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Abstract

We give an algorithm to enumerate all primitive abundant numbers (PAN) with a
fixed Ω, the number of prime factors counted with their multiplicity. We explicitly find
all PAN up to Ω = 6, count all PAN and square-free PAN up to Ω = 7 and count all odd
PAN and odd square-free PAN up to Ω = 8. We find primitive weird numbers (PWN)
with up to 16 prime factors, the largest of which is a number with 14712 digits. We find
hundreds of PWN with exactly one square odd prime factor: as far as we know, only five
were known before. We find all PWN with at least one odd prime factor with multiplicity
greater than one and Ω = 7 and prove that there are none with Ω < 7. Regarding PWN
with a cubic (or higher power) odd prime factor, we prove that there are none with Ω ≤ 7.
We find several PWN with 2 square odd prime factors, and one with 3 square odd prime
factors. These are the first such examples. We finally observe that these results are in
favor of the existence of PWN with arbitrarily many prime factors.

1 Introduction

Let n be a positive integer, and let σ(n) =
∑

d|n d be the sum of its divisors. If σ(n) > 2n,

then n is called abundant, whereas if σ(n) < 2n, then n is called deficient. Perfect numbers
are those n for which σ(n) = 2n. If n is abundant and can be expressed as a sum of distinct
proper divisors, then n is called semiperfect, or sometimes also pseudoperfect. A weird number
is a positive integer which is abundant but not semiperfect.

If n is abundant and it is not a multiple of a smaller non-deficient number, then n is called
a primitive abundant number, PAN in this paper. Similarly, a primitive weird number, PWN
in this paper, is a weird number which is not a multiple of any smaller weird number.

In two papers dating back to 1913 in the American Journal of Mathematics [6, 7], Leonard
Eugene Dickson proves that the sets of PAN having any given number ω of distinct prime
factors is finite (for even PAN, one also needs to fix the exponent of 2). He then explicitly
finds all odd PAN with ω ≤ 4, and all even PAN with ω ≤ 3 (see also [9, 12] for errata in
Dickson’s tables). The number of odd PAN with ω = 5 was found in 2017 by Dic̆iūnas [5] (see
also A303933); in 2018, Liddy [13] announced the number of odd PAN with ω = 6. For ω ≥ 7
the problem is still open.

Moreover, Dickson’s technique was suitable to prove that there exist only finitely many odd
perfect numbers for any fixed ω. Indeed, no odd perfect numbers are known until today, and it
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has not been proved yet that they don’t exist. The same problem has been raised by Benkoski
and Erdős in 1974 for PWN [4], and also in this case it is not known whether odd PWN exist.

Recently, the search for PAN has become the subject of ongoing research by several indepen-
dent research groups [5, 8, 13], in particular as a possible approach to settle the question of the
existence of odd PWN and odd perfect numbers. Heuristic arguments suggest that PWN with
several distinct prime factors must have a particularly small abundance (see also Theorem 4.2),
and PAN with several distinct prime factors have very rarely such a small abundance. Since an
odd PWN must have necessarily several distinct prime factors, these arguments are in favour of
the nonexistence of odd PWN, as well as in favour of the nonexistence of odd perfect numbers,
which theoretically must have at least nine distinct prime factors [16] and zero abundance.

Motivated by the above discussion, in this paper we focus on the set of PAN with a given
number Ω of prime factors counted with their multiplicity. In this way we have been able to
explicitly find all PAN with Ω up to 6, to count PAN with Ω ≤ 7, and to count odd PAN with
Ω ≤ 8. These results are resumed on Table 2 and appear to be new (see also OEIS sequences
A298157 and A287728).

Because of the above arguments, the novel techniques we develop here for implementing our
algorithms could also be useful not only to efficiently investigate the existence of odd PWN but
also for a new insight on the question of odd perfect numbers.

Weird numbers were defined in 1972 by Stan Benkoski [3], and appear to be rare: for
instance, up to 104 we have only 7 of them [18]. Despite this apparent rarity, which is the
reason for the name, Benkoski and Erdős [4] proved that the set of weird numbers has positive
asymptotic density. A trivial property of weird numbers is the following: if n is weird and p is
a prime larger than σ(n), then np is weird (see for example [10, page 332]). This property is
the reason of the increasing interest on PWN. Benkoski and Erdős were unable to prove that
infinitely many PWN exist. In 2015, the third author proved the infiniteness of PWN assuming
a weak form of the well known Cramér conjecture [14].

Since only finitely many PWN are known, the list of the first PWN is regularly updated
and at the time of writing (November 2018) the first 1161 PWN are known (see [18, A002975]).

Looking for the largest possible PWN is also very interesting. One approach is to consider
patterns in the prime factorization of PWN, see [1]. At the time of writing only a few PWN
with 6 and 7 distinct prime factors are known [18] .

In this paper we sensibly improve these results. We find hundreds of PWN with more
than 6 distinct prime factors. In particular, we find PWN with up to 16 distinct prime factors
(Tables 3 and 4). The largest PWN we have found has 16 distinct prime factors and 14712
digits. As far as we know, this is the largest PWN known, the previous one being 5328 digits
long [14].

Another strange behavior in the prime decomposition of PWN is the fact that only five
PWN with non square-free odd prime factors were known (see OEIS sequence A273815), and
no PWN with an odd prime factor of multiplicity strictly greater than two is known.

On the one hand, we explain this fact with Theorem 4.7: there is no PWN m with a
quadratic or higher power odd prime factor and Ω(m) < 7; there is no PWN m with two
quadratic odd prime factors and Ω(m) = 7; there is no PWN m with a cubic or higher power
odd prime factor and Ω(m) = 7. On the other hand, we find hundreds of new PWN with a
square odd prime factor (see Table 5 for a selection of them). We find several new PWN with
two square odd prime factors, and one with three square odd prime factors (see Table 6). These
are the first examples of this kind.

In the following, we describe the methods used in the paper.
In Section 2 we start with a careful analysis of the set AΩ of PAN m with a fixed number Ω =

Ω(m) of prime factors counted with their multiplicity. As a corollary of Dickson’s theorems [6,

2

https://oeis.org/A298157
https://oeis.org/A287728
https://oeis.org/A002975
https://oeis.org/A273815


7], these sets are finite (see also Theorem 3.2). The main result in this section is Theorem 2.6:
PAN are of the form mpe, where p is a prime larger than the largest prime factor of m, and m is
a deficient number satisfying certain conditions involving the center c(m) = σ(m)/(2m−σ(m))
of m (see Definition 2.4). Note that some results in this section are either easy consequences
of the definitions or well-known: however, since we use them extensively in Sections 3 and 4,
we leave them in the paper.

In Section 3 we face the problem of explicitly computing AΩ, or some statistics on it, for
specific values of Ω. Here we distinguish the square-free case from the general case, since the
former appears to be notably simpler than the latter.

Every square-free PAN is then given by p1 · · · pk−1pk for certain primes p1 < · · · < pk, and
p1 · · · pi is recursively built from p1 · · · pi−1 by imposing p1 · · · pi deficient. This gives an explicit
construction for AΩ in the square-free case (see Algorithm 1). However, since the condition for
p1 · · · pi to be deficient is open (see Proposition 2.3), we need a termination condition. This is
done by exploiting Theorem 3.3, stating that if m = pe11 · · · perr is deficient, then mpq is a PAN
for suitable primes p, q. Applying this machinery we explicitly find all square-free PAN with
Ω ≤ 6, count the square-free PAN with Ω ≤ 7 and count odd square-free PAN with Ω ≤ 8 (see
Table 1 and OEIS sequences A295369 and A287590).

Adapting the techniques to the non square-free case essentially means allowing consecutive
primes in m = p1, . . . , pk to be equal, and being more careful in identifying which sequences of
primes give origin to PAN. As already said, we explicitly find all PAN with Ω ≤ 6, count PAN
with Ω ≤ 7, and count odd PAN with Ω ≤ 8 (see Table 2 and OEIS sequences A298157 and
A287728).

