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Abstract. We present ScalaFix, a modular library for solving equa-
tion systems by iterative methods. ScalaFix implements several solvers,
involving iteration strategies from plain Kleene’s iteration to more com-
plex ones based on a hierarchical ordering of the unknowns. It works
with finite and infinite equation systems and supports widening, nar-
rowing and warrowing operators. It also allows intertwining ascending
and descending chains and other advanced techniques such as localized
widening.
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1 Introduction

One of the most common approaches for performing static analysis of software,
used for both simple data-flow analysis and more complex analysis based on
abstract interpretation, is to setup a set of equations over some partially ordered
set. The solutions of this equation system form the result of the analysis.

These equation systems are generally solved by iterative methods, based on
some variant of the Knaster–Tarski theorem. This is immediate when the partial
order on the values of the unknowns has a small finite height, but becomes
difficult when the height is large or, worse, the partial order does not satisfy the
ascending chain condition. In this case, some way of accelerating iterations is
needed, such as a widening/narrowing [13] or warrowing [8].

The ScalaFix library strives to be a general solver for these kind of equation
system, in the spirit of modularization of static analyzers presented in [19]. It im-
plements several iterative algorithms for solving equations (both with a finite or
infinite number of unknowns) and it has a convenient interface which is designed
for the Scala programming language. Scala combines functional and object-
oriented programming in a single high-level language which runs on the Java Vir-
tual Machine (JVM). The library may also be used, with some difficulties, from
other languages which run on the JVM, such as Java itself. A better interface
for other languages is planned for a later version. The source code of ScalaFix
is available on https://github.com/jandom-devel/ScalaFix (in this paper we
present the release 0.10), while the compiled code is on the Sonatype OSSRH

https://doi.org/10.5281/zenodo.7339947
https://github.com/jandom-devel/ScalaFix
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(OSS Repository Hosting) https://oss.sonatype.org/ with group it.unich.scalafix
and artifact scalafix.

In this paper we present the structure of the ScalaFix library and we show
some examples of its use. The main application target for such a library is to
be a backend for a static analyzer (it is currently in use by the Jandom static
analyzer [2]).

In all the code fragments appearing in this paper we assume the following
import statements:

import it.unich.scalafix.{finite, infinite, *}
import it.unich.scalafix.finite.*
import it.unich.scalafix.graphs.*
import it.unich.scalafix.highlevel.*
import it.unich.scalafix.utils.Relation

In many examples we will also use the PPL (Parma Polyhedra Library) [10]
trough the JPPL bindings. These are simpler and more natural to use than the
default Java bindings provided by the PPL. The source code for JPPL is available
on https://github.com/jandom-devel/JPPL, while the compiled code is on the
Sonatype repository https://s01.oss.sonatype.org/ with group it.unich.jppl
and artifact jppl.

All the examples in this paper are available with full code in the GitHub
repository https://github.com/jandom-devel/ScalaFixExamples.

2 Equation systems

The main concept of ScalaFix is the equation system. It comes in two flavors:
either with a finite number of unknowns or with a possibly infinite number of
unknowns. The main difference between the two flavors is that, in the first case,
we are generally interested in solving the system for all the unknowns, while in
the second case we are only interested in solving for a single unknown.

Each equation system is characterized by a type U for the unknowns and a
type V for the values assumed by the unknowns. As assignment is a function
from unknowns to values. The different solvers of ScalaFix take an assignment
as the input, perform several iterative steps, and produce a new assignment
as the solution of the equation system. The body of an equation system is the
cornerstone of all the iterative algorithms: it takes an initial assignment and
returns a new assignment obtained by computing all the right hand sides of the
equation system. In the Scala language, we have:

type Assignment[-U, +V] = U => V
type Body[U, V] = Assignment[U, V] => Assignment[U, V]

where [-U, +V] means that the assignment type is covariant in V and contravari-
ant in U.

