
Indexed Categories and Bottom-Up Semantics of

Logic Programs

Gianluca Amato1 and James Lipton2

1 Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, Udine, Italy

amato@dimi.uniud.it
2 Mathematics Department, Wesleyan University

265 Church St., Middletown (CT), USA
lipton@wesleyan.edu

Abstract. We propose a categorical framework which formalizes and
extends the syntax, operational semantics and declarative model theory
of a broad range of logic programming languages. A program is inter-
preted in an indexed category in such a way that the base category
contains all the possible states which can occur during the execution of
the program (such as global constraints or type information), while each
fiber encodes the logic at each state.

We define appropriate notions of categorical resolution and models, and
we prove the related correctness and completeness properties.

1 Introduction

One of the greatest benefits of logic programming is that it is based upon the
notion of executable specifications. The text of a logic program is endowed with
both an operational (algorithmic) interpretation and an independent mathemat-
ical meaning which agree each other in several ways.

An operational interpretation is needed if we wish to specify programs which
can be executed with some degree of efficiency, while a clear mathematical
(declarative) meaning simplifies the work of the programmer, who can –to some
extent– focus on “what to do” instead of “how”. The problem is that operational
expressiveness (i.e. the capability of directing the flow of execution of a program)
tends to obscure declarative meaning. Research in logic programming strives to
find a good balance between these opposite needs.

Horn logic programming was one of the first attempts in this area and surely
the most famous. However it has limitations when it comes to real programming
tasks. Its forms of control flow are too primitive: there are simple problems (such
as computing the reflexive closure of a relation) which cannot be coded in the
obvious way since the programs so obtained do not terminate. The expressive
power of its logic is too weak, both for programming in the small and in the large:
it lacks any mathematically precise notion of module, program composition,
typing. Moreover, if we want to work with some data structure, we need to



manually code the behavior and constraints of such a structure in the Horn
logic, often obscuring the intended meaning of the code.

For these reasons, various extensions have been proposed to the original
framework of Horn clause, often borrowing ideas from other paradigms. Some
noteworthy extensions are the use of algebraic operators for modularization [7],
the use of more powerful extensions to the logic [21], control operators like the
“cut” of PROLOG and abstract data types [20]. The effect has been to expand
the boundaries of the field and the notion itself of declarative content of a pro-
gram. We lack criteria for good language design and models to evaluate the new
features, or to formalize the very notion of declarative programming.

Moreover, semantic methods for Horn logic programming are increasingly
similar in spirit to those for functional and imperative programming, under the
stimulus of techniques such as abstract interpretation [12, 8]. This suggests look-
ing for a sufficiently flexible new logic programming foundation using a frame-
work in which all these paradigms can be well understood. Categorical logic
seems an excellent candidate for such an undertaking.

Categorical approaches to logic programming go back to the treatment of
unification given by Rydeheard and Burstall in [23]. Building on this work, in [3]
the syntax of Horn clause logic is formalized using categorical tools and a topos-
theoretic semantics. In [10], following some basic ideas already developed in [11],
a categorical analysis of logic program transitions and models is given using
indexed monoidal categories. The framework that we propose here builds on
some of the ideas in that paper, which have proved seminal, but which fall short
of formulating the kind of general blueprint we seek for declarative programming.

The approaches just cited focus on the operational or model theoretic side of
logic programming, but lack any bottom-up denotational semantics like the TP

operator of van Emden and Kowalski [25]. For us, the immediate consequence
operator seems to be a cornerstone of logic programming, since it appears, in
one form or another, across several semantic treatments of logic programs [4].
Most of the studies in the semantics of logic programming are heavily based
on the existence of some fixpoint construction: treatments of compositionality
of semantics [8], modularity [6], static analysis [12], and debugging [9]. For this
reason, it seems to us that further investigation of a categorical framework which
includes a form of bottom-up semantics is advisable.

The first step in this direction was taken in [13], which uses categorical syntax
over finite τ -categories [15]. It is the starting point for introducing both a notion
of categorical SLD derivation and a denotational semantics which resembles
the correct answer semantics for Horn logic programs. This semantics can be
computed with a fixpoint construction and it can be shown to agree with a more
general notion of categorical derivation.

1.1 The New Approach

Our framework starts from the work in [13] and [14]. However, we redefine the
fundamental categorical structures with the hope of generalizing the methods in
three main directions:



– in the ability to treat other kinds of semantics other than the “correct an-
swers” one. The concept of interpretation must be far broader than that of
[13], allowing for semantic domains different from SetC

o

;

– in the ability to treat programs with constraints between goals. This means
that we must provide a new bottom-up operator which works for a generic
syntactic category and not only with C[X1, . . . , Xn];

– in the adaptability to different logic languages. In particular, we would like
to treat languages such as CLP or add some control operators to the pure
logic programming.

To pursue these goals, we move to a more general categorical interpretation of
logic. Instead of taking goals to be monics in the category C, we use an indexed
category over C. An object in the fiber σ ∈ Obj(C) will be the categorical
counterpart of a goal of sort σ. It is the standard indexed/fibrational categorical
interpretation of full first order logic, as can be found in, e.g. [24, 16].