In Section 4 we turn to primitive weird numbers. When we search for PWN with k not
necessarily distinct prime factors for large k, it is not computationally feasible to find all PAN
and then check for weirdness. Therefore, to compute the deficient seed m = p1 · · · pk−1, we
choose an amplitude a and restrict pi to the first a primes larger than c(p1 · · · pi−1), and pk to the
a largest primes smaller than c(p1 · · · pk−1). In order to be able to deal with the huge numbers
involved, we represent them in a form we call index sequence (see Definition 4.4). Finally, in
Remarks 4.5, 4.6, and in Section 5, we explain several of the observations we made during our
computations, for possibly useful future reference. The new findings in this section are: a large
number of PWN with more than 6 and up to 16 distinct prime factors (see Tables 3 and 4),
PWN with one and more odd prime factors squared (Table 5 and Table 6), and Theorem 4.7
on patterns for PWN.

The problem of finding a PWN with a cubic or higher power odd prime factor remains still
open. This, and other open questions, are listed in Section 5.

All the software we have developed and results of our experiments are available on-line at
the GitHub repository https://github.com/amato-gianluca/weirds.

2 Deficient, perfect and abundant numbers

In line with [11], we will refer to ∆(n) := σ(n) − 2n as the abundance of n, and to δ(n) :=
2n − σ(n) = −∆(n) as the deficiency of n. It is sometimes convenient to use the notation
σ`(n) :=

∑
d|n d

` for the sum of the `-th powers of divisors, so that σ0(n) is the number of

divisors of n including 1 and n itself, σ(n) := σ1(n) represents the sum of the divisors of n, and
σ−1(n) = σ(n)/n is the abundancy of n. One can characterize deficient, perfect and abundant
numbers respectively by σ−1(n) < 2, σ−1(n) = 2, σ−1(n) > 2.

If n = pe11 · · · p
ek
k with p1 < · · · < pk primes, then for each pi we can choose an exponent

from 0 to ei to build a divisor of n.
It is well-known that the function σ` is multiplicative, i.e., σ`(m)σ`(n) = σ`(mn) for arbitrary
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positive integers m,n with (m,n) = 1. Moreover, since σ`(p
e) ≤ σ`(p)

e, then σ` is also sub-
multiplicative, i.e., σ`(mn) ≤ σ`(m)σ`(n), for arbitrary positive integers m and n.

If a positive integer is non-deficient (i.e., either perfect or abundant) and all of its proper
divisors are deficient, then it is called primitive non-deficient. A primitive abundant number
PAN is a primitive non-deficient number which is also abundant1.

The following propositions can be easily proved from the definitions, see for instance [6].

Proposition 2.1.

1. If m is non-deficient and n ∈ N, n > 1, then mn is abundant.

2. All perfect numbers are primitive non-deficient.

3. If m is abundant and m/p is deficient for all primes p | m, then m is primitive abundant.

Proposition 2.2. Let m = pe11 · · · p
ek
k with p1 < · · · < pk. Choose a position i ≤ k and a prime

p such that (m, p) = 1. Let m̃ be the result of substituting peii with pei in the decomposition of
m, i.e., m̃ = mpei/peii . Then

• if m is abundant or perfect and p < pi, then m̃ is abundant;

• if m is deficient or perfect and p > pi then m̃ is deficient.

Note that, if m = pe11 · · · p
ek
k is primitive abundant and we replace peii with pei for some

p < pi, we are not sure whether the positive integer we obtain is primitive abundant (although
we know it is abundant). For example, 32 · 5 · 7 · 103 is primitive abundant, but 22 · 5 · 7 · 103 is
not, since 2 · 5 · 7 is primitive abundant. Another example involving square-free numbers is the
following: 2 · 7 · 11 · 13 is primitive abundant but 2 · 5 · 11 · 13 is not, since 2 · 5 · 11 is already
abundant.

2.1 Adjoining a new coprime factor pe to a deficient number

Proposition 2.3 ([6, Formula (10)]). Let m be a deficient positive integer, e ∈ N and p is a
prime such that (m, p) = 1. Then

• mpe is abundant if and only if σ(m)/δ(m) > pe/σ(pe−1) ;

• mpe is perfect if and only if σ(m)/δ(m) = pe/σ(pe−1) ;

• mpe is deficient if and only if σ(m)/δ(m) < pe/σ(pe−1) .

In Section 3, we will use Proposition 2.3 to build PAN by adjoining one prime factor at a
time to a deficient number, chosen as seed. Since the term σ(m)/δ(m) will have a major role
in the following, we introduce a more succinct notation.

Definition 2.4 (Center of a deficient number). Given a deficient number m, we call center of
m the value c(m) := σ(m)/δ(m).

Let m be deficient and p a prime such that (m, p) = 1 and p < c(m). By Proposition 2.3,
it turns out that mp is abundant. However, it is not guaranteed to be primitive abundant.
Consider for example m = 16, with c(m) = 31. If we take p = 7, we have that 16 ·7 is abundant
but not primitive abundant, since 8 · 7 is abundant, too. Another example, in which all prime

1Some authors define a PAN to be an abundant number with no abundant proper divisors. The two definitions
differ on multiples of perfect numbers. For example, 30 = 2 · 3 · 5 is primitive abundant according to this
alternative definition, but not according to ours, since 2 · 3 is perfect, hence non-deficient.
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numbers occur with multiplicity one, is m = 2 · 13 · 31 = 806. Then 5 < c(m) < 6. If we take
p = 3, then mp is abundant but not primitive abundant, since 2 · 3 · 13 is abundant.

The following proposition contains properties that are either well-known or easily proved
by algebraic manipulation, see for instance [6].

Proposition 2.5. The center enjoys the following properties:

1. c(m) =
2m

δ(m)
− 1 =

1
2

σ−1(m)
− 1

, for any deficient m ∈ N;

2. if n > 1 and mn is deficient, then c(mn) > c(m);

3. for any prime p, c(pe) is increasing in e and lim
e→+∞

c(pe) =
p

p− 2
;

4. if m is deficient and p, q are primes coprime with m, q > p > c(m), then c(mq) < c(mp).

We want to give appropriate conditions ensuring that mp is primitive abundant. We know
from Proposition 2.1 and Proposition 2.3, that a necessary condition for mpe to be primitive
abundant is pe/σ(pe−1) > c(m/q) for each prime q | m. Since our aim is to implement a
program to enumerate PAN (see Section 3), we would like to reduce the number of tests we
need to perform each time. The following will be useful.

Theorem 2.6 (Structure Theorem for PAN). Let m be a deficient number, e ∈ N and p a
prime such that (m, p) = 1. Then mpe is primitive abundant if and only if all of the following
conditions hold:

1. pe/σ(pe−1) < c(m),

2. pe/σ(pe−1) >
σ(m)

δ(m) +
2m

σ(qα)− 1

for each qα || m,

3. either e = 1 or pe−1/σ(pe−2) > c(m).

Proof. When e > 1, by Propositions 2.1 and 2.3 we have that mpe is primitive abundant if and
only if pe/σ(pe−1) < c(m), pe−1/σ(pe−2) > c(m) and pe/σ(pe−1) > c(m/q) for each prime q | m.
If e = 1, we have a similar result without the second condition. We prove that, if qα || m, then

c(m/q) =
σ(m)

δ(m) +
2m

σ(qα)− 1

. Let β = σ(qα)/σ(qα−1) =
1 + · · ·+ qα

1 + · · ·+ qα−1
. We have:

c(m/q) =
σ(m/q)

δ(m/q)
=

σ(m)/β

2m/q − σ(m)/β
=

σ(m)

2mβ/q − σ(m)
=

σ(m)

2m
1 + · · ·+ qα

q + · · ·+ qα
− σ(m)

=
σ(m)

2m

(
1 +

1

q + · · ·+ qα

)
− σ(m)

=
σ(m)

δ(m) +
2m

σ(qα)− 1

(1)

This concludes the proof.