It is important not to be misled by the type of Body. Given the variables
body: Body[U, V] and rho: Assignment[U, V], we have that body(rho) is
a function, hence no real computation starts until this is applied to a specific
unknown u: U, as in body(rho)(u).

https://oss.sonatype.org/
https://github.com/jandom-devel/JPPL
https://s01.oss.sonatype.org/
https://github.com/jandom-devel/ScalaFixExamples
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2.1 Infinite equation systems

For example, consider the following equations defining the Fibonacci sequence:

x0 = x1 = 1 xi+2 = xi + xi+1

This may be encoded in ScalaFix as follows:

val body: Body[Int, BigInt] =
(rho: Assignment[Int, BigInt]) =>

(u: Int) =>
if u <= 1 then 1 else rho(u-1) + rho(u-2)

Note that, although many type declarations might be avoided thanks to the
Scala type inference, we have decided here to be more verbose since we think it
is helpful to the reader.

The body must be packed into an EquationSystem before being handed over
to a solver:

val eqs = EquationSystem(body)

Since the number of unknowns is infinite, we use the infinite.WorkListSolver
for computing a solution. The worklist solver needs three parameters: an equation
system, an initial assignment and the set of the unknowns for which we want
to get a partial solution. For example, if we want to known the sixth Fibonacci
number we use:

infinite.WorkListSolver(eqs)(Assignment(1), Set(6))

where Assignment(1) is the assignment which maps every unknown to 1 and
Set(6) is the singleton set {6}.

The output is an assignment which maps 6 to the 6th Fibonacci number.
Morevoer, since in order to determine x6 we also need to solve for the unknowns
from x0 to x5, the resulting assignment also contains the values for these un-
knowns:

[ 0 -> 1, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 5, 5 -> 8, 6 -> 13 ]

Another solver for infinite equation systems implemented in ScalaFix is the
PriorityWorkListSolver, where the unknown to be updated is chosen, among
those in the worklist, according to priorities which are dynamically generated.

In the general case there is no guarantee of convergence: this should be as-
sured from the specific theory used to analyze the equation system under con-
sideration.

2.2 Finite equation systems

The solvers in the infinite package work for equation systems with a possibly
infinite number of unknowns. If the number of unknowns is finite, it is possible
to use a FiniteEquationSystem instead, which allows to use different solvers
specifically tailored for this case.

A finite equation system is characterized, besides its body, also by:



4 Gianluca Amato and Francesca Scozzari

– the set of all the unknowns;
– the influence relation between the unknowns;
– a subset of all the unknowns, called the input unknowns.

While the set of all the unknowns is an obvious information, the other two param-
eters deserve an explanation. The influence relation determines the dependencies
between unknowns. If the unknown x is used in the right hand side of the equa-
tion defining y, then we say that x influences y. When x is recomputed and its
value changes, all the unknowns influenced by x should be recomputed as well.

Note that not all the solvers actually need the influence relation. For example,
it is not used by KleeneSolver, which performs a parallel update of all the un-
knowns, and by RoundRobinSolver, which repeatedly updates all the unknowns
one at a time. On the contrary, it is used by those solvers which avoid to recom-
pute an unknown when it is not strictly necessary, such as WorkListSolver. In
the case of infinite equation systems, the influence relation is computed dynam-
ically during the evaluation of the body when needed, while for finite equation
systems we require the influence relation to be provided statically.

The set of input unknowns is used to compute a depth-first ordering of the
unknowns in the equation system. This allows to determine the set of unknowns
where widening should be applied to ensure convergence and the default hierar-
chical ordering [11] for the HierachicalOrderingSolver.

We may turn the Fibonacci example into a finite equation system by restrict-
ing the number of unknowns, as follows:

val eqs = FiniteEquationSystem(
body,
infl = Relation( (i: Int) => Set(i-1, i-2) ),
unknowns = 0 to 10,
inputUnknowns = Set(0, 1) )

Then we may solve the equation system, for example with:

finite.WorkListSolver(eqs)(Assignment(1))

Here we do not need to specify the set of wanted unknowns, since we assume we
are interested in solving the entire equation system and find the fixpoint for all
the unknowns.

