A general framework for variable aliasing:
Towards optimal operators for sharing properties

Gianluca Amato' and Francesca Scozzari?
! Dipartimento di Matematica e Informatica, Universita di Udine.
2 Dipartimento di Informatica, Universita di Pisa.
amato@dimi.uniud.it, scozzari@di.unipi.it

Abstract. We face the problem of devising optimal unification oper-
ators for sharing and linearity analysis of logic programs by abstract
interpretation. We propose a new (infinite) domain ShLin“ which can
be thought of as a general framework from which other domains can
be easily derived by abstraction. The advantage is that ShLin“ is en-
dowed with very elegant and optimal abstract operators for unification
and matching, based on a new concept of sharing graph which plays the
same role of alternating paths for pair sharing analysis. We also provide
an alternative, purely algebraic description of sharing graphs. Starting
from the results for ShLin®, we derive optimal abstract operators for
two well-known domains which combine sharing and linearity: ShLin?
by Andy King and the classic Sharing X Lin.

1 Introduction

In the field of static analysis of logic programs by abstract interpretation [7, §],
the property of sharing has been the object of many works, both on the theoreti-
cal and practical point of view. The goal of (set) sharing analysis is to detect sets
of variables which share a common variable in the answer substitutions. Typical
applications of sharing analysis are in the fields of optimization of unification
[20] and parallelization of logic programs [10].

It is now widely recognized that the original domain proposed for sharing
analysis, namely Sharing [17,13] by Jacobs and Langen, is not very precise,
so that it is often combined with other domains for treating freeness, linearity,
groundness or structural information (see [3] for a comparative evaluation). In
particular, adding some kind of linearity information seems to be very profitable,
both for the gain in precision and speed which can be obtained, and for the fact
that it can be easily and elegantly embedded inside the sharing groups (see [14]).
However, optimal operators for combined analysis of sharing and linearity have
never been devised, neither for the domain ShLin? [14], nor for the more broadly
adopted Sharing x Lin [9, 19] or ASub [4]. The lack of optimal operators brings
two kinds of disadvantages: first, the analysis obviously looses in precision when
using sub-optimal abstract operators; second, computing approximated abstract
objects can lead to a speed-down of the analysis. The latter is typical of sharing
analysis, where abstract domains are usually defined in such a way that, the less

information we have, the more abstract objects are complex. This is not the case
for other kind of analyses, such as groundness analysis, where the complexity of
abstract objects may grow accordingly to the amount of groundness information
they encode. The lack of optimal operators is due to the fact that the role played
by linearity in the unification process has never been fully clarified. The tradi-
tional domains which combine sharing and linearity information are too abstract
to capture in a clean way the effect of repeated occurrences of a variable in a term
and most of the effects of (non-)linearity are obscured by the abstraction process.
In this paper, we investigate the interaction between sharing and linearity, and
provide optimal abstract operators for two well-known domains which combine
these properties. We start by introducing our concrete goal-dependent frame-
work which is based on [6], with the improvements introduced in [1] concerning
backward unification. We propose a slightly modified domain of substitutions,
which are quotiented modulo an appropriate renaming w.r.t. the variables which
are not of interest (see Jacobs and Langen’ domain ESubst [13]). We define two
operations of unification and matching which are used as an intermediate step
toward the semantics function for forward and backward unifications.

Inspired by ShLin?, we propose an abstract domain which is able to encode
the amount of non-linearity, i.e., which keeps track of the exact number of occur-
rences of the same variable in a term. The domain we obtain is very simple and
elegant, but cannot be directly used for static analysis, at least without resorting
to widening operators, since it contains infinite ascending chains. However, in
this domain the role played by (non-)linearity is manifest, and the optimal ab-
stract operators for unification and matching [9, 16, 1] assume a very clean form.
The cornerstone of the abstract unification is the concept of sharing graph which
plays the same role of alternating paths [20, 15] for pair sharing. A sharing graph
is a graph theoretic notion to figure out sharing groups which are combined dur-
ing the unification process to obtain a new sharing group. The use of sharing
graphs offers a new perspective to look at single variables in the process of uni-
fication, and simplify the proofs of correctness and optimality of the abstract
operators. We also provide a purely algebraic characterization of the results,
which can help in implementing the domain by making use of widening opera-
tors and in devising abstract operators for further abstractions of ShLin“. We
show that the domains ShLin? and Sharing x Lin can be immediately obtained
as abstractions of ShLin“ and we provide the optimal operators for unification
and matching. We also provide a simplified version of the operators for the do-
main Sharing x Lin which is still correct, but which is optimal for one-binding
substitutions only. We show that unification between an abstract object and a
substitution cannot be computed one binding at a time while remaining optimal.
Finally, we conclude with some open questions for future work.

2 Notation

Let NT be the set of natural numbers without zero. A (finite) multiset is a map
X : X — N* where X is a finite set called the support of X and denoted by || X ||.

