
A general framework for variable aliasing:
Towards optimal operators for sharing properties

Gianluca Amato1 and Francesca Scozzari2

1 Dipartimento di Scienze, Università di Chieti-Pescara.
2 Dipartimento di Informatica, Università di Pisa.

amato@sci.unich.it, scozzari@di.unipi.it

Abstract. We face the problem of devising optimal unification oper-
ators for sharing and linearity analysis of logic programs by abstract
interpretation. We propose a new (infinite) domain ShLinω which can
be thought of as a general framework from which other domains can
be easily derived by abstraction. The advantage is that ShLinω is en-
dowed with very elegant and optimal abstract operators for unification
and matching, based on a new concept of sharing graph which plays the
same role of alternating paths for pair sharing analysis. We also provide
an alternative, purely algebraic description of sharing graphs. Starting
from the results for ShLinω, we derive optimal abstract operators for
two well-known domains which combine sharing and linearity: ShLin2

by Andy King and the classic Sharing× Lin.

1 Introduction

In the field of static analysis of logic programs by abstract interpretation [7, 8],
the property of sharing has been the object of many works, both on the theoreti-
cal and practical point of view. The goal of (set) sharing analysis is to detect sets
of variables which share a common variable in the answer substitutions. Typical
applications of sharing analysis are in the fields of optimization of unification
[21] and parallelization of logic programs [10].

It is now widely recognized that the original domain proposed for sharing
analysis, namely Sharing [18, 13] by Jacobs and Langen, is not very precise,
so that it is often combined with other domains for treating freeness, linearity,
groundness or structural information (see [3] for a comparative evaluation). In
particular, adding some kind of linearity information seems to be very profitable,
both for the gain in precision and speed which can be obtained, and for the fact
that it can be easily and elegantly embedded inside the sharing groups (see [14]).
However, optimal operators for combined analysis of sharing and linearity have
never been devised, neither for the domain ShLin2 [14], nor for the more broadly
adopted Sharing× Lin [9, 20] or ASub [4]. The lack of optimal operators brings
two kinds of disadvantages: first, the analysis obviously looses in precision when
using sub-optimal abstract operators; second, computing approximated abstract
objects can lead to a speed-down of the analysis. The latter is typical of sharing
analysis, where abstract domains are usually defined in such a way that, the less

information we have, the more abstract objects are complex. This is not the case
for other kind of analyses, such as groundness analysis, where the complexity of
abstract objects may grow accordingly to the amount of groundness information
they encode. The role played by linearity in the unification process has never
been fully clarified. The traditional domains which combine sharing and linearity
information are too abstract to capture in a clean way the effect of repeated
occurrences of a variable in a term and most of the effects of (non-)linearity are
obscured by the abstraction process. In this paper, we investigate the interaction
between sharing and linearity, and provide optimal abstract operators for two
well-known domains which combine these properties. We start by introducing our
concrete goal-dependent framework which is based on [6], with the improvements
introduced in [1] concerning backward unification. We propose a slightly modified
domain of substitutions, which are quotiented modulo an appropriate renaming
w.r.t. the variables which are not of interest (see Jacobs and Langen’ domain
ESubst [13]). We define two operations of unification and matching which are
used as an intermediate step toward the semantics functions for forward and
backward unifications.

Inspired by ShLin2, we propose an abstract domain which is able to encode
the amount of non-linearity, i.e., which keeps track of the exact number of occur-
rences of the same variable in a term. The domain we obtain is very simple and
elegant, but cannot be directly used for static analysis, at least without resorting
to widening operators, since it contains infinite ascending chains. However, in
this domain the role played by (non-)linearity is manifest, and the optimal ab-
stract operators for unification and matching [9, 16, 1] assume a very clean form.
The cornerstone of the abstract unification is the concept of sharing graph which
plays the same role of alternating paths [21, 15] for pair sharing. A sharing graph
is a graph theoretic notion to figure out sharing groups which are combined dur-
ing the unification process to obtain a new sharing group. The use of sharing
graphs offers a new perspective to look at single variables in the process of uni-
fication, and simplify the proofs of correctness and optimality of the abstract
operators. We also provide a purely algebraic characterization of the results,
which can help in implementing the domain by making use of widening opera-
tors and in devising abstract operators for further abstractions of ShLinω. We
show that the domains ShLin2 and Sharing× Lin can be immediately obtained
as abstractions of ShLinω and we provide the optimal operators for unification
and matching. We also provide a simplified version of the operators for the do-
main Sharing× Lin which is still correct, but which is optimal for one-binding
substitutions only. We show that unification between an abstract object and a
substitution cannot be computed one binding at a time while remaining optimal.
Finally, we conclude with some open questions for future work.

2 Notation

Let N+ be the set of natural numbers without zero. A (finite) multiset is a map
X : X →N+ where X is a finite set called the support of X and denoted by TXU.

We often denote a multiset as {{v1, . . . , vn}} where v1, . . . , vn is a sequence of
elements with repetitions. We also use the polynomial notation X = vi11 , . . . , v

in
n

to denote a multiset with support {v1, . . . , vn} such that X(vk) = ik. We extend
the functional notation for multiset by writing X(v) = 0 if v /∈ TXU.

If S is a set, a multiset over S is a multiset whose support is a subset of S.
We denote by ℘m(S) the set of multisets over S and we write X ⊆m S as an
alternative for X ∈ ℘m(S). Any set S used as an argument to a multiset operator
stands for the multiset with support S and such that S(x) = 1 for all x ∈ S. We
denote by X|S the multiset defined as X(v) if v ∈ S, 0 otherwise. |X| will denote
the number of elements in X including repeated elements, i.e.,

∑
x∈TXUX(x)

when X 6= ∅, 0 otherwise. If E is any expression involving a variable x, we write∑
x∈X E(x) as a short form for

∑
x∈TXUX(x) ·E(x). We use either {{}} or ∅ for

the multiset whose support is empty, while union and intersection of multisets
are denoted by d and e. If X = {{X1, . . . , Xm}} is a multiset of multisets, then
dX = X1 d · · · d Xm. We also use the notation di∈{1,...,m}Xi with the same
meaning.

Let Atoms, Clauses, Body and Progs be the syntactic categories for atoms,
clauses, bodies and programs respectively, where λ ∈ Body stands for the empty
body. We denote by Subst and ISubst the sets of substitutions and idempotent
substitutions respectively, by ε the empty substitution and by Ren the set of
renamings (i.e., invertible substitutions). Given a substitution θ, dom(θ) and
rng(θ) denote the domain and range of θ. Let V be a denumerable set of variables.
Given v ∈ V and a term t, we denote by vars(t) the set of variables occurring in
t and by occ(v, t) the number of occurrences of v in t.