Since the expression on the r.h.s. of (1) is increasing on σ(qα), we can just keep track of
the largest σ(qα) of all the qα’s entirely dividing m. For computational reasons, the following
variant of (1) might be more efficient, since it only involves integer numbers:

c(m/q) =

σ(m)− σ(m)

σ(qα)

δ(m) +
σ(m)

σ(qα)

(2)
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The following corollary has been already proved in [1]. We give here a different proof based
on Theorem 2.6.

Corollary 2.7. If m is deficient, p is a prime such that (m, p) = 1, p < c(m) and p ≥ σ(qα)−1
for each qα || m, then mp is primitive abundant.

Proof. By Theorem 2.6, mp is primitive abundant whenever p >
σ(m)

δ(m) +
2m

σ(qα)− 1

for each

qα || m. We have

σ(m)

δ(m) +
2m

σ(qα)− 1

= (σ(qα)− 1)
2m− δ(m)

δ(m)(σ(qα)− 1) + 2m
< σ(qα)− 1.

Remark 2.8. Due to the approximations in the previous proof, it is evident that the condition
p ≥ σ(qα)−1 is sufficient but not necessary. Consider m = 8 and p = 7. Although 7 < σ(8)−1,
it turns out that 8 · 7 is primitive abundant.

The test for primitiveness in the case of square-free abundant numbers is particularly simple,
given the following:

Corollary 2.9. If p1 < · · · < pk are primes such that m = p1 · · · pk is deficient, p > pk is a
prime such that mp is abundant, then mp is primitive abundant.

Proof. Since p > pk, then (m, p) = 1. Moreover, for each pi, we have pi || m, and p ≥ σ(pi)−1 =
pi. Then, the first case of Proposition 2.3 gives p < c(m). Now the statement follows from
Corollary 2.7.

2.2 Adjoining an arbitrary prime factor to a deficient number

We now consider the case where we start with a deficient number m and multiply it by a prime
factor p not necessarily coprime with m. We want to study under which conditions mp is
perfect, (primitive) abundant or deficient.

First of all, consider that Proposition 2.3 does not hold when (m, p) 6= 1. For example, for
m = 10 = 2 · 5 we have c(m) = 9 but 2 · 52 is deficient. We may change Proposition 2.3 in the
following way:

Proposition 2.10. If m is deficient and p is a prime such that pα || m, then

• pσ(pα) < c(m) if and only if mp is abundant;

• pσ(pα) = c(m) if and only if mp is perfect;

• pσ(pα) > c(m) if and only if mp is deficient.

Proof. We have that δ(mp) = 2mp− σ(mp) = 2mp− σ(m)p
α+2−1
pα+1−1

= 2mp− σ(m)(p+ p−1
pα+1−1

) =

δ(m)p− σ(m) p−1
pα+1−1

= δ(m)p− σ(m)/σ(pα).

Example 2.11. If m = 2 · 5, we have c(m) = 9 but 5 · σ(5) = 30 hence m · 5 is deficient. If
m = 2 · 5 · 13 · 61 · 67 we have 5651 < c(m) < 5652. Since 61 · σ(61) = 3782 < c(m), we have
that m · 61 is abundant.

We may also adapt Theorem 2.6 to the case when p is not coprime with m as follows:
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Theorem 2.12. If m is deficient and p is a prime such that pα || m, we have that mp is

primitive abundant if and only if pσ(pα) < c(m) and pσ(pα) >
σ(m)

δ(m) +
2m

σ(qβ)− 1

for each

qβ || m with q 6= p.

Proof. By Propositions 2.1 and 2.10, it is immediate that mp is primitive abundant if and only
if pσ(pα) < c(m) and pσ(pα) > c(m/q) for each prime q | m with q 6= p. In the proof of

Theorem 2.6 we have shown that c(m/q) =
σ(m)

δ(m) +
2m

σ(qβ)− 1

.

It turns out that, just as for Theorem 2.6, it is enough to check the conditions of Theo-
rem 2.12 only for the largest σ(qβ) among all qβ || m.

3 Enumerating primitive abundant numbers

Theorems 2.6 and 2.12 allow us to devise an algorithm for enumerating PAN or, more generally,
primitive non-deficient numbers. We will enumerate PAN on the basis of their factorization.
For this reason, when m = pe11 · · · p

ek
k , we will always assume p1 < · · · < pk. Moreover, we will

denote with ω(m) := k the number of distinct prime factors in m and with Ω(m) := e1 + · · ·+ek
the number of prime factors in m counted with their multiplicity.

Note that, if we fix the number of prime factors counted with multiplicity, then enumeration
terminates, thanks to the following results.

Lemma 3.1. Given a positive integer m and k ≥ 0, there are only finitely many PAN of the
form mn with (m,n) = 1 and Ω(n) = k.

Proof. We proceed by induction on k. For k = 0 the result is trivial, either m is primitive
abundant and n = 1 or it is not. If k ≥ 1, we distinguish whether m is deficient or not. If m
is not deficient, then mn is never primitive abundant and the lemma holds. If m is deficient,
consider an n such that mn is primitive abundant and Ω(n) = k. Then n has the form pe11 · · · p

e`
`

with p1 < · · · < p` and
∑`

i=1 ei = k. Since mn is abundant, σ−1(n) > 2/σ−1(m). However, the
abundancy of n is bounded by

σ−1(n) = σ−1(pe11 ) · · · σ−1(pe`` ) ≤ σ−1(pe11 ) · · ·σ−1(pe`1 ) ≤ (1/p1 + 1)k

Therefore, (1/p1 +1)k > 2/σ−1(m), i.e., 1/p1 >
k
√

2/σ(m)−1. Since m is deficient, σ−1(m) < 2.
Hence, the right hand side of this inequality is positive and p1 is bounded from the above. Given
one of the finitely many p1 satisfying this condition and e ∈ {1, . . . , k}, by inductive hypothesis
there are only finitely many n′ coprime with mpe, with Ω(n′) = k − e and such that mpen is
abundant. Varying p, these cover all possible values of n in the statement of this lemma.

Theorem 3.2. For any k > 1, there are only finitely many PAN n with Ω(n) = k.

Proof. This follows immediately from the previous Lemma for m = 1.

We remark that Theorem 3.2 is a corollary of [6, 7] about finiteness of PAN with a fixed
number of odd prime factors (counted without multiplicity) and a fixed power of 2.
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3.1 Square-free PAN

We consider the special case of enumerating square-free PAN (SFPAN in the rest of the paper)
with k prime factors. The more general case of primitive square-free non-deficient numbers is
not interesting, since it is well-known that there is only one square-free perfect number which
is 6 [11, p. 71].

The algorithm is a recursive procedure which takes a deficient number m = p̄1 · · · p̄r with
p̄1 < · · · < p̄r and r < k as input. Initially m = 1. If r < k − 1, for each prime p > c(m)
we consider m̃ = mp, which is deficient by Proposition 2.3, and recursively call the procedure.
If r = k − 1, then we consider all primes p contained in the possibly empty open interval
(p̄r, c(m)). By Corollary 2.9, each number of the form mp is a PAN.

The algorithm needs a stopping condition in the case r < k−1, since we cannot actually test
all the countably infinite primes p > c(m). We decide to try primes in increasing order, stopping
as soon as we find a p such that there are no PAN starting with mp. The complete description
may be found in Algorithm 1. The algorithm is easily checked to be correct. Completeness,
i.e., the fact that the algorithm finds all SFPAN of the chosen form, will be discussed later.

Algorithm 1: Enumerating SFPAN with k prime factors.