We often denote a multiset as {v1,...,v,} where vy,...,v, is a sequence of
elements with repetitions. We also use the polynomial notation X = vil I s
to denote a multiset with support {v,...,v,} such that X (vi) = ix. We extend
the functional notation for multiset by writing X(v) =0if v ¢ || X|. If S is a
set, a multiset over S is a multiset whose support is a subset of S. We denote
by ©m(S) the set of multisets over S and we write X C,, S as an alternative for
X € pm(S). Any set S used as an argument to a multiset operator stands for
the multiset with support S and such that S(z) = 1 for all z € S. We denote
by X|s the multiset defined as X (v) if v € S, 0 otherwise. |X| will denote the
number of elements in X including repeated elements, i.e., ZIEUXJJ X (z) when
X # 0, 0 otherwise. If E is any expression involving a variable z, we write
> wex E(z) as a short form for 3° o v X(x) - E(z). We use either {} or 0 for
the multiset whose support is empty, while union and intersection of multisets are
denoted by U and m. If X = {X4,..., X, } is a multiset of multisets, then UX =
X1 U---U X,. Let Atoms, Clauses, Body and Progs be the syntactic categories
for atoms, clauses, bodies and programs respectively, where A € Body stands
for the empty body. We denote by Subst and ISubst the sets of substitutions
and idempotent substitutions respectively, by € the empty substitution and by
Ren the set of renamings (i.e., invertible substitutions). Given a substitution 6,
dom(€) and rng(f) denote the domain and range of 6. Let V be a denumerable
set of variables. Given v € V and a term ¢, we denote by vars(t) the set of
variables occurring in ¢t and by oce(v, t) the number of occurrences of v in ¢.

3 The Concrete Semantics

Our analysis is based on a (collecting) goal-dependent semantics for logic pro-
grams. We look for a concrete domain where substitutions explicitly show their
variables of interest, which are “independent” from the other variables. This
choice is motivated from the fact that, in practice, one needs to keep track of
the current variables of interest during the analysis. Several semantics in the
literature present these characteristics, e.g. the semantics in [18] based on ex-
equations, [6] using idempotent substitutions and that in [13] based on the do-
main ESubst of existential substitutions. The latter semantics is probably the
most appropriate to our goal, but it is based on a non-standard definition of sub-
stitution and the relation between the unification operator on ESubst and the
standard one, although clear, is not well stated. Moreover, most of the research
in combining sharing and linearity information has been done on the domain
defined in [6], so that founding our work on a different framework would make
difficult the comparison of our results to the literature. Therefore, we work with
[6] and show that with an appropriate equivalence relation on substitutions, one
can obtain an equivalent semantics over existential substitutions.

3.1 Concrete Domain and Operators

The concrete domain is Rsub = p(ISubst) x pf(V) U {Lgs, Trs} (see [6] for a
detailed introduction). Rsub is partially ordered as follows: Lgs is the bottom

element, Trs the top and [©1,U1] <gs [@2,U2] if and only if U; = U and
©1 C O,. Rsub is a complete lattice w.r.t. <gs. The l.u.b. of Rsub is denoted
by Ligs. We briefly recall the concrete operations from [6] and refined in [1] with
the introduction of two different operators for forward and backward unification.
The concrete projection mrs : Rsub X Rsub — Rsub is defined as:

7"'RS(J—RSa A) = 7TRS(A7 J—RS) = LRgs
7TRS(TRS) A) = 7T-RS(‘47 TR&) - TRs When A # LRS
mrs([O1, U1], [O2,Us]) = [01,U1 N Us]

In the following, for the sake of conciseness, we define the behavior of the concrete
and abstract operators only in case all the arguments are different from Lgg and
Trs. We implicitly assume that the result is LRy if any of the argument is L gg,
Trs when any of the argument is Tgrs and no argument is | gs. The concrete
forward unification is U{{s :Rsub x p¢(V) x Atoms x Atoms — Rsub such that:

UL (16, U1], Us, A1, Ay) = [{mgu(p1(0),0) | 0 € ©,
0 = mgu(p1 (A1) = Az)}, p1(Ur) U U]

where (p1, p2) = Apart(Us), provided vars(A4;) C Uy and vars(As) C Us, Lgs
in all the other cases. We still need to define Apart. Given Us € py(V), take
a partition {V7,V5} of V such that Vi and V5 are infinite and Us C V5. Then
Apart(Us) = (p1, p2) where p1 : V= V; and ps : V — Vs are bijections such that,
for each © € Us, pa(x) = x. We apply such bijections to syntactic objects as if
they were substitutions. The backward unification exploits the relation among
substitutions <y C Subst x Subst defined as follows, for U € p¢(V):

o =<y o < 36§ € SubstVx € U.o(x) =6(c'(x)) . (1)

The concrete backward unification U%S : Rsub X Rsub x Atoms x Atoms — Rsub
is given by:

Ullg{s([@hUl]a [@27U2}7A17A2) = {mgu(Pl(Ul)702(02)75) | o1 € 8130'2 S @23
§ = mgu(p1(A1), Az2), p1(01) 2, (v,) mgu(p2(0o2),0), p1(Ur) UUs] .

where vars(A4;) C Ui, vars(As) C Us, Lgs in all the other cases. Here we
improve over the standard unification by requiring that pi(c1) (the exit sub-
stitution) is an instance of mgu(pa(o2),d) (the entry substitution) w.r.t. the
variables of the calling atom [9]. By using the previously defined operators, we
provide a goal-dependent, bottom-up semantics for logic programs. A denota-
tion is an element in the set of monotonic maps Den = Atoms — Rsub — Rsub
and the semantic functions P : Progs— Den, C : Clauses — Den — Den and
B : Body — Den — Rsub — Rsub are defined according to [1] as follows.

P[P] = IfpAd. < L] C[[cl]]d>

cleP

C[H <+ B]dAzx = mrs(Uk, (2, x, H, A),)

where 2’ = B[[B]]d(ﬂRs(Uﬂs(x, vars(H < B), A, H), [0, vars(H <+ B))]
B[A]dz =
B[A, B]dx = B[B]d(dAzx)

Given a program P and an atom A, the set of computed answers for A in P is
given by P[P]JA([{e}, vars(A)]).