3 The Concrete Semantics

Our analysis is based on a (collecting) goal-dependent semantics for logic pro-
grams. We look for a concrete domain where substitutions explicitly show their
variables of interest, which are “independent” from the other variables. This
choice is motivated from the fact that, in practice, one needs to keep track of
the current variables of interest during the analysis. Several semantics in the
literature present these characteristics, e.g. the semantics in [19] based on ex-
equations, [6] using idempotent substitutions and that in [13] based on the do-
main ESubst of existential substitutions. The latter semantics is probably the
most appropriate to our goal, but it is based on a non-standard definition of sub-
stitution and the relation between the unification operator on ESubst and the
standard one, although clear, is not well stated. Moreover, most of the research
in combining sharing and linearity information has been done on the domain
defined in [6], so that founding our work on a different framework would make
difficult the comparison of our results to the literature. Therefore, we work with
[6] and show that with an appropriate equivalence relation on substitutions, one
can obtain an equivalent semantics over existential substitutions.

3.1 Concrete Domain and Operators

The concrete domain is Rsub = (℘(ISubst)× ℘f (V)) ∪ {⊥Rs,>Rs} (see [6] for a
detailed introduction). Rsub is partially ordered as follows: ⊥Rs is the bottom
element, >Rs the top and [Θ1, U1] ≤Rs [Θ2, U2] if and only if U1 = U2 and
Θ1 ⊆ Θ2. Rsub is a complete lattice w.r.t. ≤Rs. The least upper bound of Rsub
is denoted by tRs.

We briefly recall the concrete operations proposed in [6] and refined in [1] with
the introduction of two different operators for forward and backward unification.
The concrete projection πRs : Rsub× Rsub→ Rsub is defined as:

πRs(⊥Rs, A) = πRs(A,⊥Rs) = ⊥Rs

πRs(>Rs, A) = πRs(A,>Rs) = >Rs when A 6= ⊥Rs

πRs([Θ1, U1], [Θ2, U2]) = [Θ1, U1 ∩ U2]

In the following, for the sake of conciseness, we define the behavior of the concrete
and abstract operators only in case all the arguments are different from ⊥Rs and
>Rs. We implicitly assume that the result is ⊥Rs if any of the argument is ⊥Rs,
>Rs when any of the argument is >Rs and no argument is ⊥Rs. The concrete
forward unification is Uf

Rs : Rsub× ℘f (V)× Atoms× Atoms→ Rsub such that:

Uf
Rs([Θ,U1], U2, A1, A2) = [{mgu(ρ1(θ), δ) | θ ∈ Θ,

δ = mgu(ρ1(A1) = A2)}, ρ1(U1) ∪ U2]

where (ρ1, ρ2) = Apart(U2), provided vars(A1) ⊆ U1 and vars(A2) ⊆ U2, ⊥Rs

in all the other cases. We still need to define Apart . Given U2 ∈ ℘f (V), take
a partition {V1, V2} of V such that V1 and V2 are infinite and U2 ⊆ V2. Then
Apart(U2) = (ρ1, ρ2) where ρ1 : V →V1 and ρ2 : V →V2 are bijections such
that, for each x ∈ U2, ρ2(x) = x. We apply such bijections to syntactic objects
as if they were substitutions: in other words, if ρ is one of such bijections and
θ = {x1/t1, . . . , xn/tn}, then ρ(θ) = {ρ(x1)/ρ(t1), . . . , ρ(xn)/ρ(tn)}.

The backward unification is defined by exploiting the relation �U⊆ Subst ×
Subst , which formalizes the fact that a substitution is an instance of another one
w.r.t. a fixed set of variables of interest U ∈ ℘f (V):

σ �U σ′ ⇐⇒ ∃δ ∈ Subst .∀x ∈ U.σ(x) = δ(σ′(x)) . (1)

For instance {x/a, y/u} �{x,y} {y/v}, since we may choose δ = {x/a, v/u}, al-
though this is not the case with the standard instance ordering on substitutions.
Note that {x/a, y/u} 6�{x,y,v} {y/v}.

The concrete backward unification Ub
Rs : Rsub×Rsub×Atoms×Atoms→ Rsub

is given by:

Ub
Rs([Θ1, U1], [Θ2, U2], A1, A2) = [{mgu(ρ1(σ1), ρ2(σ2), δ) | σ1 ∈ Θ1, σ2 ∈ Θ2,

δ = mgu(ρ1(A1), A2), ρ1(σ1) �ρ1(U1) mgu(ρ2(σ2), δ)}, ρ1(U1) ∪ U2] .

where (ρ1, ρ2) = Apart(U2), provided vars(A1) ⊆ U1, vars(A2) ⊆ U2, ⊥Rs in
all the other cases. Here we improve over the standard unification by requir-
ing that ρ1(σ1) (the exit substitution) is an instance of mgu(ρ2(σ2), δ) (the
entry substitution) w.r.t. the variables of the calling atom [9]. By using the pre-
viously defined operators, we provide a goal-dependent, bottom-up semantics
for logic programs. A denotation is an element in the set of monotonic maps
Den = Atoms→ Rsub→ Rsub and the semantic functions P : Progs→Den,
C : Clauses→Den→Den and B : Body→Den→ Rsub→ Rsub are defined ac-
cording to [1] as follows.

PJP K = lfpλd.

(⊔
cl∈P

CJclKd

)
CJH ← BKdAx = πRs(U

b
Rs(x

′, x,H,A), x)

where x′ = BJBKd(πRs(U
f
Rs(x, vars(H ← B), A,H), [∅, vars(H ← B))]

BJλKdx = x

BJA,BKdx = BJBKd(dAx)

Given a program P and an atom A, the set of computed answers for A in P is
given by PJP KA([{ε}, vars(A)]).

3.2 A Different Concrete Domain

It turns out that the domain of idempotent substitutions is too concrete for the
above semantics of logic programs. Given a goal p(x, y) in a program P , we do
not really want to distinguish between the answers {x/y}, {y/x} and {x/u, y/u}.
Note that while {x/y} and {y/x} can be obtained from each other by renaming,
the same does not hold for {x/y} and {x/u, y/u}. Actually, in the literature we
find several alternatives to solve this problem, like ex-equations [19], Herbrand
constraints and the domain of existential substitutions ESubst [13]. The common
viewpoint is that substitutions are viewed as constraints and that variables which
are not of interest (like u in the previous example) are existentially quantified.
We show that such domains naturally arise as appropriate equivalence classes
of substitutions. Given two substitutions θ and θ′ and a set of variables U , we
define the equivalence relation:

θ ∼U θ′ ⇐⇒ ∃ρ ∈ Ren.∀v ∈ U. θ(v) = ρ(θ′(v)) (2)

which is the equivalence relation induced by the preorder �U . By exploiting this
relation, we can define a new domain ISubst∼ of existential substitutions as the
disjoint union of all the ISubst∼U

, for U ∈ ℘f (V):

ISubst∼ =
⊎

U∈℘f (V)

ISubst∼U
.