To simplify the presentation, we begin without any kind of monoidal struc-
ture in the fibers. These means we are not able to handle conjunction in goals
externally and compositionally: we are restricted to so-called binary clauses.
However, adding monoidal structures is quite straightforward, and it has been
done in [1].

1.2 Notation

We will assume the reader is familiar with the basic concepts of logic program-
ming [2] and category theory [5]. Here, we only give some brief definitions and
notation. Basic categorical background for logic programming can be found in
e.g. [14, 18]

Given a category C, we denote by Obj(C) and Mor(C) the corresponding
classes of objects and morphisms (arrows). With idA we denote the identity
arrow for the object A, while 1 is the terminator, × the product and ∨ denotes
coproducts. We use ∨ as a functor, applying it to objects and arrows as well.
Given f : A −→ B and g : B −→ C, we write f ; g for their composition. With
HomC(A,B) we denote the class of morphisms from A to B in C. We omit the
index C when it is clear from the context. Given a functor F : C −→ C, a fixpoint
for F is a pair (σ, t) such that t : Fσ −→ σ is an isomorphism.

We denote sequences by writing one after the other its elements. We use λ
to denote an empty sequence and · as the juxtaposition operator.

A (strict) indexed category over C is a functor P : Co −→ Cat, where C
o is

the opposite category of C and Cat is the category of all small categories. We
refer to objects and arrows in C

o with the same symbols of their counterparts
in C. Given σ ∈ Obj(Co), the category Pσ is the fiber of P over σ. An indexed
functor from P : Co −→ Cat to Q : Do −→ Cat is a pair (F, τ) such that F : C −→ D

is the change of base functor and τ : P −→ F o ; Q is a natural transformation.
An indexed natural transformation η : (F, τ) −→ (F ′, τ ′) : P −→ Q is given by a
pair (ξ, δ) such that ξ : F −→ F ′ is a natural transformation and δ is a C-indexed



family of natural transformations

δσ : τσ −→ τ ′σ;Q(ξσ) (1)

subject to some coherence conditions. A detailed treatment of indexed categories
and fibrations can be found in [16].

2 Syntax

In the following, we introduce several kinds of indexed categories called doctrines
[19]. We abuse terminology, since a doctrine is generally understood to be an
indexed category where reindexing functors have left adjoints, and this property
does not always holds for our doctrines. We have chosen this terminology to
emphasize the relation between indexed categories used for the syntax and the
semantics (which are actually Lawvere doctrines).

Definition 1 (Logic programming doctrine). An LP doctrine (logic pro-
gramming doctrine) is an indexed category P over a base category C. For each
σ ∈ Obj(C), objects and arrows in Pσ are called goals and proofs (of sort σ)
respectively. Given a goal G of sort σ and f : ρ −→ σ in C, Pf(G) is an instance
of G. We also denote it by f ♯G or G(f).

We write G : σ and f : σ as a short form for G ∈ Obj(Pσ) and f ∈ Mor(Pσ).
Given an LP doctrine P, a clause (of sort σ) is a name cl , with an associated

pair (Tl,Hd) of goals of sort σ, that we write as Hd
cl
←− Tl.

Definition 2 (Logic program). A logic program is a pair (P,P) where P is
an LP doctrine and P a set of clauses. We often say that P is a program over
P.

It is possible to see a logic program as an indexed category P over Obj(C)
such that Pσ is the category of goals of sort σ with arrows given by clauses of
sort σ.

The idea underlying the framework is that the base category represents the
world of all possible states to which program execution can lead. At each state,
the corresponding fiber represents an underlying theory: a set of deductions
which can always be performed, independently of the actual program. A clause
is a new deduction, which we want to consider, freely adjoined to the proofs in
the fibers.

The advantage of using categories is that we do not need to restrict our
interest to syntactical terms and goals. We can choose any base category we
desire and build binary logic programs over terms which are interpreted already
at the syntactic level in the base.

Example 3 (Binary logic programs). Assume C is a finite product category. We
can think of C as a not necessarily free model of an appropriate many-sorted
signature. We can build a syntactic doctrine for binary logic programs where



terms are arrows in this category. We need to fix a signature Π for predicates
over C, i.e. a set of predicate symbols with associated sort among Obj(C). We
write p : σ when p is a predicate symbol of sort σ. Then, we define an indexed
category PΠ over C:

– PΠ(σ) is the discrete category whose objects are pairs 〈p, f〉 such that p : ρ
in Π and f : σ −→ ρ is an arrow in C. To ease notation, we write p(f) instead
of 〈p, f〉;

– PΠ(f), where f : ρ −→ σ, is the functor mapping p(t) ∈ Obj(PΠ(σ)) to
p(f ; t).

The interesting point here is that terms are treated semantically. For example,
assume C is the full subcategory of Set whose objects are the sets Ni for every
natural i and p : N is a predicate symbol. If succ and fact are the functions for
the successor and factorial of a natural number, then (succ ; succ ; succ)

♯
(p(3)) =

fact
♯(p(3)) = p(6).