3.2 A Different Concrete Domain

It turns out that the domain of idempotent substitutions is too concrete for the
above semantics of logic programs. Given a goal p(x,y) in a program P, we do
not really want to distinguish between the answers {x/y}, {y/z} and {z/u, y/u}.
Note that while {z:/y} and {y/z} can be obtained from each other by renaming,
the same does not hold for {z/y} and {z/u,y/u}. Actually, in the literature we
find several alternatives to solve this problem, like ex-equations [18], Herbrand
constraints and the domain of existential substitutions ESubst [13]. The common
viewpoint is that substitutions are viewed as constraints and that variables which
are not of interest (like u in the previous example) are existentially quantified.
We show that such domains naturally arise as appropriate equivalence classes
of substitutions. Given two substitutions # and 6’ and a set of variables U, we
define the equivalence relation:

0~y 0 < dpec RenNv e U. O(v)=p(0(v)) (2)
which is the equivalence relation induced by the preorder <y;. By exploiting this

relation, we can define a new domain ISubst., of existential substitutions as the
disjoint union of all the ISubst..,, for U € p¢(V).

ISubst., = L—ﬂ ISubst~.,, .
Uepr(V)

In the following we write [f]y for the equivalence class of 6 w.r.t. ~y. Given
UV € pr(V), [01]u, [02]v € ISubst., we define:
mgu([61]v, [f2]v) = [mgu(6}, 05)]uuy

where 6] ~y 01, 05 ~y 03, dom(0)) = U, dom(65) = V and rng(6])Nrng(6}) = 0.
It can be proved that the definition does not depend from the choice of repre-
sentatives, and that mgu([0:]y, [f2]v) is the greatest lower bound of [61]y and
[02]v . It is worth noting that the resultant domain ISubst.. is isomorphic to the
domain ESubst by Jacobs and Langen [13], which is based on a non standard

definition of substitution. By exploiting the domain ISubst. we can define a do-
main which is a complete abstraction of Rsub. We lift the equivalence ~y to Rsub.

[©1,U] ~ [02,U] <= V0 € 030" € O3.0 ~y § and vice versa. (3)

As shown in [1], ~ is a congruence w.r.t. to the operations in Rsub. Since
o}, Ul ~ [{o'}, U] iff 0 ~y o' and moreover [0,U] = | |z {[{c},U] | o € O}, it
turns out that Rsub., is isomorphic to the following domain:

Psub = {[X,U] | X C ISubst.,,U € p;(V)} U{Lpg, Tps}

The operators and semantic functions over Rsub induce corresponding operators
on Psub by means of the isomorphisms between Psub and Rsub. . First of all,
let us define the auxiliary operations of unification and matching. Forward and
backward unification will be built starting from them. The concrete unification
unifps : Psub x ISubst x ps(V) — Psub is given by:

unifps([X, U], 6,V) = [{mgu([o]u, [0]v) | [c]lv € X}, U U V]

provided vars(d) C V. It is worth noting that when V' = U, this is the standard
unification which is usually considered in the literature on sharing. It is possible
to define unifpg to take an argument in ISubst. instead of a substitution and
a set of variables. However, this would make the operation more general, since
not all the elements of ISubst. admits a representative [0]y with vars(f) C U.
Using this definition of unifps, we are actually restricting our attention to this
case, which simplifies the presentation of the abstract operators.
We then define the matching operation matchpg : Psub X Psub — Psub as:

matchps([©1, U1], [O2, Ua]) = [{mgu([bh]uv,, [02]vs) |
01 2u, 02,[01]u, € O1,[02]u, € O2},Us]

provided U; C Us. These can be used to define the forward and backward unifi-
cation over Psub as follows:

UL([Z,U1], Us, Ay, Ay) = unifpg(p1 ([Z, U1]), mgu(p (A1) = Az), U]
Ulbjs([Ela Ul]; [22, UQ], Al,AQ) =
matchps(p1 ([X1, Ur]), unifps([X2, Us], mgu(p1 (A1) = A2), p1(U1)))

where (p1,p2) = Apart(Us). These can be easily proved to correspond to the
ones for Rsub., with simple algebraic manipulations.

4 The abstract domain ShLin¥

In this section we define a new abstract domain ShLin®. Since it is infinite and
contains infinite ascending chains, it cannot be directly used for the analysis. It
should be thought of as a general framework from which other domains can be
easily derived by abstraction. The idea underlying the construction of ShLin® is
to count the exact number of occurrences of the same variable in a term. In this
way, it extends the standard domain Sharing by recording, for each v € V and
0 € ISubst, not only the set {w | v € O(w)} but the pairs {(w, occ(v,0(w))) | v €
O(w)} with the use of multisets. We call w-sharing group a multiset of variables
and we build a domain which works on w-sharing groups.

ShLin® = {[S,U] | U € ps(V),S C pn(U),S#0=0e S}U{L,, T} (4)

where L, is the least element, T, is the greatest and [S1, U;] <., [S2, Us] iff Uy =
Us; and S; C Ss. ShLin® is a complete lattice and the l.u.b. is denoted by L.

