component-wise union
gives {i = 0,−1 ≤ x ≤ 0, y = 0} + {i = 1, x = i, y = 0}. Repeating the same
argument for the second conditional statement we get {i = 0,−1 ≤ x ≤ 0,−1 ≤
y ≤ 0}+ {i = 1, x = i, y = i}.

At the second iteration, the previous while invariant {i = 0, x = 0, y =
0} + {i = 0, x = 0, y = 0} is widened with {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤
0} + {i = 1, x = i, y = i} to get {i = 0,−∞ < x ≤ 0,−∞ < y ≤ 0} + {0 ≤ i <
∞, x = i, y = i}. This is the fix-point of the ascending chain. The subsequent
descending phase yields the while invariant {i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤
0}+ {0 ≤ i ≤ 5, x = i, y = i}. The program with the final annotations is shown

9

i = x = y = 0
[i = 0, x = 0, y = 0] + [i = 0, x = 0, y = 0]

while (i <= 4) {
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [0 ≤ i ≤ 4, x = i, y = i]

i = i+1
[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0]+[1 ≤ i ≤ 5, x = i−1, y = i−1]

if (?)
x = i−1
[i = 0, x = −1,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i− 1]

else
x = i
[i = 0, x = 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i− 1]

[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i− 1]

if (?) y = i−1 else y = i

[i = 0,−1 ≤ x ≤ 0,−1 ≤ y ≤ 0] + [1 ≤ i ≤ 5, x = i, y = i]

}

Fig. 4. Annotated program at the end of the analysis. The highlighted invariant is the
one sought after.

in Figure 4. The invariant at the last program point in the loop is the one we
were looking for.

Crucial in obtaining the desired result is that the parallelotope component
encodes the unsound relationship i = x = y while the box component contains
the deviation w.r.t. this line which makes the result correct. If we use w = 1
for i = i + 1 instead of w = 0, the initial invariant i = x = y = 0 for the
parallelotope component remains stable for the entire while loop, and all the
analysis actually proceeds on the interval domain. The result is the much less
precise {1 ≤ i ≤ 5, 0 ≤ x ≤ 5, 0 ≤ y ≤ 5} + {i = 0, x = i, y = i}. On
the contrary, if we use w = 0 for all the assignments, the analysis actually
proceeds in the parallelotope domain. The result depends on the heuristics used
for parallelotopes. The Jandom static analyzer determines the following: {i =
0, x = 0, y = 0} + {1 ≤ i ≤ 6, 1.0 ≤ −i + x ≤ 0.0,−1.0 ≤ −i + y ≤ 0.0}. The
result is qualitatively better than the one on intervals, but not as good as the
one with get with the correct choices for w.

The problem is how to determine an heuristic to choose the value of w for
the assignment operators. Our idea is to use the parallelotope domain to capture
an “ideal” relationships between variables, and resort to the interval domain for
capturing the deviation w.r.t. the ideal behavior. This means that, for a non
invertible assignment xi = aTx+ b we use w = 1, in the hope that xi−aTx has
an almost constant value in a program point, modulo some variability captured
by the interval domain. For all other assignments we use w = 0. In the program
of Figure 2(a) this heuristic yields the optimal choice we have shown before.

10

6 Precision of abstract operators

In this section we reason about the precision of the abstract operators of the sum
domain. We will see that even very precise operators (such as translations) are
problematic due to the fact that many different representation exists for the same
abstract object, and that the imprecise operators gives different results for differ-
ent representations. Finally, we explicitly discuss the domain Int + Parallelotope.

6.1 An approximate ordering

The subset ordering ⊆ in ℘(Rn) induces the pre-order ≤A+B on A + B. However,
many of the operators we have defined are not monotonic w.r.t. ≤A+B. This
makes difficult to reason about the precision of analysis. We do not even know
if, improving the precision of one operator, actually improves the precision of the
result. However, it is possible to define a coarser ordering on A + B, component-
wise as

〈A1 +B1〉 vA+B 〈A2 +B2〉 ⇐⇒ ∃p ∈ Rn s.t.