Function sfpan(k: nat, m: nat) is
Input: k is a natural number; m = p̄1 · · · p̄r is a square-free deficient number, with

p̄1 < · · · < p̄r
Output: all primitive abundant numbers of the form m · p1 · · · pk, with

p̄r < p1 < · · · < pk
Result: the number of square-free primitive abundant numbers of the form above

1 count ← 0;
2 if k = 1 then
3 foreach p prime s.t. p̄r < p < c(m) do
4 Print(mp);
5 count ← count + 1

6 end
7 return count

8 else
9 foreach p prime s.t. p > max(p̄r, c(m)) do

10 innerCount ← sfpan(k-1, mp);
11 if innerCount = 0 then
12 return count
13 end
14 count ← count + innerCount;

15 end

16 end

end

When we only want to count PAN, steps 3–6 of the algorithm may be replaced by a prime
counting function. Using an implementation in SageMath of the algorithm and the prime
counting function provided by Kim Walisch’s primecount library, we managed to count the
number of SFPAN from 1 up to 7 distinct prime factors and odd SFPAN from 1 up to 8 distinct
prime factors. The result is shown in Table 1 and form sequences A295369 and A287590 of the
OEIS.

We have also computed a list of SFPAN with up to 6 distinct prime factors, which is available
on GitHub at https://github.com/amato-gianluca/weirds.
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ω # all # odd
1 0 0
2 0 0
3 1 0
4 18 0
5 610 87
6 216054 14172
7 12566 567699 101 053625
8 ? 3475 496953 795289

Table 1: Number of SFPAN and odd SFPAN with given number of distinct prime factors.

3.2 Completeness of the enumeration algorithm

The critical point of this algorithm is the stopping condition. Are we sure we do not lose any
PAN? In order to ensure completeness of the search procedure, we need to prove that, if there
is no SFPAN n such that ω(n) = k and whose factorization starts with p1 · · · pr, then there is
no SFPAN m with ω(m) = k and whose factorization starts with p1 · · · pr−1 · p for any p > pr.
We actually prove the contrapositive, i.e., that if p1 · · · pr−1 ·p ·pr+1 · · · pk is primitive abundant
and pr−1 < pr < p, then there exists an SFPAN m with ω(m) = k and whose factorization
starts with p1 · · · pr−1 · pr. Note that p1 · · · pr−1 · pr · pr+1 · · · pk is abundant, but it might not be
primitive abundant (see examples after Proposition 2.2).

Since a similar stopping condition will be used also in the algorithm of the next subsection,
we will also consider the case of non-necessarily square-free PAN.

Theorem 3.3 (Deficient sequence completion). If m = p̄e11 · · · p̄err is deficient and c(m) ≥ p̄r,
then there are primes p, q with p̄r < p < q such that mp is deficient and mpq is abundant. If
m is square-free, mpq is primitive abundant.

Proof. First of all, when m is square-free, mpq is primitive abundant by Corollary 2.9.
For the main part of the theorem, we consider initially the case c(m) ≥ 8. Let p be the

smallest prime larger than c(m). Then p > c(m) ≥ p̄r, and mp is deficient by Proposition 2.3.
We need to find a prime q > p such that mpq is abundant. This requires q < c(mp). We have

c(mp) =
σ(m)(p+ 1)

2mp− σ(m)(p+ 1)
=

σ(m)(p+ 1)

δ(m)p− σ(m)
=

p+ 1
p

c(m)
− 1

In 1952, Jitsuro Nagura [15] proved that for any x ≥ 8 there is always a prime strictly between
x and 3x/2. Therefore, by definition of p, using x = c(m) in Nagura’s Theorem, we have
p < 3c(m)/2 and

c(mp) > 2(p+ 1) = 2p+ 2

Again by Nagura’s Theorem (or even weaker results), there is a prime q in the interval (p, 2p+2).
Thus, q < 2p+ 2 < c(mp), and this concludes the case c(m) ≥ 8.

We now consider the case c(m) < 8, which implies p̄r < 8.
If p̄r = 7, then c(m) ≥ 7. Let us take p = 11 and q = 13. Then mp is deficient and

c(mp) = 12/(11/c(m)− 1) ≥ 12/(11/7− 1) = 21, hence mpq is abundant.
If p̄r = 5, then r 6= 1, because c(5er) < 5/(5− 2) = 5/3 for any er by (3) in Proposition 2.5.

If both 2 and 3 are other factors of m, then m is abundant by Proposition 2.1, because 2 ·3 ·5 is
abundant. Therefore, m is either of the form 2e15e2 or 3e15e2 for e1, e2 ≥ 1. Since c(2·5) = 9 > 8,
we only consider the case m = 3e15e2 , by (2) in Proposition 2.5. Since c(32 · 52) > 8, the only
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cases remaining are: m = 3 · 5, m = 32 · 5 and m = 3 · 52. However, c(3 · 5) = 4 < 5 and
c(3 · 52) = 62/13 < 5. Therefore, the only m satisfying the hypothesis of the theorem is 32 · 5,
for which we may take p = 7 and q = 11.

If p̄r = 3, then r = 1: if 2 also appears as a prime factor in m, then m cannot be deficient
since 2 · 3 is perfect, see Proposition 2.1. Then m = 3e1 for some e1. However, c(3e1) <
3/(3− 2) = 3, hence m does not satisfy the hypothesis of the theorem.

If p̄r = 2, then m = 2er and σ(m) = c(m) = 2er+1 − 1. If er ≥ 3 then c(m) ≥ 8 and we fall
into the previous case. For the remaining cases: if m = 2, take p = 5 and q = 7; if m = 4, take
p = 11 and q = 13.

Remark 3.4. In the hypothesis of the previous theorem, when m is not square-free, it might
not be possible to obtain p, q such that mpq is primitive abundant. Consider m = 38 · 5, so
that 8 < c(m) < 9. If we determine p as the smallest prime p > c(m) and q as the largest
q < c(mp) as in Proposition 2.3, we get p = 11, q = 53 and m ·11 ·53 which is abundant but not
primitive abundant, since 37 · 5 · 11 · 53 is abundant, too. If we replace 53 with smaller primes
q the abundance increases, because in general ∆(mq)−∆(mq′) = ∆(m)(q − q′) whenever q, q′

are coprime with m, hence m · 11 · q is abundant and the integer we obtain cannot be primitive
abundant by Proposition 2.2. By increasing p and computing the corresponding largest possible
q < c(mp), we get m · 13 · 31 and m · 17 · 19, but none of them is primitive abundant. We
have [c(m · 19)] = 17, hence for primes p ≥ 19 we get c(m · p) ≥ c(m · 19) > 17 by (4) in
Proposition 2.5, and we have no primes q > p making mpq abundant.

Even relaxing the condition p̄r < p < q into p̄r ≤ p ≤ q, we do not get any PAN of the
form mpq. Actually, m · 112 is deficient, hence no integer of the form mpq is abundant when
p = q ≥ 11, by Proposition 2.2. If we take p = 5, we have 13 < c(m · 5) < 14. Hence, m · 5 · 13
is abundant, but not primitive abundant, since 37 · 52 · 13 is abundant, too. Finally, m · 52 is
not abundant.

Corollary 3.5. If m = p̄e11 · · · p̄err is deficient and there exists a prime p > p̄r such that mp
is abundant, then for each s > 0 there are primes p1 < · · · < ps such that p1 > p̄r, mp1 · · · ps
is abundant and mp1 · · · pi is deficient for each i < s. Moreover, if m is square-free, then
mp1 · · · ps is primitive abundant.

Proof. For s = 1 the result follows by choosing p1 = p. For s > 1, it follows by repeatedly
applying Theorem 3.3. Note that since mp is abundant and p > p̄r, then c(m) > p > p̄r by
Proposition 2.3, hence the hypothesis of Theorem 3.3 hold and they are preserved by repeated
applications. The result for m square-free follows from Corollary 2.9.

If m is not square-free, the fact that p1, . . . , ps may be chosen in such a way that p1, . . . ps
is primitive abundant is not always true: take for instance m = 38 · 5 as in Remark 3.4. Then
m · 7 is abundant, but we have seen there are no p, q such that 5 ≤ p ≤ q and mpq is primitive
abundant.

The following theorem proves that the algorithm enumerating SFPAN is complete.