2.3 A use case for static analysis

We show a use case involving the Parma Polyhedra Library trough the Java
binding provided by JPPL. Consider the example program loop and its corre-
sponding equation system over the interval domain in Figure 1. We first define
the body of the equation system using the interval abstract domain DoubleBox
from PPL as follows:

val body = (rho: Int => DoubleBox) => {
case 0 => DoubleBox.from(/* constraint system {i=0} */ )
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i = 0
[0] while [1] (i<=10) {
[2] i = i+1
[3] }

i = 0

i ≤ 10

i = i+ 1

[0]

[1]

true [2]

false

[3]
x0 = [0, 0]

x1 = x0 ∨ x3

x2 = x1 ∧ [−∞, 10]

x3 = x2 + [1, 1]

Fig. 1. The example program loop. The symbols ∨, ∧ and + are respectively the lub,
the glb and the sum on the domain of intervals.

case 1 => rho(0).clone().upperBound(rho(3))
case 2 => rho(1).clone().refineWith(/* constraint i<=10 */ )
case 3 => rho(2).clone().affineImage(0, /* expression i+1 */ )

}

We can now construct a finite equation system as follows:

val eqs = FiniteEquationSystem[Int, DoubleBox](
body,
inputUnknowns = Set(0),
unknowns = 0 to 3,
infl = Relation(0 -> 1, 1 -> 2, 2 -> 3, 3 -> 1) )

where unknowns correspond to the program points 0, 1, 2, 3 in Figure 1 and infl
defines the dependency relations between the equations. For instance, 0 -> 1
means that any change in the value of x0 requires recomputation of x1. We can
now solve the equation system with:

finite.WorkListSolver(eqs)(Assignment(DoubleBox.empty(1)))

whose solution is:

[0 -> i in 0, 1 -> i in [0, 11], 2 -> i in [0, 10], 3 -> i in [1, 11]]

where 2 -> i in [0, 10] means that in the program point 2 the value of i is
in the interval [0, 10].

2.4 Infinite equation systems and static analysis

While finite equation systems are well-suited for intra-procedural analysis, in-
finite equation systems may be used for inter-procedural analysis, by including
an abstraction of the call-stack as part of the unknowns.

Consider, for example, the following code:
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function incr(a) {
[1] b = a+1
[2] return b
[3]
}

i = j = 0
[4] j = incr(i)
[5] i = incr(j)
[6]

A possible approach for the analysis of this program consists in defining an
equation system whose unknowns are pairs (p, c) where p is a program point
and c is an abstraction of the call-stack, such as (but not limited to) an abstract
representation of the values of the formal parameters.

Assuming to work with the interval domain, this is an excerpt of the equation
system which describes the incr function:

val body: Body[(Int, DoubleBox), DoubleBox] = (rho) =>
case (1, c) => c.clone().addSpaceDimensionAndEmbed(1)
case (2, c) => rho((1, c)).clone()

.affineImage(1, /* expression a+1 */ )
case (3, c) => rho((2, c))

When the function incr is called in the context c, the value of the variables
at program point 1 is obtained by enlarging the input, provided in c, with a
new unconstrained dimension representing the variable b. The equation for the
return statement, i.e., the unknown (3, c), is a no-op: in the general case, we
might decide to remove those dimensions corresponding to the local variables
not returned by the function.

The following are the equations for the main program:

case (4, c) => DoubleBox.from(/* constraints {i=j=0} */ )
case (5, c) =>

val call_context = rho((4, c)).clone()
.removeSpaceDimensions(Array(1))

val return_context = rho((3, call_context))
val result = /* combine rho((4, c)) and return_context */
result

case (6, c) =>
/* similar to code for (5, c) */

The interesting point is the equation for the program point (5, c). Here we:

1. determine the abstract calling context by projecting the abstract value of
the program point 4 on the actual parameters of the function call (variable
i in this case);

2. take the abstract return context of the function incr, when invoked with
the previously computed calling context;
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3. combine the information at program point 4 and the return context to get
the final best possible approximation of the value of variables at program
point 5.

A theoretical discussion on the last step, as well as on alternative abstractions
of the call-stack, is available in [21].