In the previous example, the fibers of the syntactic doctrine were discrete
categories freely generated by a set of predicate symbols. When we define the
concept of model for a program, below, it will be clear we are not imposing any
constraints on the meaning of predicates. In general, we can use more complex
categories for fibers.

Example 4 (Symmetric closure of predicates). In the hypotheses of Example 3,
assume we have two predicate symbols p and symp of sort ρ×ρ, and we want to
encode in the syntactic doctrine the property that symp contains the symmetric
closure of p. Then, we freely adjoin to PΠ the following two arrows in the fiber
ρ× ρ:

r1 : p −→ symp ,

r2 : p −→ symp(〈π2, π1〉) ,

where π1 and π2 are the obvious cartesian projections. We call Psymp
Π the new

LP doctrine we obtain. The intuitive meaning of the adjoined arrows is evident.

3 Models

A key goal of our treatment is to consider extensions to definite logic programs
without losing the declarative point of view, namely by defining a corresponding
straightforward extension of the notion of model for a program.

Functors (F, τ) of LP doctrines will be called interpretations. For every goal
or proof x in the fiber σ, we write τσ(x) as JxKσ. We also use JxK when the fiber
of x is clear from the context.

Definition 5 (Models). Given a program P over the doctrine P, a model of
P is a pair (J K , ι) where J K : P −→ Q is an interpretation and ι is a function

which maps a clause Hd
cl
←− Tl ∈ P to an arrow JHdK

ι(cl)
←−−− JTlK.



In the following, a model M = (J K , ι) will be used as an alias for its con-
stituent parts. Hence, M(cl) will denote ι(cl) and Mσ(G) will denote JGKσ. The
composition of M with an interpretation N is given as the model (J K ;N, ι ;N).

Example 6 (Ground answers for binary logic programs). Consider the LP doc-
trine PΠ defined in Example 3 and the indexed category Q over C such that

– for each σ ∈ Obj(C), Q(σ) = ℘(HomC(1, σ)), which is an ordered set viewed
as a category;

– for each f ∈ HomC(σ, ρ), Q(f)(X) = {r ∈ HomC(1, σ) | r ; f ∈ X}.

An interpretation J K maps an atomic goal of sort σ to a set of arrows from the
terminal object of C to σ. These arrows are indeed the categorical counterpart
of ground terms.

Two significant models are given by the interpretations which map every goal
G of sort σ to Hom(1, σ) or to ∅. Clauses and arrows are obviously mapped to
identities. If we see Hom(1, σ) as the true value and ∅ as false, they correspond
to the interpretations where everything is true or everything is false.

When the syntactic doctrine is discrete, as in the previous example, an inter-
pretation from P to Q can map every object in P to every object in Q, provided
this mapping is well-behaved w.r.t. reindexing. However, in the general case,
other restrictions are imposed.

Example 7. Assume the hypotheses of Example 4. Consider the LP doctrine Q as
defined in Example 6. An interpretation J K from P

symp
Π to Q is forced to map the

arrows r1 and r2 to arrows in Q. This means that JsympK ⊇ JpK and JsympK ⊇
Jp(〈π2, π1〉)K, i.e. JsympK ⊇ JpK ; 〈π2, π1〉. In other words, the interpretation of
symp must contain both the interpretation of p and its symmetric counterpart.

One of the way to obtain a model of a program P over P is freely adjoining
the clauses of P to the fibers of P. We obtain a free model of P over P.

Definition 8 (Free model). A model M of (P,P) is said to be free when,
for each model M ′ of (P,P), there exists an unique interpretation N such that
M ′ = M ;N .

It is easy to prove that, if M and M ′ are both free models for a program
(P,P) in two different logic doctrines Q and R, then Q and R are isomorphic.

4 Operational Semantics

Our logic programs also have a quite straightforward operational interpretation.
Given a goal G of sort σ in a program (P,P), we want to reduce G using both
arrows in the fibers of P and clauses. This means that, if x : G←− Tl is a clause
or a proof in P, we want to perform a reduction step from G to Tl.



In this way, the only rewritings we can immediately apply to G are given by
rules (proofs or clauses) of sort σ. It is possible to rewrite using a clause cl of
another sort ρ only if we find a common “ancestor” α of σ and ρ, i.e. a span

α
t1

~~⑦⑦
⑦⑦
⑦ t2

��
❅❅

❅❅
❅

σ ρ

(2)

in the base category such that G and the head of cl become equal once they are
reindexed to the fiber α.

Definition 9 (Unifier). Given two goals G1 : σ1 and G2 : σ2 in an LP doctrine
P, an unifier for them is a span 〈t1, t2〉 of arrows of the base category such that
t1 : α −→ σ1, t2 : α −→ σ2 and t1

♯G1 = t2
♯G2

Unifiers for a pair of goals form a category Unif G1,G2
where arrows from

〈t1, t2〉 to 〈r1, r2〉 are given by the common notion of arrow between spans, i.e.
a morphism f : dom(t1) −→ dom(r1) such that f ; r1 = t1 and f ; r2 = t2.