Theorem 3.6. Let m = p1 · · · pk be an abundant number, with p1 < · · · < pk. Let j < k and
pj−1 < p̃j < pj such that p1 · · · pj−1p̃j is deficient. Then, there are primes p̃j+1 < · · · < p̃k such
that p̃j < p̃j+1, m̃ = p1 · · · pj−1p̃j · · · p̃k is primitive abundant and p1 · · · pj−1p̃j · · · p̃i is deficient
for every i < k.

Proof. Let r be the first index such that p1 · · · pj−1p̃jpj+1 · · · pr is abundant. Then r > j by
hypothesis, and r ≤ k because mp̃j/pj is abundant by Proposition 2.2. Then we just apply
Corollary 3.5 in order to adjoin k − r + 1 prime factors to p1 · · · pj−1p̃jpj+1 · · · pr−1.
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3.3 Possibly non square-free PAN

An extension of the algorithm to find (non necessarily square-free) PAN n with a fixed Ω(n)
may be devised by allowing consecutive prime factors to be equal.

In other words, we see a positive integer m as the product of primes p̄1, . . . , p̄r with p̄1 ≤
· · · ≤ p̄r. When called with r < k − 1, the recursive procedure tries to extend m to a deficient
number m̃ = mp using either p = p̄r or p > c(m) as for the square-free case. When r = k − 1,
the procedure tries to obtain an abundant number mp by choosing either p = p̄r or p < c(m).
In both cases, when p = p̄r, Proposition 2.10 is used to decide whether mp is abundant or
deficient.

In the square-free case, when r = k − 1, it is enough to choose p > p̄r in order to ensure
that mp is not only abundant, but also primitive abundant. In the non square-free case this
is not enough: we need to use a different lower bound for p, which can be computed using
Theorem 2.12.

Another difference with respect to the square-free case is the stopping condition. The reason
lies in the extension of Theorem 3.6 to possibly non square-free number.

Theorem 3.7. Let m = p1 · · · pk be a PAN, with p1 ≤ · · · ≤ pk. Let j < k and pj−1 < p̃j < pj
such that p1 · · · pj−1p̃j is deficient. Then, there are primes p̃j+1 ≤ · · · ≤ p̃k such that p̃j ≤ p̃j+1,
m̃ = p1 · · · pj−1p̃j · · · p̃k is abundant and p1 · · · pj−1p̃j · · · p̃i is deficient for every i < k.

Proof. Since σ−1 is sub-multiplicative, if we replace in m the prime pj with p̃j, the resulting
integer mp̃j/pj is abundant. Actually 2 < σ−1(m) = σ−1(mpj/pj) ≤ σ−1(m/pj)σ−1(pj) ≤
σ−1(m/pj)σ−1(p̃j) = σ−1(mp̃j/pj). Let r be the first index (which by hypothesis is strictly
larger than j) such that p1 . . . pj−1p̃jpj+1 · · · pr is abundant. Then we just apply Corollary 3.5
in order to add k − r + 1 prime factors to p1 . . . pj−1p̃jpj+1 · · · pr−1.

We cannot guarantee that m̃ is primitive abundant. For example, although 36 · 5 · 13 · 31 is
primitive abundant, there is no p ≥ 11 such that m = 36 · 5 · 11 · p is primitive abundant.

Since Theorem 3.7 does not ensure that m̃ is primitive abundant, the procedure should
return a boolean saying whether an abundant number (not necessarily a primitive abundant
number) has been found, and stop when the recursive call returns false.

The complete description may be found in Algorithm 2. Using an implementation of the
algorithm in SageMath we managed to count the number of PAN with 1 to 7 prime factors
(counted with their multiplicity) and odd PAN with 1 to 8 prime factors. The results are shown
in Table 2 and form sequences A298157 and A287728 in the OEIS. We have also computed a
list of PAN with up to 6 prime factors, which is available on GitHub at https://github.com/
amato-gianluca/weirds.

Ω # all # odd
1 0 0
2 0 0
3 2 0
4 25 0
5 906 121
6 265602 15772
7 13232731828 102896101
8 ? 3475842606319962

Table 2: Number of PAN and odd PAN with given number of prime factors counted with
multiplicity.
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Algorithm 2: Enumerating primitive non-deficient numbers with k prime factors,
counted with their multiplicity.

Function pndn(k: nat, m: nat = 1) is
Input: k is a natural number; m = p̄e11 · · · p̄err is a deficient number with

p̄1 < · · · < p̄r
Output: all primitive non-deficient numbers of the form m · p1 · · · pk, with

p̄r ≤ p1 ≤ · · · ≤ pk.
Result: a pair (count, found) where count is the number of primitive non-deficient

number of the form above, and found is a boolean which is true when a
(possibly non-primitive) non-deficient number of the form above has been
found.

1 begin
2 count ← 0;
3 found ← false;
4 if k = 1 then
5 if there is a prime p s.t. p̄r < p ≤ c(m) then
6 found ← true;
7 lowerbound ← max{c(m/p) | p is a divisor of m};
8 foreach p prime s.t. max(p̄r, lowerbound) < p ≤ c(m) do
9 Print(mp);

10 count ← count + 1

11 end

12 end
13 if p̄r · σ(p̄err ) ≤ c(m) then
14 found ← true;
15 lowerbound ← max{c(m/p) | p < p̄r is a divisor of m};
16 if p̄r · σ(p̄e

r

r ) > lowerbound then
17 Print (mp̄r);
18 count ← count +1

19 end

20 end
21 return (count,found)

22 else
23 if mp̄r is deficient then
24 (innerCount, innerFound) ← pndn(k − 1, mp̄r);
25 count ← count + innerCount;
26 found ← found or innerFound

27 end
28 foreach p prime s.t. p > max(p̄r, c(m)) do
29 (innerCount, innerFound) ← pndn(k − 1, mp);
30 if innerFound = false then
31 return (count, found)
32 end
33 count ← count + innerCount;
34 found ← found or innerFound;

35 end

36 end

37 end

end
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4 Weird numbers

In a previous paper [1], we developed search algorithms which allowed us to find primitive weird
numbers (PWN) with up to 6 different prime factors. However, we were not able to proceed
further due to the computational complexity involved. It was clear that a different approach
was needed, which was suggested to us by the following result.

Proposition 4.1. A positive integer is primitive weird if and only if it is weird and primitive
abundant.

Proof. If n is primitive weird, by definition it is weird and abundant. We prove that any divisor
m | n, 1 ≤ m < n, is deficient. Assume n = mk with k > 1. For the sake of contradiction,
assume m is non-deficient. Since m cannot be weird by hypothesis (n primitive weird), there
is a subset S of divisors of m such that m =

∑
d∈S d. If d is a divisor of m, dk is a divisor of

n. Hence n = mk =
∑

d∈S dk is not weird, contradicting our hypothesis.
On the other hand, let n be weird and primitive abundant. If m | n then m is deficient,

hence it cannot be weird. Therefore, n is primitive weird.

Given that PWN are only a particular case of PAN, we use the algorithms for enumerating
PAN shown in the previous section, and add a straightforward check for weirdness, transforming
them into algorithms for enumerating PWN. Checking for weirdness can actually be made more
efficient using the following well-known fact, see [14, Lemma 2].

Proposition 4.2. An abundant number n is weird if and only if ∆(n) cannot be expressed as
a sum of distinct proper divisors of n.

4.1 The square-free case

We consider again Algorithm 1 for the square-free case. Since we are interested in finding PWN
with several prime factors, and since it is not computationally feasible to enumerate all PAN in
such cases, we provide as an additional input to the algorithm an amplitude value a. At each
step of the procedure, when iterating over primes larger than c(m) (or smaller than c(m) in
the case r = k − 1), we only consider at most the first a primes.

Another generalization consists in starting the search procedure from a possibly non square-
free deficient number m. This means that, in Algorithm 1, each p̄i could be replaced by a higher
power of that prime number, while new factors added by the procedure would remain square-
free. However, when r = k− 1, we only consider primes p which are larger than σ(qα) for each
qα || m. In that way, by Corollary 2.7, the abundant numbers found by the search procedure
turn out to be primitive abundant. When m is a power of 2, c(m) = σ(m) and there are no
additional constraints on the choice of the last prime.