In the following we write [θ]U for the equivalence class of θ w.r.t. ∼U . For ex-
ample, if U = {x, y}, then [{x/y}]U = [{y/x}]U = [{x/u, y/u}]U . However, if

U ′ = {x, y, u}, so that u is included in the variables of interest, we have that
[{x/y}]U ′ = [{y/x}]U ′ 6= [{x/u, y/u}]U ′ .

Given U, V ∈ ℘f (V), [θ1]U , [θ2]V ∈ ISubst∼, we define:

mgu([θ1]U , [θ2]V) = [mgu(θ′1, θ
′
2)]U∪V

where θ′1 ∼U θ1, θ′2 ∼U θ2, dom(θ′1) = U , dom(θ′2) = V and rng(θ′1)∩rng(θ′2) = ∅.
It can be proved that the definition does not depend from the choice of repre-
sentatives. It is worth noting that the resultant domain ISubst∼ is isomorphic to
the domain ESubst by Jacobs and Langen [13], which is based on a non standard
definition of substitution.

By exploiting the domain ISubst∼ we can define a domain which is a complete
abstraction of Rsub. We lift the equivalence ∼U to Rsub.

[Θ1, U1] ∼ [Θ2, U2] ⇐⇒ U1 = U2 and ∀θ ∈ Θ1∃θ′ ∈ Θ2.θ ∼U1
θ′ and vice versa

(3)
As shown in [1], ∼ is a congruence w.r.t. to the operations in Rsub. Since
[{σ}, U] ∼ [{σ′}, U] iff σ ∼U σ′ and moreover [Θ,U] =

⊔
Rs{[{σ}, U] | σ ∈ Θ},

it turns out that Rsub∼ (the quotient set of Rsub w.r.t. ∼) is isomorphic to the
following domain:

Psub = {[Σ,U] | Σ ⊆ ISubst∼U
, U ∈ ℘f (V)} ∪ {⊥Ps,>Ps}.

In the following, given [Σ,U] ∈ Psub, we will abuse the notation and write
θ ∈ Σ for [θ]U ∈ Σ. The operators and semantic functions over Rsub induce
corresponding operators on Psub by means of the isomorphism between Psub

and Rsub∼. First of all, let us define the auxiliary operations of unification and
matching. Forward and backward unification will be built starting from them.
The concrete unification unifPs : Psub× ISubst × ℘f (V)→ Psub is given by:

unifPs([Σ,U], δ, V) = [{mgu([σ]U , [δ]V) | [σ]U ∈ Σ}, U ∪ V]

provided vars(δ) ⊆ V . It is worth noting that when V = U , this is the standard
unification which is usually considered in the literature on sharing. It is possible
to define unifPs to take an argument in ISubst∼ instead of a substitution and
a set of variables. However, this would make the operation more general, since
not all the elements of ISubst∼ admits a representative [θ]U with vars(θ) ⊆ U .
Using this definition of unifPs, we are actually restricting our attention to this
case, which simplifies the presentation of the abstract operators.

We then define the matching operation matchPs : Psub× Psub→ Psub as:

matchPs([Θ1, U1], [Θ2, U2]) = [{mgu([θ1]U1
, [θ2]U2

) |
θ1 �U1

θ2, [θ1]U1
∈ Θ1, [θ2]U2

∈ Θ2}, U2]

provided U1 ⊆ U2. These can be used to define the forward and backward unifi-
cation over Psub as follows:

Uf
Ps([Σ,U1], U2, A1, A2) = unifPs(ρ1([Σ,U1]),mgu(ρ1(A1) = A2), U2)

Ub
Ps([Σ1, U1], [Σ2, U2], A1, A2) =

matchPs(ρ1([Σ1, U1]), unifPs([Σ2, U2],mgu(ρ1(A1) = A2), ρ1(U1)))

where (ρ1, ρ2) = Apart(U2). These can be easily proved to correspond to the
ones for Rsub∼ with simple algebraic manipulations.

4 The abstract domain ShLinω

In this section we define a new abstract domain ShLinω. Since it is infinite and
contains infinite ascending chains, it cannot be directly used for the analysis. It
should be thought of as a general framework from which other domains can be
easily derived by abstraction. The idea underlying the construction of ShLinω

is to count the exact number of occurrences of the same variable in a term.
In this way, it extends the standard domain Sharing by recording, for each
v ∈ V and θ ∈ ISubst , not only the set {w | v ∈ vars(θ(w))} but the pairs
{〈w, occ(v, θ(w))〉 | v ∈ vars(θ(w))} with the use of multisets. We call ω-sharing
group a multiset of variables and we build a domain which works on ω-sharing
groups.

ShLinω = {[S,U] | U ∈ ℘f (V), S ⊆ ℘m(U), S 6= ∅ ⇒ ∅ ∈ S} ∪ {⊥ω,>ω} (4)

where ⊥ω is the least element, >ω is the greatest and [S1, U1] ≤ω [S2, U2] iff
U1 = U2 and S1 ⊆ S2. ShLinω is a complete lattice and the l.u.b. is denoted by
tω.

Given a substitution θ and a variable v ∈ V, we denote by θ−1(v) the ω-
sharing group B with support {w | v ∈ vars(θ(w))} and B(w) = occ(v, θ(w)).
Therefore θ−1(v) maps each variable w to the number of occurrences of v in θ(w).
We define the abstraction for a substitution θ w.r.t. the variables of interest in
U :

αU (θ) = {θ−1(v)|U | v ∈ V} . (5)

Intuitively, each B ∈ αU (θ) corresponds to one or more variables which are
shared by all the variables in B, each with the exact number of occurrences.
For example, given θ = {x/t(y, u, u), z/y, v/u} and U = {w, x, y, z}, we have
θ−1(u) = x2vu, θ−1(y) = xyz, θ−1(z) = θ−1(v) = θ−1(x) = ∅ and θ−1(s) = s
for all the other variables (included w). Projecting over U we obtain αU (θ) =
{x2, xyz, w, ∅}. Note that if θ1 ∼U θ2 then αU (θ1) = αU (θ2). Therefore, we
can lift αU to obtain a Galois insertion between Psub and ShLinω as follows:
αω(⊥Rs) = ⊥ω, αω(>Rs) = >ω and

αω([Σ,U]) =
[⋃
{αU (θ) | θ ∈ Σ}, U

]
. (6)

In the following, we will omit to explicitly define the abstraction and concretiza-
tion maps on the top and bottom elements of the domains. The projection op-
eration is defined pointwise in the obvious way:

πω([S1, U1], [S2, U2]) = [{B|U2 | B ∈ S1}, U1 ∩ U2] . (7)

4.1 Unification and Matching

The unification is much more complex and we prefer to characterize the operation
of unification by means of graph theoretic notions. We first need to define the
multiplicity of an ω-sharing group B in a term t as follows:

χ(B, t) =
∑

v∈TBU

B(v) · occ(v, t) . (8)

For instance, χ(x3yz4, t(x, y, f(x, y, z))) = 3 · 2 + 1 · 2 + 4 · 1 = 12. If B ∈ αU (θ)
represents the variable v (i.e., B = θ−1(v) ∩ U) then χ(B, t) is the number of
occurrences of v in θ(t).