The reason why infinite equation systems are useful for inter-procedural anal-
ysis is that we cannot know in advance the contexts we will use for evaluating
the incr function. In this example ScalaFix uses the intervals [0, 0] and [1, 1].
Note that, in more complex cases, some kind of widening operator should be
applied on calling contexts to avoid generating an infinite number of them.

3 Widening, narrowing and warrowing

ScalaFix supports the use of widenings, narrowings [14] and warrowings [8].
These operators are commonly used to combine the values of the last two itera-
tions into a new value, in order to accelerate or ensure the convergence. In this
paper, and in the ScalaFix jargon, they are generally called combos. Combos
are implemented at the level of an equation system, and therefore work with
every fixpoint solver. Mathematically, a combo over a set V is a binary function
□ : V × V → V . In ScalaFix we have that:

type Combo[V] = (V, V) => V

Applying a combo □ to an unknown xi means replacing the equation xi = e
with xi = xi □ e. Typically, a combo is applied to a selection of unknowns,
generally the loop heads in the graph generated by the unknowns and their
influence relation. Potentially, we might want to use different combos for differ-
ent unknowns. Therefore, when using combos in ScalaFix, we need to specify
a ComboAssignment, i.e., a partial function which maps each unknown to the
combo we want to use for it (if any). Continuing the example in Section 2.3, we
may define a combo using the standard widening for intervals [12]:

val widening = Combo[DoubleBox]( (x: DoubleBox, y: DoubleBox) =>
y.clone().upperBound(x).widening(x) )

val comboAssignment = ComboAssignment(widening).restrict(Set(1))

where restrict(Set(1)) means that we apply the widening to the unknown 1
only. We now equip the equation system with the widening:

val eqsWithWidening = eqs.withCombos(comboAssignment)

The equation system can be solved as before:

finite.WorkListSolver(eqsWithWidening)(Assignment(DoubleBox.empty(1)))

ScalaFix also implements general techniques enhancing widenings and nar-
rowings such as delayed widening.
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3.1 Automatic determination of combo points

Instead of manually specifying the set of unknowns where combos should be
applied, we may let ScalaFix determine this set automatically. Each finite
equation system induces a dependency graph whose nodes are the unknowns
and such that there is an edge (x, y) iff x influences y. We may build a depth-
first ordering of this graph using

val ordering = DFOrdering(eqs)

whose result for the example program loop is:

UnknownOrdering( 0 (1) 2 3 )

Here the parenthesis denotes loop head nodes, i.e., nodes which are the target of
retreating edges. In order to ensure convergence, it is enough to apply widenings
to these nodes. This may be done with the restrict method used above, using
the graph ordering as a parameter:

val comboAssignment = ComboAssignment(widening).restrict(ordering)

Then, everything proceeds as in the previous example.

4 Equation systems based on hyper-graphs

In the equation system shown above, the right-hand side of equations are black
boxes. This is generally fine, but in some cases exposing some structure allows
optimizations which are not possible otherwise. This is especially true for un-
knowns such as x1 in Figure 1 which correspond to join nodes of a flow chart.

ScalaFix allows to define a body for an equation system in a way that makes
manifest the individual contributions of the edges of the flow chart. Consider
again the equations in Figure 1. For the sake of clarity, in Figure 2 we depict the
control-flow graph of the program. Note that the edge i=0 has no source: this
is fine since ScalaFix supports hyper-graphs, where each edge may have many
(possibly none) sources and a single target. Hyper-graphs are needed for inter-
procedural analysis [19]. Edges enter and loop correspond to the two edges
entering the join node in Figure 1, i.e., to the contributions x0 and x3 in the
equation x1 = x0 ∨ x3.