γ(A1) ⊆ γ(A2) + p and γ(B1) ⊆ γ(B2)− p .

It turns out that 〈A1 +B1〉 vA+B 〈A2 +B2〉 implies 〈A1 +B1〉 ≤A+B 〈A2 +B2〉.
Moreover, all operators in Section 4 (but widening and narrowing) are monotone
w.r.t.vA+B. Therefore, if we replace an abstract operator with another one which
is more precise w.r.t. the vA+B ordering, we are sure we are not going to loose
precision globally for the entire analysis, modulo the effect of the non-monotonic
widening and narrowing operators.

6.2 Abstraction function

Particularly critical, in the general definition of the sum domain, is the fact
that we do not have a good abstraction function. Actually, a family of correct
abstraction functions may be defined easily as follows.

Theorem 17. Given abstract domain A and B with abstraction functions αA

and αB, consider a weight w ∈ R. Then

αA+B
w (C) = 〈αA(wC) + αB((1− w)C)〉

is a correct abstraction function for any w ∈ R.

However, in the general case αw(C) is not a minimal abstraction of C for any
value of w. Even if domains A and B have good abstraction functions αA and
αB, the abstraction function αA+B may have, in general, a bad precision. For
example, consider Figure 2(b) and let C be the set of points in the shaded area.
Although C may be described as the sum of a box and a parallelotope, there is

11

no choice of weight w such that αA+B
w (C) returns such as description. Actually,

we have
αA+B
w (C) = 〈A+B〉

with

A = {0 ≤ x ≤ 5w, 0 ≤ y ≤ 5w}
B = {−(1− w) ≤ x− y ≤ 1− w, 0 ≤ x+ y ≤ 10(1− w)}

and γA+B(αA+B
w (C))) C.

In abstraction interpretation, the abstraction function is often used to guide
the definition of the abstract operators. If f : C → C is a concrete operator,
fA = αA ◦ f ◦ γA is a correct abstract operator. However, since αA+B may
have such a bad precision, this approach is not applicable for the sum domain.
While for most concrete operators we were nonetheless able to find good abstract
counterparts, this is definitively not easy for linear refinement.

6.3 Linear refinement

Consider the sum domain Int+Int. The box B = [0, 2]×[0, 2] may be described in
Int+ Int as S = 〈[0, 1]× [0, 1]+[0, 1]× [0, 1]〉. Assume we want to refine S with the
linear inequality x1 ≤ 1, i.e., we want to compute refine(a,b)(S) with a = (1, 0)T

and b = 1. The result is the box [0, 1]× [0, 2] which may be represented optimally
as, for example, 〈[0, 1/2]× [0, 1] + [0, 1/2]× [0, 1]〉.

However, applying the definition for abstract refinement in Section 4, we
get a much coarser result. Let A = [0, 1] × [0, 1]. Note that infx∈A a

Tx =
0 = infx∈B a

Tx = 0. By choosing d1 = d2 = 0, we get refineInt(a,b−d1)(A) =

refineInt(a,b−d2)(A) = A. Hence refineInt+Int
(a,b) (〈A+A〉) = 〈A+A〉.

Here the problem is caused by the high redundancy in Int+Int. The constraint
x1 ≤ 2 in B is divided between the two’s x1 ≤ 1 in 〈A + A〉. The same may
happen in Int + Parallelotope when the parallelotope has some equations of the
kind xi ≤ b. Therefore, in this sum, the parallelotope component should be
tweaked to avoid generating constraints parallel to the axis.

Another problem caused by linear refinement is with unbounded abstract
object. Consider in Int+Parallelotope the full Rn, represented as 〈Rn+Rn〉. If we
want to refine with aTx ≤ b, for any a and b, we get infx∈Rn aTx = −∞, hence
refine(a,b)(〈Rn+Rn〉) = 〈refine(a,+∞)(Rn)+refine(a,+∞)(Rn)〉 = 〈Rn+Rn〉. Note
that, on the contrary, if we represent Rn as 〈{0} + Rn〉, then refinement works
much better, essentially performing the refinement on the second component.
Here {0} may be replaced by any one-point element without affecting precision.