A sharing graph is a directed multigraph whose nodes are labeled with sharing
groups. In formulas, it is a tuple 〈N, l, E〉 where N is the finite set of nodes,
l : N→℘m(V) is the labeling function and E ∈ ℘m(N × N) is the multiset of
edges. A balanced sharing graph for the equation t1 = t2 and a set of ω-sharing
groups S is a sharing graph G = 〈N, l, E〉 such that:

1. G is connected;
2. for each node s ∈ N , l(s) ∈ S;
3. for each node s ∈ N , the out-degree of s is equal to χ(l(s), t1) and the

in-degree of s is equal to χ(l(s), t2).

Given a balanced sharing graph G = 〈N, l, E〉, we define the resultant ω-sharing
group of G as res(G) = ds∈N l(s). The set of resultants ω-sharing groups for
t1 = t2 given a set S of sharing groups is denoted by:

mgu(S, t1 = t2) = {res(G) | G is a balanced sharing graph for S and t1 = t2} .

A sharing graph represents a possible way to merge together several sharing
groups by unifying them with a given binding. Assume, for j ∈ {1, 2}, Bj ∈
αU (θ), i.e., there exist vj ∈ V such that Bj = θ−1(vj) ∩ U . When unifying θ
with the binding t1 = t2, we know that mgu(θ, t1 = t2) = mgu(θ(t1) = θ(t2)) ◦ θ
and that θ(ti) contains χ(Bj , ti) instances of vj . An arrow from the sharing
group B1 to B2 represents the fact that, in mgu(θ(t1) = θ(t2)), one of the copies
of v1 is aliased with one of the copies of v2. The third condition for balanced
sharing graphs implies that each copy of vj is aliased with some other variable.
Therefore, we are considering the case when θ(t1) and θ(t2) only differs for the
variables occurring in them. Although this is restrictive in general, it is enough
to reach optimality when equations are reduced to solved normal form.

Example 1. Let S = {ux2, xy, vz, wz, xyz}. The following is a balanced sharing
graph for t(x) = r(y, z) and S:�� ��ux2

0

2

�� ��xy
1

1

�� ��vz
1

0

�� ��xy
1

1

�� ��wz
1

0

//

##

////

//

where pedices and apices on a sharing group B are respectively the value of
χ(B, t(x)) and χ(B, r(y, z)). Therefore uvwx4y2z2 ∈ mgu(S, t(x) = r(y, z)).

Example 2. Let S = {ux2, xy, vz, wz, xyz} and U = {u, v, w, x, y, z}. The fol-
lowing is a balanced sharing graph for x = r(y, y, z) and S:�� ��ux2

0

2

�� ��xyz
3

1

,,
22 __

where pedices and apices on a sharing group B are respectively the value of
χ(B, x) and χ(B, r(y, y, z)). Therefore ux3yz ∈ mgu(S, x = r(y, y, z)). Note
that this sharing group can actually be generated by the substitution θ =
{x/r(v1, v1, v2), y/v2, z/v2, u/v1, v/a, w/a} where a is a ground term. It is the
case that αU (θ) ⊆ S and mgu(θ, x = r(y, y, z)) performs exactly the unification
depicted by the sharing graph. Note that θ(x) = r(v1, v1, v2) and θ(r(y, y, z)) =
r(v2, v2, v2) only differ for the choice of variables. After their unification, the
first occurrence of v1 from θ(x) get aliased with the first occurrence of v2 in
θ(r(y, y, z)). Correspondingly, there is an edge in the sharing graph from θ−1(v1)
and θ−1(v2).

We define mgu(S, θ) with θ ∈ ISubst by induction on the number of bindings:

mgu(S, ε) = ε mgu(S, {x/t}] θ) = mgu(mgu(S, x = t), θ)

where] is the disjoint union of bindings in a substitution. Now, we are ready
to define the abstract unification in ShLinω as:

unifω([S,U1], δ, U2) = [mgu(S ∪ {{{v}} | v ∈ U2 \ U1}, δ), U1 ∪ U2]

provided that vars(δ) ⊆ U2.

Theorem 1. The operation unifω is optimal and correct w.r.t. unifPs

Note that the operation unifω is designed by first extending the domain in order
to include all the variables in U2 and then performing the operation, and that this
construction yields to an optimal abstraction of the concrete unification. This is
not the case for other abstract domains, e.g. Sharing, as shown in [1]. The proof
of correctness is by induction on the number of bindings in the substitution.
The proof of optimality is more complex and it is based on a notion of parallel
abstract unification of multigraphs. We show that parallel unification gives the
same results of the iterated use of the single binding unification.

Concerning the matching operation, assume αω([Σi, Ui]) = [Si, Ui] for i ∈
{1, 2}. If we unify a substitution σ1 ∈ Σ1 with σ2 ∈ Σ2 such that σ1 �U1

σ2,
then σ1 �U1

mgu(σ1, σ2) and thus αU1
(mgu(σ1, σ2)) ∈ S1. Moreover, the sharing

groups in S2 which do not contain any variable in U1 are not affected by the
unification, since the corresponding existential variable does not appear in σ2(v)
for any v ∈ U1. We can now design an abstract matching operation which follows
the above guidelines:

matchω([S1, U1], [S2, U2]) =
[
S′2 ∪

{
X ∈ (S′′2)∗ | X|U1

∈ S1

}
, U1

]

where S′2 = {B ∈ S2 | B|U1
= ∅}, S′′2 = S2 \ S′2 and U1 ⊆ U2. Here we also use

the auxiliary operation ()∗ defined as:

S∗ = {dS | S ∈ ℘m(S)} . (9)

Note that matchω is very similar to the analogous operation for Sharing defined
in [1].

Theorem 2. The operation matchω is optimal and correct w.r.t. matchPs. Fur-
thermore, it is complete when the second argument of matchPs contains a single
substitution.

The forward and backward unification operators Uf
ω and Ub

ω for ShLinω are

obtained by the corresponding definitions Uf
Ps and Ub

Ps for Psub, by replacing
the matching and unification operations with their abstract counterparts. By
exploiting the above results, it is now an easy task to show the following corollary.