We need to associate to each edge an action, i.e., a function that takes an
assignment and returns the contribution of that edge to the new value of the
target unknown.

type EdgeAction[U, V, E] = Assignment[U, V] => E => V

For our example equation system we have:

val edgeAction = (rho: Assignment[Int, DoubleBox]) => {
case "i=0" => DoubleBox.from(/* constraint system {i=0} */ )
case "enter" => rho(0)
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0

1

2

3

i=0

enter

i<=10

i=i+1

loop

Fig. 2. The graph corresponding to the equation system in Figure 1.

case "i<=10" => rho(1).clone().refineWith(/* constraint i<=10 */ )
case "i=i+1" => rho(2).clone().affineImage(0, /* expression i+1 */ )
case "loop" => rho(3)

}

The actions for the edges should be packed together with fields describing the
structure of the graph into a GraphBody:

val graphBody = GraphBody[Int, P, String](
sources = Relation(

"enter" -> 0, "i<=10" -> 1, "i=i+1" -> 2, "loop" -> 3),
target = Map(

"i=0" -> 0, "enter" -> 1, "i<=10" -> 2, "i=i+1" -> 3, "loop" -> 1),
ingoing = Relation(

0 -> "i=0", 1 -> "enter", 1 -> "loop", 2 -> "i<=10", 3 -> "i=i+1"),
outgoing = Relation(

0 -> "enter", 1 -> "i<=10", 2 -> "i=i+1", 3 -> "loop"),
edgeAction = edgeAction,
combiner = (x, y) => x.clone().upperBound(y),
unknowns = 0 to 3 )

The body is automatically reconstructed in ScalaFix by combining all the
contributions from the incoming edges with the specified operation combiner,
which in our example is simply the upper bound operator of the abstract domain.
Finally, the body is used to build a graph-based equation system:

val eqs = GraphEquationSystem(
initialGraph = graphBody,
inputUnknowns = Set(0) )

Since a GraphEquationSystem is a subclass of FiniteEquationSystem, we may
use eqs exactly as the equation systems in the previous sections.

Note that the way we provide to GraphBody the structure of the graph is not
particularly elegant: there is a lot of redundancy among the parameters sources,
target, ingoing and outgoing. However, ScalaFix has been principally de-
signed to be used as a backend for a static analyzer. In this context, it is likely
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i = 0
[0] while [1] (i<10){
[2] j = 0
[4] while [5] (j<10)
[6] j = j+1 [8]
[7] i = i+1 [9]

} [3]

i = 0

i < 10

j = 0

j < 10

j = j + 1

i = i+ 1

[0]

[1]

true [2]

false

[3]
[4]

[5]

true [6]

false

[7]

[8]

[9]

x0 = [0, 0]× [−∞,∞]

x1 = x0 ∨ x9

x2 = x1 ∧ ([−∞, 9]× [−∞,∞])

x3 = x1 ∧ ([10,∞]× [−∞,∞])

x4 = first(x2)× [0, 0]

x5 = x4 ∨ x8

x6 = x5 ∧ ([−∞,∞]× [−∞, 9])

x7 = x5 ∧ ([−∞,∞]× [10,∞])

x8 = x6 + ([0, 0]× [1, 1])

x9 = x7 + ([1, 1]× [0, 0])

Fig. 3. The example program nested.

that the analyzer has already built the control-flow graph internally. Since the
four parameters above are just functions from edges (or nodes) to set of nodes
(or edges), it is easy for a static analyzer to build a very thin layer providing
these parameters.

The ScalaFix library also provide a different API for building graphs (the
GraphBodyBuilder class) which is easier to use for simple experiments but is
not described in this paper.

4.1 Localized widening

The definition of an equation system based on hyper-graphs allows us to
use localized widening [7]. Consider the program nested in Figure 3 and the
corresponding system of equations. Let graphBody be the description of the
graph in Figure 3, as depicted in Figure 4. We can build, as in the previous
section, a graph equation system as follows:

val eqs = GraphEquationSystem(
initialGraph = graphBody,
inputUnknowns = Set(0) )

and define the widening:

val widening = Combo[DoubleBox]((x: DoubleBox, y: DoubleBox) =>
y.clone().upperBound(x).widening(x))

Now using DFOrdering we can recover the depth-first ordering of the set of
unknowns:



The ScalaFix equation solver 11

0

1

23

4

5

6

7

8

9

i=0

inOuterLoop

i>=10
i<10

j=0

inInnerLoop

j<10

j=j+1j>=10
innerLoop

i=i+1

outerLoop

Fig. 4. The graph corresponding to the equation system in Figure 3.

val ordering = DFOrdering(eqs)

which is ( 0 (1) 3 2 4 (5) 8 9 6 7 ), where (1) and (5) are the loop head
nodes. We can apply localized widening to these nodes as follows:

val widenings = ComboAssignment(widening).restrict(ordering)
val eqsWithWidening = eqs.withLocalizedCombos(widenings, ordering)
val solutionAscending =

WorkListSolver(eqsWithWidening)(Assignment(DoubleBox.empty(2)))

where the last line computes the solution for the ascending chain. We can now
start a descending phase using the narrowing defined in [12]:

val narrowing = Combo[DoubleBox]((x: DoubleBox, y: DoubleBox) =>
y.clone().intersection(x).CC76Narrowing(x))

val narrowings = ComboAssignment(narrowing).restrict(ordering)
val eqsWithNarrowing = eqs.withCombos(narrowings)
WorkListSolver(eqsWithNarrowing)(solutionAscending)

In the solution for the program point 3 we have that i in [10, 11), which
cannot be computed without the localized widening.
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5 A high-level interface

The interface shown above, where the user builds an equation system, decides
where to apply widening/narrowing and calls the solver with appropriate param-
eters, is rather low-level. For example, if one wants to solve an equation system
using the classical approach based on an ascending chain with widening followed
by a descending chain with narrowing, this procedure must be repeated for both
phases, as done in the previous section.

Albeit this allows an extreme flexibility, if we just want to solve an equa-
tion system following a standard approach, ScalaFix provides a high-level API
which simplifies this task. It is enough to call the generic FiniteFixpointSolver
with a bunch of parameters which specify how we want to solve the equation
system. For example, the analysis shown in Section 4.1 may be implemented
more easily as follows:

val params = Parameters[Int, DoubleBox](
solver = Solver.WorkListSolver,
start = Assignment(DoubleBox.empty(2)),
comboLocation = ComboLocation.Loop,
comboScope = ComboScope.Localized,
comboStrategy = ComboStrategy.TwoPhases,
restartStrategy = RestartStrategy.None,
widenings = ComboAssignment(widening),
narrowings = ComboAssignment(narrowing) )

FiniteFixpointSolver(eqs, params)

The possible choices for the above parameters are:

– solver: one of the following fixpoint solvers:
• KleeneSolver: updates all the unknowns in parallel;
• RoundRobinSolver: updates one unknown at a time, following a fixed

ordering;
• WorkListSolver: updates one unknown at a time, taken from a queue

containing only the unknowns which might produce a different result
w.r.t. the previous iteration;

• PriorityWorkListSolver: it is similar to the WorkListSolver, but the
order in which unknowns are extracted from the queue depends on an
ordering of the unknowns;

• HierarchicalOrderingSolver: updates the unknowns following a hier-
archical ordering (see [11]).

For the PriorityWorkListSolver and HierarchicalOrderingSolver, the
ordering is based on the depth first traversal of the equation system.

– comboLocation: None does not use combos; All puts combos at each un-
known; Loop places combos only at loop heads (which are automatically
computed).

– comboScope: Standard or Localized, for standard or localized widening
respectively.
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– comboStrategy: OnlyWidening uses widening operators with no descend-
ing phase; TwoPhases uses the standard two phases widening/narrowing ap-
proach; Warrowing strictly intertwines ascending and descending steps in a
single warrowing operator;

– restartStrategy: either None or Restarting for disabling or enabling the
restarting policy which replaces part of the current assignment with the
initial assignment, in order to improve precision [8] (only useful for the
PriorityWorklistSolver).