Given a substitution # and a variable v € V, we denote by 0~1(v) the w-
sharing group B with support {w | v € 8(w)} and B(w) = occ(v, §(w)). There-
fore 6! (v) maps each variable w to the number of occurrences of v in f(w). We
define the abstraction for a substitution 6 w.r.t. the variables of interest in U:

ay(0) = {07 (v)lv |veV} . ()

Intuitively, each B € «ay(f) corresponds to one or more variables which are
shared by all the variables in B, each with the exact number of occurrences.
For example, given 6 = {x/t(y,u,u), z/y,v/u} and U = {w,z,y, 2z}, we have
0~ (u) = 2%vu, 07H(y) = 2yz, 071(2) = 07 1(v) = 071 (x) =) and O71(s) = s
for all the other variables (included w). Projecting over U we obtain ay(f) =
{22, xyz,w,0}. Note that if §; ~gy 02 then ay(6;) = agy(fs). Therefore, we
can lift oy to obtain the Galois insertion between Psub and ShLin® as follows:
oy, (Lrs) = Lo, ay(Trs) = Ty, and

au([Z,U)) = [Haw(0) |0 € y,U (6)

In the following, we will omit to explicitly define abstraction and concretization
on the top and bottom elements of the domains. The projection operation is
defined pointwise in the obvious way:

7o ([S1, U1], [S2, Uz]) = {Blu, | B € S1}, Ui N U] (7)

4.1 Unification and Matching

The unification is much more complex and we prefer to characterize the operation
of unification by means of graph theoretic notions. We first need to define the
multiplicity of an w-sharing group B in a term ¢ as follows:

X(B,t) = Z B(v) - occ(v,t) . (8)

vE| B]|

For instance, x(z3y2*, t(x,y, f(2,9,2))) =3-2+1-24+4-1=12. If B € ay(9)
represents the variable v (i.e., B = 6~!(v) N U) then x(B,t) is the number of
occurrences of v in 0(t).

A sharing graph is a directed multigraph whose nodes are labeled with sharing
groups. In formulas, it is a tuple (N, [, E) where N is the finite set of nodes,
l: N — pn(V) is the labeling functions and F € p,,(N x N) is the multiset of
edges. A balanced sharing graph for the equation ¢t; = t5 and a set of w-sharing
groups S is a sharing graph G = (N, [, E) such that:

1. G is connected;

2. for each node s € N, I(s) € S,

3. for each node s € N, the out-degree of s is equal to x(I(s),t1) and the
in-degree of s is equal to x(I(s),ta).

Given a balanced sharing graph G = (N, [, E), we define the resultant w-sharing
group of G as res(G) = Usenl(s). The set of resultants w-sharing groups for
t1 =t given a set S of sharing groups is denoted by:

mgu(S,t; = ta) = {res(G) | G is a balanced sharing graph for S and ¢; =t2 .}

A sharing graph represents a possible way to merge together several sharing
groups by unifying them with a given binding. Assume, for j € {1,2}, B; €
ay(f), i.e., there exist v; € V such that B; = 6~ (v;) NU. When unifying 6 with
the binding t; = t2, we know that mgu(6, ¢, = t2) = mgu(f(t;) = 6(¢2)) o 6 and
that 6(¢;) contains x(Bj,¢;) instances of v;. An arrow from the sharing group
B to Bs represents the fact that, in mgu(6(t1) = 0(t2)), one of the copies of vy
is aliased with one of the copies of vs. The third condition for balanced sharing
graphs implies that all the copies of each v; are aliased with some other variable.
Therefore, we are considering the case when 6(¢;) and 6(t5) only differs for the
variables occurring in them. Although this is restrictive in general, it is enough
to reach optimality when equations are reduced to solved normal form.

Example 1. Let S = {ux?, 2y, vz, wz, xyz}. The following is a balanced sharing
graph for t(x) = r(y, z) and S:

0 1 1
\ 1 0
1 1
1 0

where pedices and apices on a sharing group B are respectively the value of
X(B,t(x)) and x(B,r(y, 2)). Therefore uvwa*y?z? € mgu(S,t(z) = r(y, 2)).

Example 2. Let S = {uz? zy,vz,wz,zvyz} and U = {u,v,w,x,y, z}. The fol-
lowing is a balanced sharing graph for x = r(y,y, z) and S:

Be=tne

where pedices and apices on a sharing group B are respectively the value of
X(B,x) and x(B,r(y,y,2)). Therefore ux3yz € mgu(S,» = r(y,y,2)). Note
that this sharing group can actually be generated by the substitution 8 =
{z/r(v1,v1,v2),y/v2,2/v2,u/v1,v/a,w/a} where a is a ground term. It is the
case that ay(0) C S and mgu(f,z = r(y,y, z)) performs exactly the unification
depicted by the sharing graph.

We define mgu(S, 0) with 6 € ISubst by induction on the number of bindings.
mgu(S,e) =€ mgu(S, {z/t} W) = mgu(mgu(S,z = t),0)
Now, we are ready to define the abstract unification in ShLin“ as:
unif, ([S, U1], 6, Us) = [mgu(S U {{v} | v e U\ U1},0),U; UUs]
provided that vars(d) C Us.

Theorem 1. The operation unif,, is optimal and correct w.r.t. unifpg

Note that the operation unif,, is designed by first extending the domain in order
to include all the variables in U; and then performing the operation, and that this

construction yields to an optimal abstraction of the concrete unification. This is
not the case for other abstract domains, e.g. Sharing, as shown in [1]. The proof
of correctness is by induction on the number of bindings in the substitution.
The proof of optimality is more complex and it is based on a notion of parallel
abstract unification of multigraphs. We show that parallel unification gives the
same results of the iterated use of the single binding unification.