Definition 10 (MGU). A most general unifier (MGU) for goals G1 : σ1 and
G2 : σ2 in an LP doctrine P is a maximal element of Unif G1,G2

.

Example 11 (Standard mgu). Consider the indexed category PΠ as in Example
3. Given goals p1(t1) : σ1 and p2(t2) : σ2, an unifier is a pair of arrows r1 : α −→ σ1

and r2 : α −→ σ2 such that the following diagram commute:

α
r1

//

r2

��

σ1

t1

��
σ2

t2

// ρ

(3)

This is exactly the definition of unifier for renamed apart terms t1 and t2 given
in [3], which corresponds to unifiers in the standard syntactic sense. Moreover,
the span 〈r1, r2〉 is maximal when (3) is a pullback diagram, i.e. a most general
unifier.

Note that in the standard syntactic categories with freely adjoined predicates
there is no unifier between goals p1(t1) and p2(t2) if p1 6= p2. However, this does
not hold in our more general setting. Actually, in a completely general doctrine,
we have a notion of logic program and execution without any notion of predicate
symbol at all.

In the same way, it is possible to reduce a goalG : σ with a proof f : Hd←− Tl
in the fiber ρ iff there exists an arrow r : ρ −→ σ such that r♯G = Hd. We
call a pair 〈r, f〉 with such properties a reduction pair. Reduction pairs form a
category such that t ∈ Mor(C) is an arrow from 〈r1, f1〉 to 〈r2, f2〉 if r1 = t; r2
and t♯f2 = f1. A most general reduction pair is a maximal reduction pair. Note
that most general unifiers or reduction pairs do not necessarily exist. This is not
a big problem since all the theory we develop works the same.

Following these ideas, it is possible to define a categorical form of SLD deriva-
tion.



Definition 12 (Categorical derivation). Given a program (P,P), we define
a labeled transition system (

⊎

σ∈Obj(C) Obj(Pσ), ❀) with goals as objects, ac-
cording to the following rules:

backchain-clause G ❀

〈r, t, cl〉
t♯Tl if cl is a clause Hd

cl
←− Tl and 〈r, t〉 is an

unifier for G and Hd (i.e. r♯G = t♯Hd);

backchain-arrow G ❀

〈r, f〉
Tl if G is a goal in the fiber σ, f : Hd ←− Tl is a

proof in the fiber ρ and 〈r, f〉 is a reduction pair for G.

A categorical derivation is a (possibly empty) derivation in this transition sys-
tem.

If we restrict SLD-steps to the use of most general unifiers and most general
reduction pairs, we have a new transition system (

⊎

σ∈Obj(C) Obj(Pσ), ❀g) and

a corresponding notion of most general (m.g.) categorical derivation. In the
following, when not otherwise stated, everything we say about derivations can
be applied to m.g. ones.

If there are goals G0, . . . ,Gi and labels l0, . . . , li−1 with i ≥ 0 such that

G0 ❀

l0 G1 · · ·Gi−1 ❀

li−1 Gi (4)

we writeG0 ❀

d ∗ Gi where d = l0 · · · li−1 is the string obtained by concatenating
all the labels. Note that d 6= λ uniquely induces the corresponding sequence of
goals. We will write ǫG for the empty derivation starting from goal G.

Given a derivation d, we call answer of d (and we write answer(d)) the arrow
in C defined by induction on the length of d as follows

answer(ǫG) = idσ if G : σ

answer(〈r, f〉 · d) = answer(d) ; r

answer(〈r, t, a〉 · d) = answer(d) ; r

In particular, we call most general answers the answers corresponding to m.g.
derivations.

Example 13 (Standard SLD derivations). Consider a program P in the syntactic

doctrine PΠ and a goal p(t1) of sort σ. Given a clause p(t2)
cl
←− q(t), and an mgu

〈r1, r2〉 for p(t1) and p(t2), we have a most general derivation step

p(t1) ❀

〈r1, r2, cl〉
g q(r2; t) . (5)

This strictly corresponds to a step of the standard SLD derivation procedure for
binary clauses and atomic goals.

However, in the categorical derivation, it is possible to reduce w.r.t. one of
the identity arrows of the fibers. Therefore, if p(t) : σ,

p(t) ❀

〈idσ, idp(t)〉
gp(t) (6)



is an identity step which does not have a counterpart in the standard resolution
procedure. However, these steps have an identity answer. Therefore, fixing a goal
p(t), the set

answer{d | d : p(t) ❀g
∗ G} (7)

is the set of partial answers for the goal p(t).

We can use categorical derivations to build several interesting models for logic
programs. In particular, with the answer function we can build models which are
the general counterpart of partial computed answers, correct answer and ground
answers.

Example 14 (Model for ground answers). Consider a program P in PΠ and an
interpretation J K in the LP doctrine Q defined in Example 6, such that

Jp(t)K = {answer(d) | d : p(t) ❀g
∗ G is a m.g. ground derivation} , (8)

where a ground derivation is a derivation whose last goal is in the fiber P(1).