In some way, both problems are related and could be solved by some form
of normalization which, before applying linear refinement refine(a,b) to 〈A+B〉,
transform 〈A + B〉 to 〈A′ + B′〉 with the same concretization but minimizing
the range of {aTx | x ∈ γ(A′)}. There is no general method to perform such a
normalization, which should be devised specifically for each instance of the sum
domain.

12

6.4 Union and Widening

Abstract union may also be quite imprecise. Consider the abstract values A1 =
〈{0}+{0}〉 and A2 = 〈{a}+{0}〉 on the domain Int+Parallelotope, where a is any
vector in Rn. The concrete union γ(A1)∪γ(A2) is the two point set {0,a}. In the
Int + Parallelotope domain, its optimal representation is 〈{0}+L〉 where L is the
segment from 0 to a. However, the abstract union gives A1∪Int+IntA2 = 〈B+{0}〉
where B is the box with corners 0 and a. This is (except for the case a = 0)
much worse than the optimal result.

The problem arises from the fact that abstract union cannot “restructure”
the representation to use the strong points of the component domains. We believe
that designing a more precise union operator is a difficult challenge. Widening,
being defined component-wise as union, has similar problems.

6.5 Other operators

The other operators are generally much more precise than linear refinement.

non deterministic assignment) Many domains have γ-complete non-
deterministic assignments. When this happens, it is better to apply non
deterministic assignment to this component. If the other component has a
γ-complete assignment of the constant 0 to a variable, we may refine forgeti
as follows:

forgetA+B
i (〈A+B〉) = 〈forgetAi (A) +M ·B B〉

where M is the matrix whose effect is to assign 0 to the i-th variable. This
is better since it smaller w.r.t. vA+B than the one defined in Section 4.

linear assignments) This operator does not cause precision problems.
translations) Although this operator is quite precise, the choice of the weight

w is crucial in obtaining good results. This is because of the imprecision
of the abstract union operator. An example of this phenomenon has been
shown in Section 5.

6.6 The domain Int + Parallelotope

The domain Int + Parallelotope is one of the simplest non trivial domains which
may be obtained with the sum combinator. Since translations are γ-complete
both in Int and Parallelotope, the same holds for translations on Int+Parallelotope.
For the same reason, non-deterministic assignment is γ-complete.

As we said before, deciding whether 〈B1 + P1〉 ≤ 〈B2 + P2〉 may be easily
implemented by representing sums as convex polyhedra, and checking set in-
clusion. On the contrary, improving the abstraction function is harder. Even if
the abstraction is firstly computed over polyhedra, it remains the problem of
representing a polyhedron in the most effective way as sum of a box and a par-
allelotope. Solving the abstraction problem could lead to the design of better
operators for union and refinement, which also suffer from great imprecision.

13

We have implemented a prototype of the sum combinator in the static ana-
lyzer Jandom and did some preliminary test of the Int + Parallelotope domain on
the ALICe benchmarks [14] (plus some additional test programs). The test-suite
comprises a total of 105 models with 316 program points. We have compared the
results on the sum with the results on the parallelotopes (the comparison with
the interval domain gives very similar results). With respect to the parallelotope
domain, the sum is more precise on 53 program points and less precise in 72
program points, while in 76 cases the results are incomparable. We believe that
these preliminary tests are very promising:

– The regressions w.r.t. the component domains were expected and are mainly
due to the fact that some operators on the sum, like union, introduce a loss
of precision.

– In addition to the cases where sum is better, we have many cases with
incomparable results. This shows that the sum combinator is able to improve
at least one constraint in many program points. Combining the results on
the sum domain with the (incomparable) results on the component domain,
we obtain more precise results in more than 40% of the program points.