As far as the matching operation is concerning, assume o, ([X;, U;]) = [S;, U]
for i € {1,2}. If we unify a substitution o1 € Xy with oo € Xy such that o1 <y,
o2, then o1 will not be further instantiated and thus ay, (mgu(oy,02)) € Si.
Moreover, the sharing groups in S; which do not contain any variable in U; are
not affected by the unification, since the corresponding existential variable does
not appear in oy(v) for any v € U;. We can now design an abstract matching
operation which satisfies the above conditions.

match,, ([S1, U1], [S2, Ua]) = [S5 U {X € (S5)" | Xjv, € S1}, U]

where Sy = {B € Sy | By, = 0}, S5 = S2 \ S5 and U; C Us. Here we also use
the auxiliary operation (-)* defined as:

ST ={US[S cpn(5)} - 9)

Note that match,, is very similar to the analogous operation for Sharing defined
in [1].
Theorem 2. The operation match,, is optimal and correct w.r.t. matchpg. Fur-

thermore, it is complete when the second argument of matchpg contains a single
substitution.

The forward and backward unification operators U/, and U?for ShLin“ are
obtained by the corresponding definitions Uﬁs and U'f)s for Psub, by replacing
the matching and unification operations with their abstract counterparts. By
exploiting the above results, it is now an easy task to show the following corollary.

Corollary 1. The operators Uf and U?, are correct and optimal w.r.t. U{is and
ub..

4.2 A Characterization for Resultant Sharing Groups

The concept of resultant w-sharing group, while suggestive and very intuitive,
does not help in practice in the implementation of the operations. Although
ShLin“ has not been designed to be directly implemented, some of its abstrac-
tions could. Providing a simpler definition for the set of resultant w-sharing
groups could help in developing the abstract operators for its abstractions. We
show that given a set S of w-sharing groups and an equation t; = to, the set of
resultant w-sharing groups has an elegant algebraic characterization.

Theorem 3. Let S be a set of w-sharing groups and t1,ty be terms. Then B €
mgu(S,t; = to) iff B = W;crB; where I is a finite set and {B; }icr € pm(S)

such that:
D o x(Bisti) =D X(Bita) > |I] -1 .

i€l i€l

From the above theorem, we can now give an algebraic characterization of the
abstract unification operator as follows.

mgu (St = tp) = {ws | S €pm(S), Y x(B,t1)=> x(B,tz2) >|S| - 1} :

BeS BeS

Example 3. Consider S = {xa,zb, 2%, zc} and the equation z = z. Then if we
choose X = {{za, b, 22}, we have x(X,z) = 2 = x(X, z) > |X| — 1. Therefore
222%ab € mgu(S,z = 2). If we take X = {xa,zb, zc, zc}, although y(X,z) =
2 = x(X, 2), we have | X| — 1 = 3. Actually, 22c?z%ab ¢ mgu(S,r = 2).

5 Domains for Linearity and Aliasing

In this section we show that two domains for sharing analysis with linearity
information, namely the domain proposed by King in [14] and the classic reduced
product Sharing x Lin, can be obtained as abstraction of ShLin®. This allows us
to design optimal abstract operators for both domains, by exploiting the results
for ShLin*.

5.1 King’s Domain

We first consider the domain for combined analysis of sharing and linearity
introduced by King in [14]. We call 2-sharing group a map o : ¥V —{0, 1,00}
such that its support |[o]] = {v € V | o(v) # 0} is finite. We write o,,(z) to
denote o(x) if o(z) < 1, 2 otherwise (where n < oo for each n € N). Intuitively,
a 2-sharing group o represents the sets v,(0) of w-sharing group given by:

12(0) = {B € pn (V) | [lol| = Bl AV € [lo].om(z) < B(z) < o(z)

We denote by SgQ(V) the set of 2-sharing groups whose support is a subset of
V. We use a polynomial notation for 2-sharing groups as for w-sharing groups: a
group o such that ||o|| = {z,y, 2z}, o(x) = o(y) = 1 and o(z) = oo will be denoted
by zyz>°. We also use) for the 2-sharing group with empty support.

The idea is to use 2-sharing groups to keep track of linearity: If o(z) = oo, it
means that the variable x is not linear in the sharing group o. In [14] the number
2 is used as an exponent instead of oo, but we prefer this notation to be coherent
with w-sharing groups. In the rest of this subsection, we use the term “sharing
group” as a short form of 2-sharing group.

We first need to define an order relation over sharing groups as follows.

0<0d = |o]] = || AVx € |o]. o(x) < (z) . (10)

Given a sharing group o, we also define the delinearization operator o® as the
sharing group o' > o such that Va € ||o]|.0'(x) = co. The operator is extended
pointwise to sets and multisets. The domain we are interested in is the following.

shLin? = {[S,U] | S € p,(S¢*(U)),U € ps(V), S # 0 = 0 € S}U{T2, Lo} (11)

where p i(SgZ(U)) is the powerset of downward closed 2-sharing groups according
to < and [S1,U1] <3 [S2,Us] iff Uy = Uy and S; C Ss. Since we only consider

downward closed sets, we are not able to state that some variable is definitively
non-linear. We define an adjunction with ShLin® via the following concretization
map 7 : ShLin? — ShLin®.