Remark 4.3. In determining whether a number is weird, the sufficient conditions in Theorem 3.1
of our previous paper [1] could be employed. However, experimental evaluation has shown
that most of the weird numbers generated with our approach fail to satisfy these conditions.
Therefore, a direct proof of weirdness using Proposition 4.2 is employed.

The weird numbers generated by this procedure tend to be huge. At each step, since we
choose p close to c(m), we minimize the deficiency of m̃ = mp. However, when recursively
calling the search procedure on m̃, since δ(m̃) is small, c(m̃) is quite large. This is repeated
step after step, leading to very large prime factors. For example, all the PWN we have generated
with ω = 12 are larger than 10900. Since dealing with these huge numbers is cumbersome, we
represent them in a form we have called index sequence, that turned out to be very useful.
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Definition 4.4 (Index sequence). Given a positive integer m = pe11 · · · p
ek
k , p1 < · · · < pk, such

that none of the partial products wi :=
∏i

j=1 p
ej
j is perfect, we define ι(m), the index sequence

associated to m, as the sequence [(ι1, e1), . . . , (ιk, ek)] with ι1, . . . , ιk ∈ Z such that:

• if ιi = 0, then pi = c(wi−1);

• if ιi > 0, then pi is the ιi-th prime larger than c(wi−1);

• if ιi < 0, then pi is the |ιi|-th prime smaller than c(wi−1), i.e., the result of applying |ιi|
times the “previous prime” function pp(x) := max{p < x; p prime}.

To ease notation, we write a pair (ι, e) as ιe, or just ι if e = 1.

For example, the number m = 22 ·13 ·17 ·443 ·97919 ·563915507 is represented by the index
sequence [12, 2, 1, 1, 1,−2], because 2 is the first prime larger than c(1) = 1, 13 is the second
prime larger than c(22) = 7, 17 is the first prime larger than c(22 · 13) = 16.3̄, and so on. All
index sequences generated by our search procedure have positive indices for all but the last
position. All the indices have an absolute value smaller than the amplitude parameter a.

Remark 4.5. Having to deal with huge integers is a limitation of our approach: increasing the
value of k has a big impact on performance because not only is the search space increased
by a factor a (the amplitude of the search space) but the integers we deal with also become
much larger. Experimentally we see that, when pi is near c(pe11 · · · p

ei−1

i−1 ), then each prime
is roughly double the size of the preceding one, in terms of the number of digits. There-
fore, there is an exponential increase in the size of factors, which impacts all operations on
these numbers, but particularly the procedure for determining the (pseudo-)prime immediately
preceding or following a given n. This procedure essentially works by repeatedly calling a
(pseudo-)primality test with consecutive odd numbers until a new (pseudo-)prime is found.
Since in the average the gap between primes is log n and the Baillie–PSW primality test [2, 17]
used by SageMath takes time proportional to log3 n, the computational complexity of deter-
mining the next prime is roughly log4 n, i.e., 4k. This makes it extremely hard to run our
algorithms with values of Ω > 16, even with a small value for the amplitude.

On the other side, it seems that the abundant numbers m generated in this way are very
likely going to be weird. This is, at least in part, due to the fact that ∆(m) is low if compared
to m and its prime factors. A low abundance is unlikely to be expressible as sum of divisors of
m, see Proposition 4.2.

In line with the previous remark, many PWN are easily found starting from a power of two
for m and a small amplitude for a. Tables 3 and 4 contain some of the PWN we have found
starting from the following parameters:

• m = 2, a = 8, k ∈ {3, . . . , 10};

• m = 4, a = 3, k ∈ {3, . . . , 16};

• m = 8, a = 6, k ∈ {3, . . . , 10}.

Table 3 contains, for each PWN, both its factorization and its index sequence. Table 4 only
contains index sequences since the constituent primes would not fit on the page. In particular,
we mention the following results:

• We have found PWN with up to 16 distinct prime factors. Previously, PWN with 6
distinct prime factors were shown in [1], and later a few more with 6 and 7 distinct prime
factors was provided in [18, A002975], while no PWN was known with 8 or more distinct
prime factors.

14

https://oeis.org/A002975/a002975_23.txt


• The PWN with 16 distinct prime factors has 14712 digits. This is, to the best of our
knowledge, the largest PWN known, the previously largest having 5328 digits [14].

Note that, for the sake of efficiency, the search algorithm uses pseudo-primes. However, all
the factors for the weird numbers in Tables 3, 4, 5 and 6 have been proved to be true primes,
for some of them using additional software such as Primo (a primality proving program based
on the Elliptic Curve Primality Proving algorithm).

Remark 4.6. Explaining the fact we find so many PWN only on the basis of their abundance is
not satisfactory. In particular, by looking at the tables, it is evident that the initial value m = 4
is the best choice for searching PWN, at least for small values of the amplitude parameter: with
a value of just a = 3, we could find PWN with k distinct prime factors for all k between 3 and
16. The results for m = 2 and m = 8 were less satisfactory, even using much larger values for
the parameter a. We will investigate this behavior in a forthcoming paper.

4.2 PWN with square factors

Another weirdness in the realm of weirds is the rarity of PWN with odd prime factors of
multiplicity greater than one. To the best of our knowledge, up to now there were only five
known PWN with a square odd prime factor, listed in the OEIS sequence A273815, and no
PWN with an odd prime factor of multiplicity strictly greater than two is known.

Using an extension of Algorithm 2 we have found hundreds of new PWN with at least one
odd prime factor of multiplicity greater than one. A selection of them may be found in Table 5.
We find that there are no such PWN for Ω < 7, and the list for Ω = 7 is complete. From Ω = 8
onwards, our list is only partial. None of the PWN we have found has odd prime factors with
exponent greater than two.

On the other side we have found many PWN which have two odd prime factors with
exponent greater than one, which were not known up to now. One of them is:

22 · 13 · 17 · 449 · 24809 · 223797481 · 134375227026213892·
30744384018779243589022128598972·

144038537693729891876284023491399806504775375343886878276167

whose index sequence is
[12, 2, 1, 2, 1, 1, 12, 12,−1]

Other PWN with 2 square odd prime factors are given in Table 6. Actually, the last of them
has 3 square odd prime factors, so it is likely that there are weird numbers with any number
of square odd prime factors, provided Ω is big enough.

All of the above can be summed up in the following theorem:

Theorem 4.7 (PWN with non square-free odd part and Ω ≤ 7). There is no PWN m with
a quadratic or higher power odd prime factor and Ω(m) < 7. There is no PWN m with two
quadratic odd prime factors and Ω(m) = 7. There is no PWN m with a cubic or higher power
odd prime factor and Ω(m) = 7.

We recall that the completeness of our search comes from that of Algorithm 2. As ex-
plained in Section 3.3, the search method of this algorithm is exhaustive because it recursively
extends the seed m with all possible prime factors within the bounds computed according to
the respective theorems.
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5 Open problems

By examining Tables 5 and 6, together with other weird numbers found by our search proce-
dure and which may be found on-line, we observe some facts which can be useful for further
experiments.

First of all, there are some prefixes in the factorization which occur in many PWN. One of
this recurring prefix is 22 · 13 · 17 · 443 · 97919, which also leads to many PWN with 2 or more
square odd prime factors. PWN with 2 square odd prime factors begin to appear in the results
of the search procedure when Ω = 12, and become quite common when Ω = 14. It seems that
increasing Ω makes the appearance of this kind of PWN easier. Since our search space is quite
restricted, there are probably PWN with 2 square odd prime factors even for Ω < 12, but we
think they are quite rare. The same thing may be said about PWN with 3 square odd prime
factors, which only appear with Ω = 15. Unfortunately, with Ω > 15 the numbers become huge
(thousands of digits) and this makes experiments much more difficult.

Open Question 5.1. Given n ∈ N, is there a PWN with exactly n square odd prime factors?