The high level API also needs some extra information on the analysis domain.
This may be provided to ScalaFix in the form of a given instance (the Scala
equivalent of a type class) of the type Domain. This instance implicitly provides
the partial ordering relation and the upper bound operator for a given type. This
is a fragment of the Domain instance for DoubleBox:

given DoubleBoxDomain: Domain[DoubleBox] with
def lteq(x: DoubleBox, y: DoubleBox): Boolean = y.contains(x)
def upperBound(x: DoubleBox, y: DoubleBox): DoubleBox =

x.clone().upperBound(y)

6 Performance

In this section we present some benchmarks showing the performance of the
ScalaFix library. Obviously, different equation solvers will have different per-
formances, but comparing different methods for solving equation systems is not
in the scope of this paper. What we want to show is the overhead which is caused
by using the ScalaFix library instead of an ad-hoc equation solver.

6.1 A simple benchmark using the PPL

Consider the equation system E given by the following equations on P(Z):

x0 = (xN−1 ∩ {v | v ≤ l}) ∪ {0}
xi+1 = {v + 1 | v ∈ xi}

(1)

We solve E with N = 100 and l = 2,000 using the following methods:

1. an ad-hoc implementation of the round-robin solver, using arrays as the data
structure for assignments (array);

2. an ad-hoc implementation of the round-robin solver, using hash tables as the
data structure for assignments (hash);

3. the round-robin solver of ScalaFix (scalafix).

For each method, we used both the DoubleBox and CPolyedron domains of the
PPL, with or without widening at each unknown. In ScalaFix widenings are
added to E using the .withCombos method, while in the custom solvers they
are inlined inside the solvers.
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Benchmarks array hash scalafix
Box without combos 54.364 ± 6.725 55.180 ± 6.318 54.941 ± 7.395
Box with combos 246.072 ± 36.047 261.492 ± 36.443 261.707 ± 35.318
Polyhedra without combos 14.334 ± 2.232 14.994 ± 1.759 15.081 ± 1.515
Polyhedra with combos 85.590 ± 17.383 90.507 ± 13.428 85.638 ± 16.541
Reaching definitions 15946.052 ± 64.141 15298.415 ± 134.841 15301.827 ± 59.145

Table 1. Benchmarks results (operations/s) with 99% confidence intervals.

Benchmarking programs running on the JVM is not an easy task, since a lot
of factors may impact the execution speed, such as just in time compilation and
garbage collection. We have used the JMH (Java Microbenchmark Harness) to
perform the benchmarks, using 5 forks, each fork composed of 5 iterations for
warming up the JVM and 5 iterations for collecting the results. On top of this,
we have tried to reduce the effect of automatic CPU performance scaling by
disabling Turbo Boost and setting a fixed clock for the CPU, low enough not to
overheat the processor. In particular, the results have been obtained on a Intel
Core i2500K clocked at 1.6GHz.

The results are shown in Table 1, and are expressed in operations per second
(i.e., the number of times the equation system is solved per second) with a 99%
confidence interval.

The benchmarks show that the difference between the three solvers is negli-
gible, since the cost of executing the DoubleBox and CPolyhedron operations is
much larger than the overhead of the fixpoint solvers.

6.2 Reaching definitions

The second benchmark contains different implementations of an equation sys-
tem for reaching definition analysis of a three-address code program from [1,
p. 626], whose code is in Figure 5. As before, we have executed the benchmark
comparing the ScalaFix solver to an ad-hoc implementation of the round-robin
solver, using arrays and hash tables. The results show that even in this case the
difference between the solvers is negligible.

The experiments suggest that the overhead of using ScalaFix is very lim-
ited, almost zero.

7 Related work

Most available static analyzers, both for industrial or academic applications, im-
plement their custom procedure for solving equation systems. We believe that
the use of ScalaFix could help developers in experimenting with different and
state-of-the-art solvers. Also, they could contribute, by implementing new tech-
niques that would be immediately reusable by the community. Moreover, the
developers would benefit from all the experiments and development efforts be-
hind the library. Actually, one of the major difficulty in the development of
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i = m-1 [d1]
j = n [d2]
a = u1 [d3]
do

i = i+1 [d4]
j = j-1 [d5]
if (e1)

a = u2 [d6]
else

i = u3 [d7]
while (e2)

i = m− 1

j = n

a = u1

i = i+ 1

j = j − 1

(e1) a = u2i = u3

[d1]

[d2]

[d3]

[d4]

[d5]

true
false

[d6][d7]

Fig. 5. Reaching definition benchmark.