2(5,0) = [Utao) o € 81,0] (12)

The l.u.b. is given by the downward closure of the unions of the first components.
Projection is given by:

Fg([sl,UlL [SQ,UQ]) = [{0|U2 | XS 51}7U1 N UQ] . (13)

where o|x (v) is o(v) if v € X, 0 otherwise. Given two sharing groups o and o
we define:
00" = X € V.o(v) @ o' (v) (14)

where 0 @z = 2P0 =z and coPzx =zxzhoo =11 = co. We will use
[1{o1,...,0,} for 0107---To,. Note that 0> = oJo. According to the corre-
sponding definition for w-sharing groups, we also need to define the following
auxiliary function.

s*={S|S € pn(9)} . (15)

The minimum and maximum multiplicity of o in ¢ are defined as follows:

Xm(o,t) = Z om (V) - oce(v, t) xm(o,t) = Z o(v) - occ(v,t) (16)
vello]l veE|o]

If B is an w-sharing group represented by o, i.e., B € 75(0), then x,,(0,t) <
X(B,t) < xm(o,t). Actually, not all the values between x,,(0,t) and xas(o,t)
may be assumed by x(B,t), but this will not affect the precision of the abstract
operators. Note that the maximum multiplicity xas(o,t) either is equal to the
minimum multiplicity x,, (o,) or it is infinite. According to the above definitions,
we can now define the multiplicity of a multiset of sharing groups.

Ay ={n| 3 V@) xmo) << 3 Vo) xuln) . (n)

oellY] oe|lY]l

Again, this is a superset of all the possible values which can be obtained by
combining the multiplicities of all the sharing groups in Y. But, as we will show
later, this definition is sufficiently accurate to allows us to design the optimal
abstract unification operator. This can actually be defined as follows.

mgu(S,z =t)={LJY |Y C, S,3n € x(Y,z) nx(Y,t). n> Y| -1} , (18)

where | X is the downward closure of X w.r.t. <. The basic idea is to check,
for each Y C,,, S, if there exists an instance of the w-sharing groups of Y which
satisfies the condition in Theorem 3.

Ezample 4. Let S = {{x*a,2°b,2%°¢,2°} and Y = {*°a, 2>°b, xc, 2°}. We
have x(Y,z) = {n | n > 5} and x(Y,t(2,2)) = {n | n > 4}. Since t(z,z2)

contains two occurrences of z, the “actual” multiplicity of the sharing group 2>
in t(z, z) should be a multiple of 2. But we do not need to check this condition
and can safely approximate this set with {n | n > 4}. Intuitively, this works
because we can always choose a multiple which is contained in both x(Y,x)
and x(Y,t¢) and which is an “actual” multiplicity. For instance, we can take
n==6¢ x(Y,z) N x(Y,t(z,2)) and since we have 6 > 3 = |Y'| — 1, we get that
the sharing group [_]Y = 2®abcz™ belongs to mgu(S, z = t(z, 2)). This sharing
group can be generated by the substitution {x/t(t(a,a,c),t(b,b,c)), z/t(v,v,v)}
when the variables of interest are {z, z, a, b, c}.

By exploiting the particular structure of 2-sharing groups, we can rewrite the
mgu operator in a much simpler way, to be used in practice to implement the
abstract operator. Given a set of sharing groups S and an equation ¢ = ¢, we
define, for i € {1,2} and j € N, S} = {o € S| xm(o,t;) = j}, Si={o€ S|
xm(o,t;) # 0}, P! =87\ S3_;, P, =15, \ Ss_; and C* = Si N Si. We also write
St = {o € S| xum(o,t;) > 1}. Note that, if ¢; is a variable, S} = S$°. Then,
by considering x as t; and t as t2, we can rewrite the mgu operator as follows.

mgu(S,z=1t)=C%° U
¢({|:|X2 | X CS1USs, XNST#£0,XNSE #0}U
{Ox? | x €83, X NS +#0U

{oO([JX?) o€ P, X C S, XNSM#PVoe P, XNPy #D}U 19)
19
{Ox? | X € 81, X NS 4P

{oO([dX?) o€ P, X CS],XNSH £0Voe P, X NP #0}U
{Ox?|xccliu
{oVO(OX?) [0 € P, X CCLY Cp PLLIY| = xar(01) € NF})

The seven cases above correspond to the different choices of a multiset S C,,
S1 U Sy of sharing groups which we want to merge. In the first case, we require
that there is at least a non-linear sharing group for x and ¢, while in the second
and third case we only require the existence of a non-linear sharing group for x.
The second line corresponds to the case when we do not have any element in P,
while the third case is applied when there is exactly one element of P; in S. The
fourth and fifth case are symmetric to the second and third, when all the sharing
groups are linear for z and non-linear for ¢. Note a subtlety of the fifth case, where
a non-linear sharing group in S¥' only needs to have a maximum multiplicity
bigger than one, while a non-linear in P, needs to have an infinite maximum
multiplicity. The sixth and seventh case are applied when all the sharing groups
are linear for z and ¢, but at most elements in P, which may have a finite
maximum multiplicity. An interesting property of (19) is that it also works when
S is not downward closed: If .S = | R then mgu(S,z = t) = mgu(R, x = t). This

means that we do not have to compute and carry on the downward closure of
a set but only its maximal elements. This simplifies the implementation of the
abstract mgu. Moreover, the seven cases are obtained by disjoint choices of the
multiset S C,,, S; U Sy of sharing groups, to avoid as much as possible any
duplication.

Ezample 5. Let S = {x*®y,y>b,y,xa, 2z} and consider the equation x = y. By
the first case of (19) we obtain x*°y*°b> and z>*°y>°b>*a*>. From the second
and third case we obtain respectively z*°y> and x*°y°°a. The fourth and sixth
case do not generate any sharing group, while from the fifth and seventh we
have respectively y>*x>*°a*°b and xya, which are redundant. We also add the
original sharing group z which is not related to either x nor y. The final result
is mgu(S,z = y) = {a®y>®b>®, x®y>*b>a>, z>°y>*, z>°y>¥a, z}. It is worth
noting that S # |.S and that mgu(S,z = y) = mgu({.S,z = y).