If such PWN exist, we define Ωn as the least possible Ω. From the previous section and
Theorem 4.7 we obtain Ω1 = 7, 8 ≤ Ω2 ≤ 12, 8 ≤ Ω3 ≤ 15.

As mentioned, another question is the following.

Open Question 5.2. Is there a PWN with a cubic or higher power odd prime factor?

From the experiments, odd square prime factors seems more common at the right end of
the factorization, although in our search results they never appear in the last position.

Open Question 5.3. Is there a PWN which has its largest prime factor squared or to a higher
power?

The question is intriguing since we don’t know any reason why such PWN should not exist,
but none is known so far. Finding one could give a hint on their density, which might also have
an impact on the search of odd weird numbers.

In sequence A002975 of the OEIS it was asked in 2014 whether the following fact is true: a
weird number is primitive if and only if divided by its largest prime factor it is not weird. The
following would be a counterexample:

Open Question 5.4. Is there a weird number w which is not primitive and such that w/gpf(w)
is not weird, where gpf(w) denotes the largest prime factor of w?

This would settle the above question waiting for an answer since 5 years.
The following problem appears as an editor’s comment in [3]. Erdős offered $25 for its

solution.

Open Question 5.5. Is σ(m)/m bounded when m ranges through the set of (not necessarily
primitive) weird numbers?

Finally, the following would settle a long-standing problem.

Open Question 5.6. Find an odd weird number, or prove that all weird numbers are even.

The above problem was raised by Erdős, who offered $10 for an example of an odd weird
number, and $25 for a proof that none can exist [3]. Wenjie Fang and Uwe Beckert proved,
using parallel tree search, that there are no odd weird numbers up to 1021, and no odd weird
numbers up to 1028 with abundance not exceeding 1014 [8, Section 4.2].
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ω factored weird number ∆(w) index sequence

3 2 · 5 · 7 4 [1, 1,−1]
3 4 · 11 · 19 8 [12, 1,−1]
3 8 · 17 · 127 16 [13, 1,−2]
3 8 · 19 · 71 16 [13, 2,−2]
3 8 · 19 · 61 56 [13, 2,−4]
3 8 · 23 · 43 16 [13, 3,−1]
3 8 · 29 · 31 16 [13, 4,−1]
4 2 · 5 · 11 · 53 4 [1, 1, 1,−1]
4 2 · 5 · 13 · 31 4 [1, 1, 2,−1]
4 4 · 11 · 23 · 251 8 [12, 1, 1,−1]
4 4 · 11 · 23 · 241 88 [12, 1, 1,−2]
4 4 · 11 · 31 · 67 8 [12, 1, 3,−1]
4 4 · 13 · 17 · 439 8 [12, 2, 1,−1]
4 8 · 17 · 137 · 9311 16 [13, 1, 1,−1]
4 8 · 17 · 139 · 4723 16 [13, 1, 2,−1]
4 8 · 19 · 79 · 1499 16 [13, 2, 1,−1]
4 8 · 19 · 83 · 787 16 [13, 2, 2,−1]
4 8 · 23 · 67 · 139 16 [13, 3, 5,−1]
5 2 · 5 · 11 · 59 · 647 20 [1, 1, 1, 1,−1]
5 4 · 11 · 23 · 257 · 13003 8 [12, 1, 1, 1,−1]
5 4 · 11 · 23 · 257 · 13001 88 [12, 1, 1, 1,−2]
5 4 · 11 · 23 · 263 · 6047 88 [12, 1, 1, 2,−1]
5 4 · 13 · 17 · 449 · 24799 232 [12, 2, 1, 2,−1]
5 4 · 13 · 23 · 61 · 1657 8 [12, 2, 3, 2,−1]
5 8 · 17 · 137 · 9337 · 3953791 272 [13, 1, 1, 3,−1]
5 8 · 17 · 137 · 9341 · 3346951 16 [13, 1, 1, 4,−1]
5 8 · 17 · 137 · 9341 · 3346883 7088 [13, 1, 1, 4,−6]
5 8 · 23 · 47 · 1091 · 107209 976 [13, 3, 1, 2,−1]
5 8 · 23 · 47 · 1103 · 51839 368 [13, 3, 1, 5,−1]
5 8 · 23 · 71 · 127 · 6689 16 [13, 3, 6, 1,−1]
5 8 · 31 · 37 · 163 · 186959 16 [13, 5, 2, 1,−1]
5 8 · 37 · 43 · 67 · 15227 16 [13, 6, 5, 1,−1]
6 4 · 11 · 23 · 269 · 4003 · 24766559 88 [12, 1, 1, 3, 1,−1]
6 4 · 11 · 23 · 269 · 4013 · 1508909 248 [12, 1, 1, 3, 3,−1]
6 4 · 13 · 17 · 443 · 97919 · 563915507 1768 [12, 2, 1, 1, 1,−2]
6 4 · 13 · 17 · 443 · 97931 · 330611657 4888 [12, 2, 1, 1, 3,−1]
6 8 · 17 · 137 · 9349 · 2561627 · 3280965162749 272 [13, 1, 1, 6, 1,−1]
6 8 · 17 · 137 · 9349 · 2561651 · 252384300173 272 [13, 1, 1, 6, 3,−1]
6 8 · 17 · 139 · 4783 · 389749 · 8454956717 7088 [13, 1, 2, 5, 2,−1]
6 8 · 23 · 47 · 1087 · 167863 · 197246914559 16 [13, 3, 1, 1, 1,−1]
7 2 · 5 · 11 · 89 · 167 · 829 · 7972687 20 [1, 1, 1, 8, 6, 1,−1]
7 4 · 13 · 17 · 443 · 97919 · 563915549 · 10965542434977103 1768 [12, 2, 1, 1, 1, 2,−1]

Table 3: Some PWN found by our search algorithm. The first column is the number of prime
factors. For each ω, entries are in lexicographic order with respect to the index sequence.
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ω index sequence ω index sequence