Now, for each clause p1(t1)
cl
←− p2(t2), if d is a m.g. ground derivation of p2(t2),

then
d′ = p1(t1) ❀

〈id, id, cl〉
p2(t2) · d (9)

is a m.g. ground derivation for p1(t1) with answer(d′) = answer(d). Therefore,
Jp1(t1)K ⊇ Jp2(t2)K and this gives an obvious mapping ι from clauses to arrows
in the fibers of Q. It turns out that (J K , ι) is a model for P .

5 Completeness

Assume given a program P over the LP doctrine P : Co −→ Cat. It is possible to
use categorical derivations to obtain a free model of P . First of all, consider the
following definitions:

Definition 15 (Flat derivations). A derivation is called flat (on the fiber σ)
when all the r fields in the labels of the two backchain rules are identities (on
σ).

Definition 16 (Simple derivations). A derivation is called simple when

– there are no two consecutive backchain-arrow steps,
– there are no backchain-arrow steps with identity arrows f .

Given a derivation d : G1❀G2 with answer(d) = θ, there is a canonical flat
simple derivation d̄ : θ♯G1❀G2 obtained by collapsing consecutive backchain-
arrow steps. If we define a congruence ≡ on derivations such that

d1 ≡ d2 ⇐⇒ answer(d1) = answer(d2) and d̄1 = d̄2 , (10)

it is possible to define an LP doctrine FP over C such that FP (σ) is the category
of equivalence classes of flat simple derivations on the fiber σ.

Now, we can define an interpretation J K = (idC, τ) from P to FP and a
function ι such that:



– τσ(G) = G;

– τσ(f : G −→ G′) =
[

G′
❀

〈idσ, f〉 G
]

≡
;

– ι(Hd
cl
←− Tl) =

[

Hd ❀

〈idσ, idσ, cl〉 Tl
]

≡

We obtain that (J K , ι) is a free model of P , which we will denote by FP . Then,
we have the following corollaries:

Theorem 17 (Soundness theorem). Assume given a program P in P, a goal
G and a model M = (J K , ι) : P −→ Q. If d is a derivation from G to G′

with computed answer θ, there exists an arrow θ♯ JGK
p
←− JG′K in Q, where p =

arrow(d) is defined by induction:

arrow(ǫG) = idG

arrow(d · 〈r, f〉) = r♯(arrow(d)) ; f

arrow(d · 〈r, t, cl〉) = r♯(arrow(d)) ; t♯(ι(cl))

Theorem 18 (Completeness theorem). Assume given a program P in P,
a free model M : P −→ Q and goals G, G′ of sort σ. If there is an arrow
f : M(G) −→M(G′) in the fiber M(σ) of Q, then there is a simple flat derivation

G′
❀

d ∗ G.

6 Fixpoint Semantics

Assume we have a program (P,P). We have just defined the notions of SLD
derivations. Now, we look for a fixpoint operator, similar in spirit to the imme-
diate consequence operator TP of van Emden and Kowalski [25]. Starting from
an interpretation J K : P −→ Q, our version of TP gives as a result a new interpre-
tation J K

′
: P −→ Q which, in some way, can be extended to a model of P with

more hopes of success than J K.
Our long term objective is the ability to give fixpoint semantics to all of the

possible programs in our framework. However, in this paper we will restrict our
attention to a subclass of programs which have particular freeness properties.

Definition 19 (Goal Free logic program). A logic program (P,P) is called
goal free when there is a set {X1 : σ1, . . . , Xn : σn} of sorted generic goals with
the following properties:

– P is obtained from an LP doctrine P̄ by freely adjoining the generic goals to
the appropriate fibers of P̄;

– there are no clauses targeted at a goal in P̄.

An instance of a generic goal is called dynamic goal. We want to stress here
that only the meaning of dynamic goals is modified step after step by the fixpoint
construction, while all the goals in P̄ have a fixed meaning. Note that, given
J K : P −→ Q, the interpretation of all the dynamic goals only depends from the
interpretation of generic goals. Intuitively, dynamic goals are those defined by the
program P , and which are modified incrementally by bottom-up approximation.
Fixed goals are the built-in predicates contributed by the ambient theory.



Example 20. If P is a program over the syntactic doctrine PΠ of Example 3,
then it is goal free. Actually, we can define P̄ : Co −→ Cat such that

– for each σ ∈ Obj(C), P̄(σ) = 0, i.e. the empty category;
– for each t ∈ Mor(C), P̄(t) = id0.

Then PΠ is obtained by P̄ freely adjoining a goal p(idσ) for each p : σ ∈ Π.
However, if we consider the syntactic doctrine in Example 4, then a program

P must not have any arrow targeted at p or symp if it wants to be goal free.

In order to define a fixpoint operator with reasonable properties, we require
a more complex categorical structure in the target doctrine Q than in P.

Definition 21 (Semantic doctrine). A semantic LP doctrine Q is an LP
doctrine where

– fibers have coproducts and canonical colimits of ω-chains;
– each reindexing functor Qt has a left-adjoint ∃Qt and preserves on the nose

canonical colimits of ω-chains.