We can now define the abstract unification on ShLin? by enlarging the do-
main before computing the mgu:

unifa([S, U1],0,Us) = [{mgu(S U {{v} |v e U\ Ui}, 60}, Us) (20)
The abstract matching follows the same pattern as match,,, and it is defined as:
matchy([S1, U1], [S2, Ua]) = [S5 UL {0 € (S5)" | oy, € S1}, U] (21)

where Sé = {B € Sy ‘ B|U1 = @}, Sl = Sy \ Sé and U; C Us.

We can prove that both the operators are correct and optimal, and match,
is complete w.r.t. single substitutions in its second argument. These conditions
suffice to prove that the Ug and U} are correct and optimal.

5.2 The Domain Sharing X Lin

In this section we deal with the reduced product ShLin = Sharing x Lin. We
briefly recall the definition of the abstract domain and show the abstraction
function from King’s domain ShLin? to ShLin.

ShLin = {[S,L, U] | SC p(U),(S#A D=0 € 9),
LD U\wars(S),U € ps(WV)}U{Lg, Ts} -
Moreover, [S, L, U] <4 [, L', Uit U =U', S C S, L O L'. The abstraction
map from ShLin? to ShLin is defined in the obvious way.
a([S,U]) =[{lloll | o € S},{z | Yo € S. o(x) < 1},U] . (22)

We call sharing group an element of ps(V). As for the previous domains, we use
the polynomial notation to represent sharing groups, but now all the exponents
are fixed to one. Note that the last component U is redundant since it can be
computed as LUwvars(S). The abstract operator for projection is straightforward.

ﬂ-sl([slaLlaUﬂa [52>L27U2]) = [{BO Uy | B e Sl},Ll N UQ,Ul n UQ} . (23)

As far as the abstract unification is concerning, we want to design an abstract
operator over ShLin which is optimal for the unification of a single binding. Fixed

a set L of linear variables, we define the maximum multiplicity of a sharing group
B in a term t as follows:

N {ZUGB occ(v,t) ifBﬂl.}ars(t) CL (24)
o0 otherwise

We also define the maximum multiplicity of a term ¢ in (S, L) as:

_ L
X(S, L,t) = max X (B,t) (25)

Then we define the abstract unification mgu(S, L,z = t) as the pair (S’,L')
where S’ is computed as in (19) with s and [J replaced by x4, and U respec-
tively (we can obviously ignore the delinearization operator (_)? since BUB = B).
The set L’ is computed according to the following definition:

L\ (vars(S1) Nwars(S2)) if z € L and x(S,L,t) <1
L\ vars(Sy) otherwise, if z € L

L\ vars(Ss) otherwise, if x(S,L,t) <1
L\ (vars(Sy) Uvars(Sz)) otherwise

L' = (U \ vars(S")) U

(26)
where Sy = {B € S| x}(B,x) #0} and Sy = {B € S| x4 (B,t) # 0}.

Ezample 6. Let S = {av,zy,zw}, L = {x,y,v,w} and consider the binding
z = t(y,2). Then x% (zv,t) = 0, since zv N wvars(t) = 0, x§ (zy,t) = 1 and
x5 (zw,t) = co. As a result x(S, L,t) = co. In words, it means that the shar-
ing group zw is not linear in ¢ and that t itself is not linear. Note that all
the other sharing groups are linear w.r.t. z since x € L. Applying equation
(19) as stated above, we obtain S' = {zy, zyzvw, zzvw} and L' = {w}. This
is more precise that the standard operators for Sharing x Lin [9]. Actually
even with the optimizations proposed in [12,11] or [3], the standard operator
is not able to infer that the sharing group xyv is not a possible result of the
concrete unification. Note that it would be possible in a domain for rational
trees, where the unification of {z/t(t(v,y), c), z/w} with x/t(y, z) succeeds with
{z/t(t(v,y),¢),z/c,w/c,y/t(v,y)}. This means that we are able to exploit the
occur-check of the unification in finite trees. As a consequence, our abstract uni-
fication operator is not correct w.r.t. a concrete domain of rational substitutions
[15]. However, our results improve over the abstract unification operators of the
domains in the literature even in some cases which do not involve the occur-
check. For example, if S = {za, zb, zy, 2z}, L = {x,a,b, z} and given the binding
x/t(y, z), we are able to state that zzab is not a member of mgu (S, = t(y, 2)),
but the domains in [12, 3, 11] cannot.

Although the abstract operator for mgu(S, L,z = t) over ShLin is opti-
mal for the unification with a single binding, the optimal operator mgu(S, L, 6)
for a generic substitution # cannot be obtained by considering one binding
at a time. Actually, let us take 6§ = {z/t(y,2),s/t(a,b)}, S = {xs,y,z,a,b},
L ={x,z,s,a,b}. After the first binding we obtain S’ = {zsy, zsz,a,b} and L' =
{z,a,b}. After the second binding S” = {zsya,xsyb, xsyab, xsza,xszb, rszab}

and L” = {z}. However, the sharing group zszab cannot be obtained in practice
since z is linear in the sharing group zsz, although « ¢ L’. If we work in the do-
main ShLin? from Z = {xs,y*°,v, 2, a, b}, we obtain Z’ = [{z>°s®y>, x5z, a,b}
and Z" = [{x™s>®y>®a>®b>, x> s®y>a>, x> s y>°b>, xsza, xszb}.