Corollary 1. The operators Uf
ω and Ub

ω are correct and optimal w.r.t. Uf
Ps and

Ub
Ps.

4.2 A Characterization for Resultant Sharing Groups

The concept of resultant ω-sharing group, while suggestive and very intuitive,
does not help in practice in the implementation of the operations. Although
ShLinω has not been designed to be directly implemented, some of its abstrac-
tions could. Providing a simpler definition for the set of resultant ω-sharing
groups could help in developing the abstract operators for its abstractions. We
show that given a set S of ω-sharing groups and an equation t1 = t2, the set of
resultant ω-sharing groups has an elegant algebraic characterization.

Theorem 3. Let S be a set of ω-sharing groups and t1, t2 be terms. Then B ∈
mgu(S, t1 = t2) iff B = di∈IBi where I is a finite set, Bi ∈ S for all i ∈ I, and∑

i∈I
χ(Bi, t1) =

∑
i∈I

χ(Bi, t2) ≥ |I| − 1 .

Intuitively, the above condition ensures us that the out-degree and in-degree
of the corresponding sharing graph

∑
i∈I χ(Bi, t1) corresponds to the From the

above theorem, we can now give an algebraic characterization of the abstract
unification operator as follows.

mgu(S, t1 = t2) =

{
dS | S ∈ ℘m(S),

∑
B∈S

χ(B, t1) =
∑
B∈S

χ(B, t2) ≥ |S| − 1

}
.

Example 3. Consider S = {xa, xb, z2, zc} and the equation x = z. Then if we
choose X = {{xa, xb, z2}}, we have χ(X,x) = 2 = χ(X, z) ≥ |X| − 1. Therefore
x2z2ab ∈ mgu(S, x = z). If we take X = {{xa, xb, zc, zc}}, although χ(X,x) =
2 = χ(X, z), we have |X| − 1 = 3. Actually, z2c2x2ab /∈ mgu(S, x = z).

5 Domains for Linearity and Aliasing

In this section we show that two domains for sharing analysis with linearity
information, namely the domain proposed by King in [14] and the classic reduced
product Sharing×Lin, can be obtained as abstraction of ShLinω. This allows us
to design optimal abstract operators for both domains, by exploiting the results
for ShLinω.

5.1 King’s Domain

We first consider the domain for combined analysis of sharing and linearity
introduced by King in [14]. We call 2-sharing group a map o : V →{0, 1,∞}
such that its support ToU = {v ∈ V | o(v) 6= 0} is finite. We write om(x) to
denote o(x) if o(x) ≤ 1, 2 otherwise (where n ≤ ∞ for each n ∈ N). Intuitively,
a 2-sharing group o represents the sets γ2(o) of ω-sharing group given by

γ2(o) = {B ∈ ℘m(V) | ToU = TBU ∧ ∀x ∈ ToU.om(x) ≤ B(x) ≤ o(x)} . (10)

We denote by Sg2(V) the set of 2-sharing groups whose support is a subset of
V . We use a polynomial notation for 2-sharing groups as for ω-sharing groups: a
group o such that ToU = {x, y, z}, o(x) = o(y) = 1 and o(z) =∞ will be denoted
by xyz∞. We also use ∅ for the 2-sharing group with empty support.

The idea is to use 2-sharing groups to keep track of linearity: If o(x) =∞, it
means that the variable x is not linear in the sharing group o. In [14] the number
2 is used as an exponent instead of∞, but we prefer this notation to be coherent
with ω-sharing groups. In the rest of this subsection, we use the term “sharing
group” as a short form of 2-sharing group.

We first need to define an order relation over sharing groups, as follows:

o ≤ o′ ⇐⇒ ToU = To′U ∧ ∀x ∈ ToU. o(x) ≤ o′(x) . (11)

Given a sharing group o, we also define the delinearization operator o2 as the
sharing group o′ ≥ o such that ∀x ∈ ToU.o′(x) = ∞. The operator is extended
pointwise to sets and multisets. The domain we are interested in is the following:

ShLin2 =
{

[S,U] | S ∈ ℘↓(Sg2(U)), U ∈ ℘f (V), S 6= ∅ ⇒ ∅ ∈ S
}
∪{>2,⊥2} (12)

where ℘↓(Sg2(U)) is the powerset of downward closed 2-sharing groups according
to ≤ and [S1, U1] ≤2 [S2, U2] iff U1 = U2 and S1 ⊆ S2. Since we only consider
downward closed sets, we are not able to state that some variable is definitively
non-linear. We define an adjunction with ShLinω via the following concretization
map γ2 : ShLin2→ ShLinω which lifts the one given in (10):

γ2([S,U]) =
[⋃
{γ2(o) | o ∈ S}, U

]
. (13)

It is possible to compose 〈αω, γω〉 with 〈α2, γ2〉 to obtain a Galois insertion
between Psub and ShLin2.

Example 4. Let θ = {x/t(u, u, v), y/t(u, v), z/v} with U = {x, y, z} and con-
sider its abstraction on ShLinω. We obtain αω([{θ}, U]) = [{x2y, xyz}, U] while
α2([{x2y, xyz}, U]) = [{x∞y, xy, xyz}, U], since xy is introduced by the down-
ward closure.

The least upper bound of ShLin2 is given by the downward closure of the
union of the first components. Projection is given by:

π2([S1, U1], [S2, U2]) = [{o|U2
| o ∈ S1}, U1 ∩ U2] , (14)

where o|X(v) is o(v) if v ∈ X, 0 otherwise. Given two sharing groups o and o′

we define:

o�o′ = λv ∈ V.o(v)⊕ o′(v) (15)

where 0 ⊕ x = x ⊕ 0 = x and ∞ ⊕ x = x ⊕ ∞ = 1 ⊕ 1 = ∞. We will use

�{{o1, . . . , on}} for o1� · · ·�on. Note that o2 = o�o. According to the corre-
sponding definition for ω-sharing groups, we also need to define the following
auxiliary function.

S∗ =
{
�S | S ∈ ℘m(S)

}
. (16)

The minimum and maximum multiplicity of o in t are defined as follows:

χm(o, t) =
∑
v∈ToU

om(v) · occ(v, t) χM (o, t) =
∑
v∈ToU

o(v) · occ(v, t) (17)

If B is an ω-sharing group represented by o, i.e., B ∈ γ2(o), then χm(o, t) ≤
χ(B, t) ≤ χM (o, t). Actually, not all the values between χm(o, t) and χM (o, t)
may be assumed by χ(B, t), but this will not affect the precision of the abstract
operators. Note that the maximum multiplicity χM (o, t) either is equal to the
minimum multiplicity χm(o, t) or it is infinite. According to the above definitions,
we can now define the multiplicity of a multiset of sharing groups.