We will drop the superscript Q from ∃Qt when it is clear from the context. If
we only work with finite programs, it is enough for fibers to have only finite
coproducts.

Example 22. Given a finite product category C, consider the indexed category
Q as defined in Example 6. It is possible to turn Q into a semantic LP doctrine.
Actually:

– each fiber is a complete lattice, hence it has coproducts given by intersection
and canonical colimits of ω-chains given by union;

– we can define ∃Qf , with f : ρ −→ σ as the function which maps an X ⊆
HomC(1, ρ) to

∃Qf (X) = {t ; f | t ∈ X} (11)

which is a subset of HomC(1, σ).

We can prove that all the conditions for semantic doctrines are satisfied.

Now, assume we have an interpretation J K = (F, τ) from P to Q, where Q is a
semantic LP doctrine. We want to build step after step a modified interpretation
which is also a model of P . With a single step we move from J K to EP (J K) =
(F, τ ′) where

τ ′σi
(Xi) = JXiK ∨

∨

Xi(t)←−Tl∈P

∃Ft JTlK ,

τ ′σ(Xi(t)) = t♯
(

τ ′σi
(Xi)

)

,

(12)

while τ ′ = τ restricted to P̄. We should define τ ′ on arrows but, since there are
only identities between dynamic goals, the result is obvious.



In the same way, if δ is an arrow between interpretations, we have EP (δ) = δ′,
where

δ′σi,Xi
= δσi,Xi

∨
∨

Xi(t:ρ−→σi)←−Tl∈P

∃Ftδρ,Tl ,

δ′σ,Xi(t)
= t♯

(

δ′σi,Xi

)

,

δ′σ,G = δσ,G if G ∈ Obj(P̄) .

(13)

Since the only non-trivial arrows are in P̄ and δσ is a natural transformation for
each σ, the same can be said of δ′σ. It follows that EP is well defined.

It is interesting to observe that there is a canonical transformation ν between
J K and EP (J K) given by:

νσi,Xi
= JXiKσi

in
−→ E(J K)σi

(Xi) , (14)

νσ,Xi(t) = t♯(ινi,Xi
) , (15)

νσ,G = idG if G ∈ Obj(P̄) , (16)

where in is the appropriate injection. Therefore, we can build an ω-chain

J K
ν
−→ EP (J K)

EP (ν)
−−−−→ E2

P (J K) −→ . . .En
P (J K)

E
n
P (ν)
−−−−→ . . .

and we can prove that the colimit Eω
P (J K) is a fixpoint for EP . Finally, we have

the following:

Theorem 23. Given a program (P,P), a semantic LP doctrine Q and an in-
terpretation J K : P −→ Q, then EP has a least fixpoint greater than J K. Such a
fixpoint can be extended to a model of P in Q.

Example 24. If we write the definition of EP in all the details for the syntactic
doctrine in Example 22, we obtain

EP (J K)σi
(Xi) = JXiK ∪

⋃

Xi(t)←−Xj(r)

{f ; t | f ; r ∈ JXjK , dom(f) = 1} , (17)

EP (J K)σi
(Xi(t)) = {f | f ; t ∈ JTlK} . (18)

If we work with C defined by the free algebraic category for a signature Σ, then
EP (J K) becomes equivalent to the standard TP semantics for logic programs.

Assume C = Set . Moreover, assume we have two predicate symbols p : N and
true : 1 and two clauses p(succ ; succ) ←− p(idN) and p(0) ←− true. Let J K be the
unique interpretation which maps true to Hom(1, 1) and p to ∅. Then, we can
compute successive steps of the EP operator starting from J K, obtaining

E0
P (J K)(p) = ∅

E1
P (J K)(p) = {0}

E2
P (J K)(p) = {0, 2}

...

En
P (J K)(p) = {0, 2, . . . , 2(n− 1)}

(19)



where we identify an arrow f : 1 −→ N with f(·), i.e. f applied to the only element
of its domain. If we take the colimit of this ω-chain, we have

Eω
P (J K)(p) = {f : 1 −→ N | f(·) is even } , (20)

which is what we would expect from the intuitive meaning of the program P .

7 An Example: Binary CLP

We are going to show that our categorical framework can handle quite easily the
broad class of languages known with the name of constraint logic programming
[17]. It is evident we need a categorical counterpart of a constraint system. We
refer to the definition which appears in [22].

Definition 25 (Constraint system). A constraint system over a finite prod-
uct category C is an indexed category over C such that each fiber is a meet
semilattice and reindexing functors have left adjoints.

Now, given a constraint system D over C, let us denote by D the corre-
sponding category we obtain by the Grothendieck construction [16]. To be more
precise:

– objects of D are pairs 〈σ, c〉 where σ ∈ Obj(C) and c ∈ Obj(D(σ));
– arrows in D from 〈σ1, c1〉 to 〈σ2, c2〉 are given by arrows f : σ1 −→ σ2 in C

such that c1 ≤ f ♯c2. We denote such an arrow with (f, c1 ≤ c2).