– No special code has been written for the Int + Parallelotope domain: all the
operators are the generic ones of the sum combinator, and the only heuristic
applied is choosing w in translations as we have done in Section 5. Nonethe-
less, the domain was able to produce new constraints. This is in contrast
with other combinators, such as reduced product, where new results always
need some specific code.

We still need to do more experiments and find better heuristics, but the fact
that we have found many new constraints is encouraging.

6.7 Analysis kickoff and non-deterministic assignments

Some numerical abstract domains, such as template parallelotope, template poly-
hedra and zonotopes, need a special treatment in the starting phase of the anal-
ysis. For instance, consider the domain of template polyhedra with constraints
x+ y and x− y, and assume that we start the analysis of a program whose first
statement is the assignment x = 0. Since we cannot represent this information
with the given template, we loose the information about the variable x. A sim-
ilar problem arises with zonotopes, where we cannot represent an unbounded
value for y. Such a situation can be easily managed using the sum combinator,
by considering the sum with a simple abstract domain, like intervals, which is
exploited in the starting phase of the analysis.

More generally, we can use the sum combinator to enrich a domain which
may only represent bounded objects (such as the zonotope domain) summing
to it a simple domain able to represent unbounded objects (such as the interval
domain). The resulting domain (Int + Zonotope in our example) would be able
to handle unbounded objects and non-deterministic assignment with greater
precision.

14

7 Conclusion

We have described the theoretical foundation of the sum of abstract domains.
We have defined generic abstract operators which can be easily implemented
exploiting the corresponding operators on the original domains and we have
discussed possible improvements.

For the sum of intervals and parallelotopes we have also discussed some
heuristics to enhance the precision of the analysis and presented preliminary
experimental results.

References

1. Gianluca Amato, Simone Di Nardo Di Maio, and Francesca Scozzari. Numerical
static analysis with Soot. In Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis, SOAP, 2013.

2. Gianluca Amato and Francesca Scozzari. Jandom [Software]. Available from
https://github.com/jandom-devel/Jandom.

3. Gianluca Amato and Francesca Scozzari. The abstract domain of parallelotopes.
In NSAD 2012. Proceedings, volume 287 of ENTCS, pages 17–28. 2012.

4. Gianluca Amato and Francesca Scozzari. Localizing widening and narrowing. In
SAS 2013, Proceedings, volume 7935 of LNCS, pages 25–42, 2013.

5. Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Combina-
tions of abstract domains for logic programming: Open product and generic pattern
construction. Science of Computer Programmming, 38(1–3):27–71, 2000.

6. Agostino Cortesi, Gilberto Filé, and William W. Winsborough. The quotient of an
abstract interpretation. Theoretical Computer Science, 202(1–2):163–192, 1998.

7. Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of
programs. In Proc. 2nd Int’l Symposium on Programming, pages 106–130, 1976.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL ’77: Proceedings, pages 238–252, 1977.

9. Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In POPL ’79: Proceedings, pages 269–282, 1979.

10. Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–549, 1992.

11. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL ’78: Proceedings, pages 84–97, 1978.

12. Khalil Ghorbal, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti
Gupta. Donut domains: Efficient non-convex domains for abstract interpretation.
In VMCAI 2012. Proceedings, volume 7148 of LNCS, pages 235–250, 2012.

13. Eric Goubault, Sylvie Putot, and Franck Védrine. Modular static analysis with
zonotopes. In SAS 2012. Proceedings, volume 7460 of LNCS, pages 24–40, 2012.

14. Vivien Maisonneuve, Olivier Hermant, and François Irigoin. Alice: A framework
to improve affine loop invariant computation. In 5th Workshop on INvariant Gen-
eration, 2014.

15. Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31–100, 2006.

16. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis
of linear systems using mathematical programming. In VMCAI 2005. Proceedings,
volume 3385 of LNCS, pages 25–41. 2005.

15