χ(Y, t) =
{
n |

∑
o∈Y

χm(o, t) ≤ n ≤
∑
o∈Y

χM (o, t)
}
. (18)

Again, this is a superset of all the possible values which can be obtained by
combining the multiplicities of all the sharing groups in Y . But, as we will show
later, this definition is sufficiently accurate to allow us to design the optimal
abstract unification operator. This can actually be defined as follows:

mgu(S, x = t) = ↓
{
�Y | Y ⊆m S, ∃n ∈ χ(Y, x) ∩ χ(Y, t). n ≥ |Y | − 1

}
, (19)

where ↓X is the downward closure of X w.r.t. ≤. The basic idea is to check,
for each Y ⊆m S, if there exists an instance of the ω-sharing groups of Y which
satisfies the condition in Theorem 3.

Example 5. Let S = ↓{x∞a, x∞b, x∞c, z∞} and Y = {{x∞a, x∞b, xc, z∞}}. We
have that χ(Y, x) = {n | n ≥ 5} and χ(Y, t(z, z)) = {n | n ≥ 4}. Since t(z, z)
contains two occurrences of z, the “actual” multiplicity of the sharing group z∞

in t(z, z) should be a multiple of 2. But we do not need to check this condition
and can safely approximate this set with {n | n ≥ 4}. Intuitively, this works
because we can always choose a multiple which is contained in both χ(Y, x)
and χ(Y, t) and which is an “actual” multiplicity. For instance, we can take
n = 6 ∈ χ(Y, x) ∩ χ(Y, t(z, z)) and since we have 6 ≥ 3 = |Y | − 1, we get that
the sharing group�Y = x∞abcz∞ belongs to mgu(S, x = t(z, z)).

The same computation may be realized on the concrete side with the substi-
tution θ = {x/t(t(a, a, c), t(b, b, c)), z/t(v, v, v)} on the variables of interest U =
{x, z, a, b, c}. Note that α2 ◦αω([{θ}, U]) = [S,U] and mgu(θ, x = t(z, z)) = θ′ =
{x/t(t(v, v, v), t(v, v, v)), z/t(v, v, v), a/v, b/v, c/v} such that α2 ◦αω([{θ′}, U]) =
[S′, U] with x∞abcz∞ ∈ S′. This shows that the 2-sharing group computed with
the abstract mgu can be obtained with a concrete unification.

By exploiting the particular structure of 2-sharing groups, we can rewrite the
mgu operator in a more constructive way, to be used in practice to implement
the abstract operator. Given a set of sharing groups S and an equation t1 = t2,
we define, for i ∈ {1, 2} and j ∈ N, Sji = {o ∈ S | χM (o, ti) = j}, Si = {o ∈ S |
χM (o, ti) 6= 0}, P ji = Sji \ S3−i, Pi = Si \ S3−i and Ci = Si1 ∩ Si2. We also write
Snli = {o ∈ S | χM (o, ti) > 1}. Note that, if t1 is a variable, Snl1 = S∞1 . Then,
by considering x as t1 and t as t2, we can rewrite the mgu operator as follows.

mgu(S, x = t) = C0 ∪

↓
(
{�X2 | X ⊆ S1 ∪ S2, X ∩ Snl1 6= ∅, X ∩ Snl2 6= ∅}∪

{�X2 | X ⊆ S1
2 , X ∩ Snl1 6= ∅}∪

{o�(�X2) | o ∈ P1, X ⊆ S1
2 , X ∩ Snl1 6= ∅ ∨ o ∈ P∞1 , X ∩ P2 6= ∅}∪

{�X2 | X ⊆ S1
1 , X ∩ Snl2 6= ∅}∪

{o�(�X2) | o ∈ P2, X ⊆ S1
1 , X ∩ Snl2 6= ∅ ∨ o ∈ P∞2 , X ∩ P1 6= ∅}∪

{�X2 | X ⊆ C1} ∪

{o�Y�(�X2) | o ∈ P2, X ⊆ C1, Y ⊆m P 1
1 , |Y | = χM (o, t) ∈ N+}

)
.

(20)

The initial C0 is the set of sharing groups which are not related to any of the
variables in the binding. The next seven cases correspond to different choices of
a multiset S ⊆m S1 ∪ S2 of sharing groups which we want to merge. In the first
case, we require that there is at least a non-linear sharing group for x and t,
while in the second and third case we only require the existence of a non-linear
sharing group for x. The second line corresponds to the case when we do not

have any element in P1, while the third case is applied when there is exactly
one element of P1 in S. The fourth and fifth case are symmetric to the second
and third, when all the sharing groups are linear for x and non-linear for t. Note
that in the third case we could replace Snl1 with S∞1 , since x is a variable, but
the same is not allowed in the fifth case. The sixth and seventh case are applied
when all the sharing groups are linear for x and t, but at most elements in P2

which may have a finite maximum multiplicity. Note that Y in the seventh case
is a multiset, while X is a set in all of its occurrences.

Below we depict a typical sharing graph for the seventh case in (20), assuming
that X = {X1, . . . , Xn}, Y = {{Y1, . . . , Yk}} and χM (o, t) = k > 0.�� ��X1

0

1

�� ��X1

1

1

�� ��X2

1

1

�� ��X2

1

1
· · · · · ·

�� ��Xn

1

1

�� ��Xn

1

1

�� ��Y1
0

1�� ��Y2
0

1�� ��Y3
0

1

...�� ��Yk
0

1

�� ��o
k

0

oo oo oo oo oo oo
ZZ

##
ppnnhh

An interesting property of (20) is that it also works when S is not downward
closed: if ↓S = ↓R then mgu(S, x = t) = mgu(R, x = t). This means that
we do not have to compute and carry on the downward closure of a set but
only its maximal elements. This simplifies the implementation of the abstract
mgu. Moreover, the seven cases are obtained by disjoint choices of the multiset
S ⊆m S1 ∪ S2 of sharing groups, to avoid as much as possible any duplication.

Example 6. Let S = {x∞y, y∞b, y, xa, z} and consider the equation x = y. By
the first case of (20) we obtain x∞y∞b∞ and x∞y∞b∞a∞. From the second
and third case we obtain respectively x∞y∞ and x∞y∞a. The fourth and sixth
case do not generate any sharing group, while from the fifth and seventh we
have respectively y∞x∞a∞b and xya, which are redundant. We also add the
original sharing group z which is not related to either x nor y, which is therefore
contained in C0. The final result is

mgu(S, x = y) = ↓{x∞y∞b∞, x∞y∞b∞a∞, x∞y∞, x∞y∞a, z} .