In order to obtain an optimal operator for a substitution 6, the obvious solu-
tion is to perform the computation over ShLin? and to abstract the solution into
ShLin. We believe that the implementation of the abstract unification on ShLin?
could be optimized for this particular case. The same happens to the matching
operation. Also in this case, we believe that the easiest approach is to com-
pute over ShLin?, which is not particularly onerous since the abstract constraint
does not increase in size when moving from ShLin to ShLin?. Corresponding
definitions for unif, matchg, Ufl and UY; are immediate.

6 Conclusion and Future Work

We summarize the main results of this paper.

— We clarify the relationship between domains of substitutions with existen-
tially quantified variables, such as ESubst [13], and the standard domain of
idempotent substitutions. To the best of our knowledge, this is the first time
that a direct correspondence between ESubst and a quotient of idempotent
substitutions has been showed.

— We propose a new domain ShLin* as a general framework for investigating
sharing and linearity properties. We introduce the notion of (balanced) shar-
ing graph as a generalization of the concept of alternating path [20, 15] used
for pair sharing analysis and provide optimal abstract operators for ShLin®.

— We show that ShLin® is a useful starting point for studying further abstrac-
tions. We obtain the optimal operators for forward and backward unification
in Sharing x Lin and King’s domain ShLin?. This is the first paper which
shows optimality results for a domain obtained by combining sharing and
linearity information. Actually in [5] a variant of Sharing x Lin is proposed,
based on set logic programs. However, despite the claim in the paper, the
proposed operators are not optimal, as shown in [11]. Also the operators in
[15] for ASub are not optimal when working over finite trees.

Several things remain to be explored: first of all, we plan to analyze the domain
PSD x Lin [2] in our framework and, possibly, to devise a variant of ShLin? which
enjoys a similar closure property for redundant sharing groups. This could be of
great impact on the efficiency of the analysis. Moreover, we need to study the
impact on the precision and performance by adopting the new optimal operators,
possibly by implementing our operators in some well-known static analyzer.

In the recent years, many efforts has been made to study the behavior of
logic programs in the domain of rational trees [15,21], since they formalize the
standard implementations of logic languages. We have shown that our operators,
which are optimal for finite trees, are not correct for rational trees , since they
exploit the occur-check to reduce the sharing groups generated by the abstract

unification (see Ex. 6). It would be interesting to adapt our framework to work
with rational trees, in order to obtain optimal operators also for this case.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

G. Amato and F. Scozzari. Optimality in goal-dependent analysis of sharing.
Technical Report TR-02-06, Dipartimento di Informatica, Univ. di Pisa, May 2002.
R. Bagnara, P. Hill, and E. Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 2002. To appear.

. R. Bagnara, E. Zaffanella, and P. M. Hill. Enhanced sharing analysis techniques:

A comprehensive evaluation. In Proc. of ACM Conf. PPDP, pp. 103-114, 2000.
M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an abstract unifi-
cation algorithm for groundness and aliasing analysis. In ICLP, pp. 79-93, 1991.
M. Codish, V. Lagoon, and F. Bueno. An algebraic approach to sharing analysis
of logic programs. In Static Analysis Symposium, pp. 68—82, 1997.

A. Cortesi, G. Filé, and W. W. Winsborough. Optimal groundness analysis using
propositional logic. Journal of Logic Programming, 27(2):137-167, 1996.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. ACM POPL, pp. 269-282, 1979.

P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming, 13(2 & 3):103—-179, 1992.

W. Hans and S. Winkler. Aliasing and groundness analysis of logic programs
through abstract interpretation and its safety. Technical Report 92-27, Technical
University of Aachen (RWTH Aachen), 1992.

M. V. Hermenegildo and F. Rossi. Strict and nonstrict independent and-parallelism
in logic programs: Correctness, efficiency, and compile-time conditions. Journal of
Logic Programming, 22(1):1-45, 1995.

P. M. Hill, E. Zaffanella, and R. Bagnara. A correct, precise and efficient integration
of set-sharing, freeness and linearity for the analysis of finite and rational tree
languages. Available at http://www.cs.unipr.it/ “bagnara/.

J. Howe and A. King. Three Optimisations for Sharing. Technical Report 11-01,
Computing Laboratory, Univ. of Kent at Canterbury, 2001. To appear in TPLP.
D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent AND
Parallelism. Journal of Logic Programming, 13(2 & 3):291-314, 1992.

A. King. A synergistic analysis for sharing and groundness which traces linearity.
In ESOP, vol. 788 of LNCS, pp. 363-378, 1994.

A. King. Pair-sharing over rational trees. JLP, 46(1-2):139-155, Nov. 2000.

A. King and M. Longley. Abstract matching can improve on abstract unification.
Technical Report 4-95*, Computing Laboratory, Univ. of Kent, Canterbury, 1995.
A. Langen. Static Analysis for Independent And-parallelism in Logic Programs.
PhD thesis, University of Southern California, Los Angeles, California, 1990.

K. Marriott, H. Sgndergaard, and N. D. Jones. Denotational abstract interpreta-
tion of logic programs. ACM TOPLAS, 16(3):607—648, 1994.

K. Muthukumar and M. V. Hermenegildo. Compile-time derivation of variable
dependency using abstract interpretation. JLP, 13(2&3):315-347, 1992.

H. Sgndergaard. An application of abstract interpretation of logic programs: Occur
check reduction. In Proc. ESOP 86, vol. 213 of LNCS, pp. 327-338, 1986.

E. Zaffanella. Correctness, Precision and Efficiency in the Sharing Analysis of Real
Logic Languages. PhD thesis, School of Computing, University of Leeds, Leeds,
U.K., 2001. Available at http://www.cs.unipr.it/ zaffanella/.