7 [13, 1, 2, 2, 1, 4,−1] 11 [12, 2, 1, 1, 1, 1, 1, 1, 2, 1,−1]
7 [13, 6, 6, 1, 1, 6,−6] 11 [12, 2, 1, 1, 1, 1, 1, 3, 1, 3,−1]
7 [13, 6, 6, 1, 3, 2,−5] 11 [12, 2, 1, 1, 1, 2, 1, 2, 2, 2,−3]
7 [13, 6, 6, 1, 3, 2,−6] 11 [12, 2, 1, 1, 1, 2, 2, 1, 1, 3,−2]
7 [13, 6, 6, 1, 3, 5,−3] 11 [12, 2, 1, 1, 1, 2, 3, 2, 2, 1,−2]
7 [13, 6, 6, 1, 4, 5,−1] 11 [12, 2, 1, 1, 1, 3, 3, 3, 1, 3,−2]
7 [13, 6, 6, 1, 5, 2,−5] 11 [12, 2, 1, 1, 2, 1, 1, 2, 2, 1,−1]
7 [13, 6, 6, 1, 5, 4,−2] 11 [12, 2, 1, 1, 2, 2, 1, 3, 1, 1,−1]
7 [13, 6, 6, 1, 6, 1,−6] 11 [12, 2, 1, 1, 2, 3, 1, 1, 1, 1,−1]
7 [13, 6, 6, 1, 6, 3,−2] 11 [12, 2, 1, 1, 2, 3, 1, 1, 2, 3,−2]
7 [13, 6, 6, 1, 6, 4,−3] 11 [12, 2, 1, 1, 3, 2, 2, 1, 2, 1,−3]
7 [13, 6, 6, 1, 6, 4,−4] 11 [12, 2, 1, 2, 1, 2, 1, 1, 1, 3,−1]
8 [12, 2, 1, 1, 1, 2, 1,−2] 11 [12, 2, 1, 2, 1, 2, 1, 3, 2, 1,−1]
8 [12, 2, 1, 1, 3, 3, 1,−2] 11 [12, 2, 1, 2, 1, 3, 1, 1, 1, 1,−1]
8 [12, 2, 1, 2, 1, 3, 3,−3] 12 [12, 2, 1, 1, 1, 2, 1, 1, 2, 2, 3,−1]
9 [12, 2, 1, 1, 1, 2, 1, 3,−3] 12 [12, 2, 1, 1, 1, 2, 1, 2, 2, 1, 3,−3]
9 [12, 2, 1, 1, 2, 3, 1, 2,−3] 12 [12, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1,−1]
9 [12, 2, 1, 2, 1, 2, 3, 1,−3] 12 [12, 2, 1, 1, 1, 2, 2, 1, 2, 3, 1,−1]
9 [12, 2, 1, 2, 1, 3, 3, 1,−1] 12 [12, 2, 1, 1, 3, 1, 1, 3, 1, 1, 1,−3]
10 [12, 2, 1, 1, 1, 1, 2, 3, 2,−3] 12 [12, 2, 1, 1, 3, 1, 1, 3, 1, 1, 3,−3]
10 [12, 2, 1, 1, 1, 1, 3, 1, 3,−2] 12 [12, 2, 1, 1, 3, 1, 2, 2, 1, 1, 2,−1]
10 [12, 2, 1, 1, 1, 1, 3, 3, 1,−3] 13 [12, 2, 1, 1, 1, 3, 3, 2, 2, 3, 3, 2,−2]
10 [12, 2, 1, 1, 1, 2, 2, 1, 1,−1] 13 [12, 2, 1, 2, 1, 1, 1, 1, 1, 2, 3, 2,−1]
10 [12, 2, 1, 1, 1, 2, 3, 1, 1,−1] 13 [12, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1,−2]
10 [12, 2, 1, 1, 1, 3, 2, 1, 3,−3] 13 [12, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2,−1]
10 [12, 2, 1, 1, 2, 1, 1, 1, 2,−2] 13 [12, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1,−2]
10 [12, 2, 1, 1, 2, 1, 1, 1, 3,−1] 13 [12, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1,−2]
10 [12, 2, 1, 1, 2, 1, 2, 3, 1,−3] 13 [12, 2, 1, 2, 1, 1, 1, 2, 3, 1, 2, 1,−3]
10 [12, 2, 1, 1, 2, 3, 3, 1, 3,−2] 13 [12, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 3,−2]
10 [12, 2, 1, 1, 2, 3, 3, 3, 1,−2] 13 [12, 2, 1, 2, 1, 1, 1, 3, 1, 3, 3, 2,−3]
10 [12, 2, 1, 1, 3, 2, 2, 1, 3,−1] 13 [12, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1,−1]
10 [12, 2, 1, 1, 3, 2, 2, 2, 1,−2] 13 [12, 2, 1, 2, 1, 1, 1, 3, 3, 3, 3, 1,−1]
10 [12, 2, 1, 1, 3, 2, 3, 1, 2,−2] 13 [12, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1,−1]
10 [12, 2, 1, 1, 3, 3, 3, 2, 3,−2] 13 [12, 2, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1,−1]
10 [12, 2, 1, 2, 1, 2, 2, 3, 2,−2] 13 [12, 2, 1, 2, 1, 1, 3, 1, 3, 3, 1, 2,−1]
10 [12, 2, 1, 2, 1, 2, 2, 3, 2,−3] 13 [12, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 3,−3]
10 [12, 2, 1, 2, 1, 3, 1, 3, 3,−3] 13 [122, 1, 2, 1, 1, 3, 3, 2, 2, 1, 3,−1]
10 [12, 2, 1, 2, 1, 3, 2, 3, 2,−1] 13 [12, 2, 1, 2, 1, 1, 3, 3, 2, 2, 1, 3,−2]
10 [12, 2, 1, 2, 1, 3, 2, 3, 2,−2] 14 [12, 2, 1, 2, 11, 1, 3, 3, 2, 3, 1, 2,−2]
10 [12, 2, 1, 2, 1, 3, 3, 2, 2,−3] 15 [12, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−2]
10 [12, 2, 1, 2, 2, 3, 1, 1, 3,−1] 16 [12, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 3, 1, 2,−1]

Table 4: Other PWN found with our search algorithm. Since these numbers are large, only the
index sequence is shown. As an example, the first two entries are 54 and 37 digits long, while
the last three entries are 3608, 7392 and 14712 digits long respectively. For each ω, entries are
in lexicographic order.
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Ω factored weird number index sequence

7 22 · 132 · 19 · 383 · 23203 † [12, 22, 1, 2,−1]
7 22 · 13 · 17 · 4432 · 194867 [12, 2, 1, 12,−6]
7 2 · 52 · 29 · 37 · 137 · 211 † [1, 12, 4, 3, 11,−1]
7 2 · 5 · 112 · 103 · 877 · 2376097 [1, 1, 12, 3, 1,−1]
7 2 · 5 · 11 · 1272 · 167 · 223 † [1, 1, 1, 152, 15,−1]
8 23 · 172 · 277 · 1979 · 115259 [13, 12, 6, 4,−1]
8 23 · 232 · 53 · 691 · 32587 [13, 32, 1, 3,−1]
8 22 · 13 · 17 · 449 · 248092 · 351659387 [12, 2, 1, 2, 12,−3]
8 22 · 13 · 17 · 449 · 248092 · 351659377 [12, 2, 1, 2, 12,−4]
9 26 · 1372 · 1931 † [16, 22,−1]
9 24 · 37 · 197 · 583132 · 3400230989 [14, 1, 1, 12,−4]
9 24 · 41 · 131 · 215172 · 14007547 [14, 2, 1, 62,−1]
9 22 · 13 · 17 · 443 · 97919 · 5639155432 · P17 [12, 2, 1, 1, 1, 12,−5]
9 22 · 13 · 17 · 449 · 248092 · 351659531 · P16 [12, 2, 1, 2, 12, 3,−1]
10 24 · 41 · 131 · 21493 · 461756112 · P14 [14, 2, 1, 3, 22,−5]
10 23 · 37 · 47 · 59 · 102607 · 15039402372 · P17 [13, 6, 6, 1, 1, 52,−6]
11 28 · 7972 · 1429 † [18, 422,−1]
12 27 · 359 · 883 · 25359772 · 6431171736581 [17, 18, 1, 12,−1]
13 210 · 20812 · 129083 [110, 42,−1]
15 212 · 91032 · 81847 [112, 1012,−2]

Table 5: Some of the PWN with square odd prime factors that we have found. PWN already
listed in A273815 are marked with †. For Ω = 7, this is the complete list of all the PWN with
at least one odd prime factor with exponent greater than one. Pi denotes a generic prime with
i digits. Entries are in lexicographic order of index sequences.

Ω factored weird number index sequence

12 w6 · 134375227026213892 · P 2
31 · P60 [12, 2, 1, 2, 1, 1, 12, 12,−1]

12 w6 · 134375227026214272 · P 2
31 · P60 [12, 2, 1, 2, 1, 1, 22, 12,−3]

12 w′6 · 138261185752540572 · P 2
32 · P61 [12, 2, 1, 1, 1, 1, 12, 12,−4]

13 w′6 · 138261185752540572 · P32 · P 2
61 · P118 [12, 2, 1, 1, 1, 1, 12, 1, 42,−1]

14 w′6 · 138261185752540572 · P32 · P 2
60 · P118 · P233 [12, 2, 1, 1, 1, 1, 12, 2, 12, 2,−1]

15 w′6 · 13826118575254057 · P 2
32 · P 2

61 · P 2
120 · P237 [12, 2, 1, 1, 1, 1, 1, 12, 12, 22,−1]

Table 6: Some of the PWN with 2 and 3 square odd prime factors that we have found. Here,
w6 = 22 · 13 · 17 · 449 · 24809 · 223797481, w′6 = 22 · 13 · 17 · 443 · 97919 · 563915543 and Pi denotes
a generic prime with i digits. Entries are in lexicographic order of index sequences.
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