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Abstract. We present a new approach to the analysis and verification of sim-
ple properties of character navigation. We model navigation strategies for virtual
characters by cellular automata, and use standard abstract interpretation tech-
niques for abstracting and verifying navigation properties.
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1 Introduction

Animated simulations and virtual worlds are often inhabited by characters which au-
tonomously and intelligently move, without any external/human control. For instance,
this is the case for background characters interacting with main characters. They need
to navigate from one point to the other in the virtual land, in continuous motion, taking
their decisions in real time, in according to the environment. When characters move in
small groups (e.g. animals, soldiers), in addition to decide a navigation strategy (per-
ceive objects and obstacles, find collision-free paths) they also need to obey to many
other constraints (remain in group, avoid crowded areas).

Analysis and verification of such properties in presence of multiple characters and
obstacles heavily depend on the formalism used to describe the navigation strategy. For
example, when using hybrid automata [2] as a model, it is possible to apply standard
verification techniques to the navigation strategies for virtual characters. HyTech [16]
is an example of a symbolic model checkers for linear hybrid systems, able to verify
temporal properties [3]. When reasoning about navigation properties in animation sys-
tem expressed in some temporal or modal logic for hybrid systems, we always need to
introduce some degree of approximation or abstraction, in order to deal with the obvi-
ous undecidability problem of most properties. Moreover, in case of complex games,
with many characters, groups of characters and a complex environment with obstacles,
the verification problem may still be intractable, due to the high number of entities and
constraints (see, e.g., [1]).

In order to overcome these problems, we suggest to model navigation strategies as
cellular automata, and use abstract interpretation-based static analysis to prove run-time
properties such as “no collision happens”.
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2 Cellular automata

Cellular automata (CA) have been proposed to analyze the behavior of complex discrete
dynamical systems with many interactions. A cellular automaton consists of a grid of
cells, and each cell can be in a finite number of states (for instance: empty or occupied
by specific entities). Interactions are usually described by a collection of simple rules.
The time advances in discrete steps and the cellular automaton evolves according to
its rules. Using cellular automata it is possible to model very complex structures, like
ecological models, and easily simulate the interactions between a very large number of
entities. Cellular automata have proved to be powerful enough to simulate thousands of
interactions in real-time.

A simple example is that of a one-dimensional CA, where each cell can be in four
different states: ⊥ (empty),� (right-directed),� (left-directed) and�� (collision).
Intuitively, the state � can be thought of as a right-directed entity in a cell, and the
state�� as a collision of two entities. For instance:
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is a configuration where the cell in position −2 is in the state� and the cell 0 is in the
state��.

The rules are typically formalized by a function which computes the new state of a
cell in terms of the current state of the cell and of some of its neighbors. The function
for updating the state of a cell does not change over time and is applied to the whole
grid simultaneously. Cellular automata can be equipped with many different types of
rules, and the set of rules completely defines the behavior of the entities and obstacles
involved in the game. For instance, applying obvious moving and collision rules to the
configuration
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we get the new configuration
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3 Static analysis of cellular automata

The static analysis and verification of cellular automata amounts to fix some interest-
ing properties and choose an approximation method to prove the properties. Here we
propose to use the abstract interpretation theory to define a correct abstraction of CA,
leveraging the big variety of abstract domains available for the analysis of symbolic
and numerical properties. To this aim, we first need to embed cellular automata in the
abstract interpretation framework [9].
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3.1 Abstract interpretation

Abstract interpretation [12, 13] is a general theory for approximating the behavior of
a discrete dynamic system. It discovers properties which hold when execution reaches
specific program points. It can be used to observe many kinds of properties, e.g., termi-
nation, types and security properties, and it has been applied to many different fields,
such as program analysis, verification and model checking. The key idea is to replace
the (concrete) semantics of a system with an abstract semantics, computed over a do-
main of abstract objects. There are many different methods to describe the semantics of
a system. Most of them are defined by a set of state-transition functions between states.

An abstract interpretation is specified by a set of abstract objects, called the abstract
domain. The abstract objects describe the properties of the system we are interested
in. The relationship between concrete and abstract objects is formalized by a pair of
abstraction and concretization maps. The expressive power of abstract interpretation
strictly depends on the particular choice of the abstract domain.

3.2 Abstract interpretation of cellular automata

We showed in [9] how to embed cellular automata in the abstract interpretation frame-
work, which amounts to choosing a suitable concrete domain equipped with state-
transition functions. The choice of the abstract domain depends on the properties we
want to analyze. Simple properties of cellular automata are: “the cell i is empty”, “the
cell i does not contain a right-directed entity”, “every cell whose index is odd does not
contain a left-directed entity“. More realistic properties of navigation strategies, related
to the description of regions in the game and to perceive obstacles, are naturally mod-
eled by numerical abstract domains [15]. For instance, the properties of the kind: “a
given region of cells is empty”, “the region contains a single entity”, or “the region
only contains entities of a certain kind (enemies)” can be modeled as an interval of cell
indexes in the one-dimensional case. Here we are abstracting the concept of “region”,
which is a generic set of cells, by considering only regions made of consecutive cells.
Generalization to many-dimensional cellular automata is easily realized using abstract
domains such as convex polyhedra (similarly to PHAVer [14] for hybrid systems), oc-
tagons and parallelotopes. The power of these abstract domains is that they are endowed
with polynomial operators (of very low degree), and many intractable problems may be
over-approximated in a efficient and precise way. In particular, we suggest the use of
template parallelotopes [5, 7, 10], a recently proposed abstract domain which combines
dynamic and static analysis [11, 6]. The dynamic analysis gathers information about
(partial) concrete executions, which is later exploited in the static phase. This allows
to transfer the knowledge of the first part of the navigation strategy to tune the specific
abstract domain (parallelotopes) to be used in the static phase.

In our early experiments, we have modeled and analyzed cellular automata with
a finite (but unbounded) set of states and moving and collision rules. We have imple-
mented a game with a finite set of characters and analyzed the property that a specific
convex region does not contain any left-directed character. Using the observationally
completeness technique [8, 4], we have found (an abstraction of) the set of the initial
configurations for which the property holds. We plan to analyze more complex games,
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especially with many different characters and a large number of interactions, to fully
exploit the power of the various numerical abstract domains when applied to the analy-
sis of cellular automata. We believe that our approach could be specifically targeted to
this kind of intractable analysis problems.
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