It is worth noting that S 6= ↓S and that mgu(S, x = y) = mgu(↓S, x = y).

We can now define the abstract unification on ShLin2 by enlarging the do-
main before computing the mgu:

unif2([S,U1], θ, U2) = [{mgu(S ∪ {{{v}} | v ∈ U2 \ U1}, θ}, U2] (21)

The abstract matching follows the same pattern as matchω, and it is defined as:

match2([S1, U1], [S2, U2]) =
[
S′2 ∪ ↓

{
o ∈ (S′′2)∗ | o|U1

∈ S1

}
, U2

]
(22)

where S′2 = {o ∈ S2 | o|U1
= ∅}, S′′2 = S2 \ S′2 and U1 ⊆ U2.

We can prove that both the operators are correct and optimal, and match2
is complete w.r.t. single substitutions in its second argument. The forward and
backward unification operators Uf

2 and Ub
2 for ShLin2 are obtained by the cor-

responding definitions Uf
Ps and Ub

Ps for Psub, by replacing the matching and
unification operations with their abstract counterparts.

Theorem 4. The operators Uf
2 and Ub

2 are correct and optimal w.r.t. Uf
Ps and

Ub
Ps.

5.2 The Domain Sharing× Lin

In this section we deal with the reduced product ShLin = Sharing × Lin. We
briefly recall the definition of the abstract domain and show the abstraction
function from King’s domain ShLin2 to ShLin.

ShLin = {[S,L, U] | U ∈ ℘f (V), S ⊆ ℘(U), (S 6= ∅ ⇒ ∅ ∈ S),

U \ vars(S) ⊆ L ⊆ U} ∪ {⊥sl ,>sl} .

In an object [S,L, U], S encodes the sharing information between the variables
of interest U , while L is the set of linear variable. To be more precise, [S,L, U]
stands for the substitutions θ such that θ(x) is linear for all x ∈ L and Tθ−1(v)U∩
U ∈ S for each v ∈ V. Since ground terms are linear, L contains U \vars(S). Note
that the last component U is redundant since it can be computed as L∪vars(S).

We define [S,L, U] ≤sl [S′, L′, U ′] iff U = U ′, S ⊆ S′, L ⊇ L′. The abstraction
map from ShLin2 to ShLin is defined in the obvious way.

α([S,U]) = [{ToU | o ∈ S}, {x | ∀o ∈ S. o(x) ≤ 1}, U] . (23)

We call sharing group an element of ℘f (V). As for the previous domains, we use
the polynomial notation to represent sharing groups.

Example 7. We keep on Example 4 and compute the abstraction from ShLin2 to
ShLin: α([{x∞y, xy, xyz}, U]) = [{xy, xyz}, {y, z}, U]. Note that the variable x
is nonlinear, and that the domain cannot encode the information that x is linear
in the sharing group xyz while it is not in xy.

The abstract operator for projection is straightforward.

πsl([S1, L1, U1], [S2, L2, U2]) = [{B ∩ U2 | B ∈ S1}, L1 ∩ U2, U1 ∩ U2] . (24)

As far as the abstract unification is concerning, we want to design an abstract
operator over ShLin which is optimal for the unification of a single binding. Fixed

a set L of linear variables, we define the maximum multiplicity of a sharing group
B in a term t as follows:

χLM (B, t) =

{∑
v∈B occ(v, t) if B ∩ vars(t) ⊆ L

∞ otherwise
(25)

We also define the maximum multiplicity of a term t in (S,L) as:

χ(S,L, t) = max
B∈S

χLM (B, t) . (26)

Then we define the abstract unification mgu(S,L, x = t) as the pair (S′, L′)
where S′ is computed as in (20) with χM and � replaced by χLM and ∪ respec-
tively (we can obviously ignore the delinearization operator ()2 sinceB∪B = B).
The set L′ is computed according to the following definition:

L′ = (U \ vars(S′)) ∪

L \ (vars(S1) ∩ vars(S2)) if x ∈ L and χ(S,L, t) ≤ 1

L \ vars(S1) otherwise, if x ∈ L
L \ vars(S2) otherwise, if χ(S,L, t) ≤ 1

L \ (vars(S1) ∪ vars(S2)) otherwise

(27)
where S1 = {B ∈ S | χLM (B, x) 6= 0} and S2 = {B ∈ S | χLM (B, t) 6= 0}.

Example 8. Let S = {xv, xy, zw}, L = {x, y, v, w} and consider the binding
x = t(y, z). Then χLM (xv, t) = 0, since xv ∩ vars(t) = ∅, χLM (xy, t) = 1 and
χLM (zw, t) = ∞. As a result χ(S,L, t) = ∞. In words, it means that the shar-
ing group zw is not linear in t and that t itself is not linear. Note that all
the other sharing groups are linear w.r.t. x since x ∈ L. Applying equation
(20) as stated above, we obtain S′ = {xy, xyzvw, xzvw} and L′ = {w}. This
is more precise that the standard operators for Sharing × Lin [9]. Actually
even with the optimizations proposed in [12, 11] or [3], the standard operator
is not able to infer that the sharing group xyv is not a possible result of the
concrete unification. Note that it would be possible in a domain for rational
trees, where the unification of {x/t(t(v, y), c), z/w} with x/t(y, z) succeeds with
{x/t(t(v, y), c), z/c, w/c, y/t(v, y)}. This means that we are able to exploit the
occur-check of the unification in finite trees. As a consequence, our abstract uni-
fication operator is not correct w.r.t. a concrete domain of rational substitutions
[15]. However, our results improve over the abstract unification operators of the
domains in the literature even in some cases which do not involve the occur-
check. For example, if S = {xa, xb, xy, z}, L = {x, a, b, z} and given the binding
x/t(y, z), we are able to state that xzab is not a member of mgu(S, x = t(y, z)),
but the domains in [12, 3, 11] cannot.

Although the abstract operator for mgu(S,L, x = t) over ShLin is opti-
mal for the unification with a single binding, the optimal operator mgu(S,L, θ)
for a generic substitution θ cannot be obtained by considering one binding
at a time. Actually, let us take θ = {x/t(y, z), s/t(a, b)}, S = {xs, y, z, a, b},

L = {x, z, s, a, b}. After the first binding we obtain S′ = {xsy, xsz, a, b} and L′ =
{z, a, b}. After the second binding S′′ = {xsya, xsyb, xsyab, xsza, xszb, xszab}
and L′′ = {z}. However, the sharing group xszab cannot be obtained in practice
since x is linear in the sharing group xsz, although x /∈ L′. If we work in the do-
main ShLin2 from Z = {xs, y∞, y, z, a, b}, we obtain Z ′ = ↓{x∞s∞y∞, xsz, a, b}
and Z ′′ = ↓{x∞s∞y∞a∞b∞, x∞s∞y∞a∞, x∞s∞y∞b∞, xsza, xszb}. Note that
Z ′′ does not contain xszab.