ScalaFix has been to choose the correct abstractions to put widening, nar-
rowing, warrowing, localized techniques, equation systems, assignments, solvers,
etc. . . inside a common API.

To the best of our knowledge, ScalaFix is the only general purpose library
for solving equation systems for static analysis which is currently available.

We are aware of only another proposal in the past with the library Fixpoint
[20]. This library is unmaintained for more than nine years now and the subver-
sion repository for the source code is not accessible. In general, while Fixpoint
and ScalaFix share the same general goal, there are many differences:

– Fixpoint was written in OCaml, while ScalaFix is written in Scala for the
Java Virtual Machine.

– The structure of Fixpoint was more monolithic than that of ScalaFix:
the Fixpoint.manager type encapsulates almost all the information needed
to solve an equation system, from the position of widenings to the action of
the hyper-edges. In ScalaFix we give different responsibilities to different
classes.

– Fixpoint had additional modules implementing some techniques for solv-
ing fixpoint equations, namely, guided static analysis [17] and widening with
threshold [23]. Implementation of these techniques is a planned improve-
ments for ScalaFix.

– ScalaFix implements many state-of-the-art techniques recently proposed,
such as localized widening, warrowing and restarting.

– ScalaFix implements general solvers for infinite equation systems, suitable
for the analysis of inter-procedural programs.

Since the source code of Fixpoint is no more available, neither a more detailed
comparison nor a performance evaluation has been possible.
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Another library for solving fixpoint equations, with a different purpose, is
Killdall (https://compcert.org/doc-1.6/html/Kildall.html), written for the Coq
proof assistant, and part of the CompCert project [22]. Killdall implements the
same algorithm as the PriorityWorklistSolver for finite equation systems in
ScalaFix, using the depth-first ordering of the equation system for deciding
priorities. However, Killdall does not implement any of the additional features
of ScalaFix such as combos (Kildall does not have any support for widening
or narrowing), infinite equation systems or alternative solvers. But here the goal
is to provide a mechanized verification of program analyses, which can be used
to equip the CompCert C compiler, being a challenge to implement and reason
upon data structures in a purely functional setting such as Coq.

Finally, FPSolve [15] is a library for solving systems of polynomial equations
over a semi-ring. While in particular cases it is possible to recast data-flow equa-
tions as equations over a semi-ring, this does not hold in general. Therefore the
applicability of FPSolve as a general procedure for solving data-flow equations
is limited.

8 Conclusion

We have shown some features of the ScalaFix library. There are other features
of ScalaFix which are not presented here, such as:
– support for observing the behaviour of the solvers with the listener class

FixpointSolverTracer which can be used for debugging and computing
metrics, and also for fine-tuning the analysis domain using statistical ap-
proaches (see for instance [3,6]);

– support for restarting : a policy which, under certain conditions, replaces part
of the current assignment with the initial assignment, in order to improve
precision [8];

– implementation of other equation solvers from the literature, such as solvers
based on hierarchical ordering and priority worklists.

ScalaFix is the only general purpose library implementing advanced tech-
niques such as localized widening and restarting. In the near future, we plan to
enhance ScalaFix along several directions:
– develop a thin interface layer to make ScalaFix easier to use by other JVM

based languages;
– implement more techniques such as guided abstract interpretation [17], looka-

head widening [16] or the improved handling of descending chains in [18];
– implement equation systems with side-effects [9] and for different paradigms

[4,5].

We have shown in Section 6 that the overhead of using ScalaFix instead
of re-implementing an ad-hoc solver is negligible. A big effort has been provided
to design the ScalaFix API to be as flexible as possible for the need of very
different analyzers, and in the choice of the data structures both for equation
systems and graphs to allow the implementation of many speed-up features,
depending on the kind of equation systems used.

https://compcert.org/doc-1.6/html/Kildall.html
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