Given a predicate signature Π over C, we define a new LP doctrine PD
Π over

D. For each 〈σ, c〉 in D, the corresponding fiber is the discrete category whose
objects are of the form c � p(t) with p : ρ in Π and t : σ −→ ρ. For each arrow
(f, c1 ≤ c2), the reindexing functor maps c2 � p(t) to c1 � p(f ; t).

Now, we fix a program P . For each goal c � p1(f) of sort 〈σ, c〉 and clause

c′ � p1(f1)
cl
←− c′ � p2(f2) of sort 〈σ

′, c′〉, let 〈r, t〉 be the mgu of f and f1 in C,
and c′′ = r♯c ∧ t♯c′. Then 〈(r, c′′ ≤ c), (t, c′′ ≤ c1)〉 is an mgu of G and cl in PD

Π .
We can perform a m.g. SLD step

G ❀

〈(r, c′′ ≤ c), (t, c′′ ≤ c′), cl〉
c′′ � p2(t ; f2) . (21)

As a result, a clause that we typically write as p1(t1)←− c� p2(t2), with p1(t1),
p2(t2) and c of sort σ, behaves like a clause c� p1(t1)←− c� p2(t2) of sort 〈σ, c〉
in our framework.

We can also build a semantic doctrine Q over D such that the fiber corre-
sponding to 〈σ, c〉 is the lattice of downward closed subsets of constraints of sort
σ less than c, i.e.

Q(σ, c) = ℘↓{c
′ ∈ Obj(Dσ) | c′ ≤ c}. (22)

Moreover,

Q(f, c1 ≤ c2)(X) =↓ {c1 ∧ f ♯c | c ∈ X} , (23)

∃Q(f,c1≤c2)
(X) =↓ {∃Df c | c ∈ X} . (24)



where ↓ Y is the downward closure of the set of constraints Y . It is easy to check
that these form a pair of adjoint functors and that Q is indeed a semantic LP
doctrine. Therefore, we can compute a fixpoint semantics.

If C is the algebraic category freely generated by an empty set of function
symbols and D is a constraint system on real numbers, consider the program

x2 = y � p(x)←− x2 = y � q(x, y)
x = 2y � q(x, y)←− x = 2y � true

where p, q and true are predicate symbols of sort 〈1,⊤1〉, 〈2,⊤2〉 and 〈0,⊤0〉
respectively. Here, 0, 1 and 2 denote the sorts of all the goals of the corresponding
arity. Moreover, we assume there is a constraint ⊤i for each arity i which is
the top of D(i), preserved by reindexing functors. Assume we start with the
interpretation J K mapping p and q to ∅ and true to D(0). Then, by applying the
EP operator:

EP (J K)(q) = JqK ∪ ∃(id2,x=2y≤⊤2) Jx = 2y � trueK

= (!2, x = 2y)
♯
JtrueK

=↓ {x = 2y}

(25)

where !2 is the unique arrow from 2 to 0. We also have EP (J K)(p) = ∅. At the
second step

E2
P (J K)(p) = EP (J K)(p) ∪ ∃(π2

1 ,x
2=y≤⊤1) EP (J K)(x2 = y � q(x, y))

= ∃(π2
1 ,x

2=y≤⊤1)(id2, x
2 = y ≤ ⊤2)

♯
EP (J K)(JqK)

= ∃(π2
1 ,x

2=y≤⊤1) ↓ {x
2 = y and x = 2y}

=↓ {x = 0 or x = 1/2}

(26)

where π2
1 is the projection arrow from 2 to 1. Moreover, E2

P (J K)(q) = EP (J K)(q)
and we have reached the fixpoint.

8 Conclusions

We have introduced a categorical framework to handle several extensions of logic
programming, based on Horn clauses, but interpreted in a context which is not
necessarily the Herbrand universe. Typical examples of these languages are CLP
[17] and logic programs with built-in or embedded data types [20].

With respect to the stated intentions in Section 1.1, we have not tackled
the problem of programs with constraints on goals when it comes to fixpoint
semantics. From this point of view, the only advantage offered by our framework
is the ability to treat builtins. Goals whose semantics can be modified by clauses
(i.e. dynamic goals) must be freely generated as in [13].

Our categorical structures capture pure clausal programs but require the
addition of monoidal structure to handle conjunctions of categorical predicates



externally. But the addition of monoidal structure is straightforward, and is
described in detail in [1].

We briefly sketch the main ideas. We use monoidal LP doctrines, i.e. LP
doctrine endowed with a monoidal structure for each fiber which is preserved
on the nose by reindexing functors. Given monoidal LP doctrines P and Q, a
monoidal interpretation is an interpretation (F, τ) : P −→ Q such that τσ preserves
on the nose the monoidal structure. This condition means that the semantics
of the conjunction is given compositionally. A monoidal model for (P,P) is a
monoidal interpretation together with a choice function ι for the clauses in P .
We also define a monoidal derivation in the same way as we have done in section
4, but the backchain-clause rule is replaced with the following:

G ❀

〈r, t,G1,G2, cl〉 G1 ⊗ t♯Tl⊗G2 (27)

if Hd
cl
←− Tl is a clause, ⊗ is the monoidal tensor and r♯G = G1 ⊗ t♯Hd⊗G2.