In order to obtain an optimal operator for a substitution θ, the obvious solu-
tion is to perform the computation over ShLin2 and to abstract the solution into
ShLin. We believe that the implementation of the abstract unification on ShLin2

could be optimized for this particular case. The same happens to the matching
operation. Also in this case, we believe that the easiest approach is to com-
pute over ShLin2, which is not particularly onerous since the abstract constraint
does not increase in size when moving from ShLin to ShLin2. Corresponding
definitions for unifsl , matchsl , Uf

sl and Ub
sl are immediate.

6 Conclusion and Future Work

We summarize the main results of this paper.

– We clarify the relationship between domains of substitutions with existen-
tially quantified variables, such as ESubst [13], and the standard domain of
idempotent substitutions. To the best of our knowledge, this is the first time
that a direct correspondence between ESubst and a quotient of idempotent
substitutions has been showed.

– We propose a new domain ShLinω as a general framework for investigating
sharing and linearity properties. We introduce the notion of (balanced) shar-
ing graph as a generalization of the concept of alternating path [21, 15] used
for pair sharing analysis and provide optimal abstract operators for ShLinω.
By using sharing graphs instead of alternating paths, we also gain the ability
to exploit the occur-check condition in order to avoid inexistent pair-sharing
information (see Example 8).

– We show that ShLinω is a useful starting point for studying further abstrac-
tions. We obtain the optimal operators for forward and backward unification
in Sharing × Lin and King’s domain ShLin2. This is the first paper which
shows optimality results for a domain obtained by combining sharing and lin-
earity information. Moreover, we propose an abstract unification algorithm
which is strictly more precise than the other operators in the literature.
Actually in [5] a variant of Sharing × Lin is proposed, based on set logic
programs. However, despite the claim in the paper, the proposed operators
are not optimal, as shown in [11]. Also the operators in [15] for ASub are not
optimal when working over finite trees.

Recently, Lagoon and Stuckey proposed in [17] a new domain for encoding
sharing and linearity information based on a notion of relation graph. Actually,
relation graphs are used to represent the abstract objects and alternating paths

to compute abstract unification. As a result, their abstract unification is not
optimal on finite trees, since alternating paths cannot exploit the occur-check
condition to avoid inexistent pair-sharing information. On the contrary, we use
sharing graphs to compute abstract unification and multisets as abstract objects.
Although the authors do not compare their domain to King’s domain ShLin2,
we think that ShLin2 is, at least, as precise as Lagoon and Stuckey’s domain
ΩDef as far as pair-sharing information is concerning.

Several things remain to be explored: first of all, we plan to analyze the
domain PSD × Lin [2] in our framework and, possibly, to devise a variant of
ShLin2 which enjoys a similar closure property for redundant sharing groups.
This could be of great impact on the efficiency of the analysis. Moreover, we
need to study the impact on the precision and performance by adopting the new
optimal operators, possibly by implementing our operators in some well-known
static analyzer.

In the recent years, many efforts has been made to study the behavior of
logic programs in the domain of rational trees [15, 22], since they formalize the
standard implementations of logic languages. We have shown that our operators,
which are optimal for finite trees, are not correct for rational trees , since they
exploit the occur-check to reduce the sharing groups generated by the abstract
unification (see Ex. 8). It would be interesting to adapt our framework to work
with rational trees, in order to obtain optimal operators also for this case.

References

1. G. Amato and F. Scozzari. Optimality in goal-dependent analysis of sharing.
Technical Report TR-02-06, Dipartimento di Informatica, Univ. di Pisa, May 2002.

2. R. Bagnara, P. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 277(1-2):3–46, 2002.

3. R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis techniques:
A comprehensive evaluation. In Proc. of ACM Conf. PPDP, pp. 103–114, 2000.

4. M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract unifi-
cation algorithm for groundness and aliasing analysis. In ICLP, pp. 79–93, 1991.

5. M. Codish, V. Lagoon, and F. Bueno. An algebraic approach to sharing analysis
of logic programs. In Static Analysis Symposium, pp. 68–82, 1997.

6. A. Cortesi, G. Filé, and W. W. Winsborough. Optimal groundness analysis using
propositional logic. Journal of Logic Programming, 27(2):137–167, 1996.

7. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. ACM POPL, pp. 269–282, 1979.

8. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103–179, 1992.

9. W. Hans and S. Winkler. Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety. Technical Report 92–27, Technical
University of Aachen (RWTH Aachen), 1992.

10. M. V. Hermenegildo and F. Rossi. Strict and nonstrict independent and-parallelism
in logic programs: Correctness, efficiency, and compile-time conditions. Journal of
Logic Programming, 22(1):1–45, 1995.

11. P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efficient integration
of set-sharing, freeness and linearity for the analysis of finite and rational tree
languages. Available at http://www.cs.unipr.it/˜bagnara/.

12. J. Howe and A. King. Three Optimisations for Sharing. Theory and Practice of
Logic Programming, 3(2):243–257, 2003.

13. D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent AND
Parallelism. Journal of Logic Programming, 13(2 & 3):291–314, 1992.

14. A. King. A synergistic analysis for sharing and groundness which traces linearity.
In ESOP, vol. 788 of LNCS, pp. 363–378, 1994.

15. A. King. Pair-sharing over rational trees. JLP, 46(1-2):139–155, Nov. 2000.
16. A. King and M. Longley. Abstract matching can improve on abstract unification.

Technical Report 4-95*, Computing Laboratory, Univ. of Kent, Canterbury, 1995.
17. V. Lagoon and P.J. Stuckey. Precise Pair-Sharing Analysis of Logic Programs. In

Proc. of PPDP, 99–108, 2002.
18. A. Langen. Static Analysis for Independent And-parallelism in Logic Programs.

PhD thesis, University of Southern California, Los Angeles, California, 1990.
19. K. Marriott, H. Søndergaard, and N. D. Jones. Denotational abstract interpreta-

tion of logic programs. ACM TOPLAS, 16(3):607–648, 1994.
20. K. Muthukumar and M. V. Hermenegildo. Compile-time derivation of variable

dependency using abstract interpretation. JLP, 13(2&3):315–347, 1992.
21. H. Søndergaard. An application of abstract interpretation of logic programs: Occur

check reduction. In Proc. ESOP 86, vol. 213 of LNCS, pp. 327–338, 1986.
22. E. Zaffanella. Correctness, Precision and Efficiency in the Sharing Analysis of Real

Logic Languages. PhD thesis, School of Computing, University of Leeds, Leeds,
U.K., 2001. Available at http://www.cs.unipr.it/˜zaffanella/.