Again, if we define an appropriate equivalence relation on monoidal derivations,
we can build a free monoidal model. Finally, for the fixpoint semantics, every-
thing proceeds as for Section 6, provided that we use monoidal semantic LP
doctrines, i.e. a monoidal LP doctrines with the same properties which hold for
semantic LP doctrines. We just need to add a pair of conditions to the definition
of τ ′σ and δ′σ in (12) and (13), namely,

τ ′σ(G1 ⊗σ G2) = τ ′σ(G1)⊗ τ ′σ(G2) , (28)

δ′σ,G1⊗G2
= δ′σ,G1

⊗ δ′σ,G2
. (29)

Together with the goal-free condition, we also require that clauses only have
atomic goals as heads. Then, all the results we have shown in this paper also
hold for the monoidal case.

Finally, note that we can use weaker structure on the fibers, like premonoidal
structures, to give an account of selection rules [1].

References

1. G. Amato. Sequent Calculi and Indexed Categories as a Foundation for Logic

Programming. PhD thesis, Dipartimento di Informatica, Università di Pisa, 2000.
2. K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Hand-

book of Theoretical Computer Science, volume B: Formal Models and Semantics,
pages 495–574. Elsevier and The MIT Press, 1990.

3. A. Asperti and S. Martini. Projections instead of variables. In G. Levi and
M. Martelli, editors, Proc. Sixth Int’l Conf. on Logic Programming, pages 337–
352. The MIT Press, 1989.

4. R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-
based Bottom-up Abstract Interpretation of Logic Programs. ACM Transactions

on Programming Languages and Systems, 15(1):133–181, 1993.
5. M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall,

New York, 1990.



6. A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for
Logic Programs. Theoretical Computer Science, 122(1–2):3–47, 1994.

7. A. Brogi. Program Construction in Computational Logic. PhD thesis, Dipartimento
di Informatica, Università di Pisa, 1993.

8. M. Comini, G. Levi, and M. C. Meo. A Theory of Observables for Logic Programs.
Information and Computation, 169:23–80, 2001.

9. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of

Logic Programming, 39(1-3):43–93, 1999.
10. A. Corradini and A. Asperti. A categorical model for logic programs: Indexed

monoidal categories. In Proceedings REX Workshop ’92. Springer Lectures Notes
in Computer Science, 1992.

11. A. Corradini and U. Montanari. An algebraic semantics for structured transi-
tion systems and its application to logic programs. Theoretical Computer Science,
103(1):51–106, August 1992.

12. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

13. S. Finkelstein, P. Freyd, and J. Lipton. Logic programming in tau categories. In
Computer Science Logic ’94, volume 933 of Lecture Notes in Computer Science,
pages 249–263. Springer Verlag, Berlin, 1995.

14. S. Finkelstein, P. Freyd, and J. Lipton. A new framework for declarative program-
ming. To appear in Theoretical Computer Science, 2001.

15. P. J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, Elsevier Pub-
lishers, Amsterdam, 1990.

16. B. Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics. North Holland, Elsevier, 1999.

17. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of

Logic Programming, 19–20:503–581, 1994.
18. Y. Kinoshita and A. J. Power. A fibrational semantics for logic programs. In R. Dy-

ckhoff, H. Herre, and P. Schroeder-Heister, editors, Proceedings of the Fifth Inter-

national Workshop on Extensions of Logic Programming, volume 1050 of LNAI,
pages 177–192, Berlin, Mar. 28–30 1996. Springer.

19. A. Kock and G. E. Reyes. Doctrines in categorical logic. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 283–313. North Holland, 1977.

20. J. Lipton and R. McGrail. Encapsulating data in logic programming via categor-
ical constraints. In C. Palamidessi, H.Glaser, and K. Meinke, editors, Principles
of Declarative Programming, volume 1490 of Lecture Notes in Computer Science,
pages 391–410. Springer Verlag, Berlin, 1998.

21. G. Nadathur and D. Miller. An overview of λProlog. In R. A. Kowalski and K. A.
Bowen, editors, Proc. Fifth Int’l Conf. on Logic Programming, pages 810–827. The
MIT Press, 1988.

22. P. Panangaden, V. J. Saraswat, P. J. Scott, and R. A. G. Seely. A Hyperdoctrinal
View of Concurrent Constraint Programming. In J. W. de Bakker et al, editor, Se-
mantics: Foundations and Applications, volume 666 of Lecture Notes in Computer

Science, pages 457–475. Springer-Verlag, 1993.
23. D. Rydeheard and R. Burstall. A categorical unification algorithm. In Category

Theory and Computer Programming, LNCS 240, pages 493–505, Guildford, 1985.
Springer Verlag.

24. R. Seely. Hyperdoctrines, Natural Deduction and the Beck Condition. Zeitschrift

für Math. Logik Grundlagen der Math., 29(6):505–542, 1983.
25. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a

programming language. Journal of the ACM, 23(4):733–742, 1976.


