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Abstract. In the theory of abstract interpretation, narrowing operators
are used to improve the precision of the analysis after a post-fixpoint has
been reached. This is especially true on numerical domains, since they
are generally endowed with infinite descending chains which may lead
to a non-terminating analysis in the absence of narrowing. We provide
an abstract semantics which improves the analysis precision and show
that, for a large class of numerical abstract domains over integer vari-
ables (such as intervals, octagons and template polyhedra), it is possible
to avoid infinite descending chains and omit narrowing. Moreover, we
propose a new family of narrowing operators for real variables which
improves the analysis precision.

1 Introduction

Computing a static analysis in the framework of abstract interpretation [5, 6]
typically amounts to solve a set of equations describing the program behavior.
Given a program to be analyzed, we associate to each control point i of the
program an unknown1 xi and an equation xi = Φi(x1, . . . , xn), where Φi is a
monotone, state-transition operator . The unknowns x1, . . . , xn range over an
abstract domain A, which encodes the property we want to analyze. An element
of A is called abstract object and represents a set of concrete states.

We are interested in finding the (least) solution, over the domain A, of the
set of equations Φ = (Φ1, . . . , Φn) associated to the program to be analyzed.
The abstract interpretation framework ensures that any solution of the set of
equation correctly approximates the concrete behavior of the program, and the
smaller the solution, the more precise is the result of the analysis. In theory, the
least solution of the system can be exactly computed as the limit of a Kleene
iteration, starting from the least element of An. In practice, such a method can
be unfeasible, since many abstract domains exhibit infinite ascending chains,
and thus the computation may not terminate. Moreover, even for finite abstract
domains, it may happen that the ascending chains are very long, and this method
would result impractical.

1 We use the terms variable to denote a variable in the program, and unknown to
denote a variable in the data-flow equations.



The standard method to perform the analysis is to compute an approximation
of the least solution of the system of equations using widening and narrowing
operators [4, 7]. For specific abstract domains or for restricted classes of pro-
grams, we may find in the literature alternatives, such as acceleration operators
[11] and strategy/policy iteration [3, 9, 10], but these methods are not generally
applicable and their complexity may be impractical.

A widening, generally denoted by O, is a binary operator over the abstract
domain A such that:

– it is an upper bound;
– when used in equations of the kind xi = xi O Φ(x1, . . . , xn), it precludes the

insurgence of infinite ascending chains for xi.

The widening operator compares the value of xi in the previous iteration with its
value in the current iteration and, in some cases, returns an approximated value.
Widening is used to ensure the termination of the analysis, while introducing
a loss in precision. This is realized by replacing some of the original equations
xi = Φi(x1, . . . , xn) with xi = xi OΦi(x1, . . . , xn). The replacement may involve
all unknowns or, more commonly, only the ones corresponding to loop heads.
Applying widening in this way ensures the termination of a Kleene iteration,
but we only get a post-fixpoint of the function Φ = (Φ1, . . . , Φn), instead of the
least one.

Once we reach a post-fixpoint, we can start a new Kleene iteration, giving
origin to a descending chain which improves the result of the analysis. However,
due to infinite descending chains in the abstract domain, the descending itera-
tion might not terminate. The next example2 shows this phenomenon using the
abstract domain IntZ of intervals over integer numbers [4], defined as:

IntZ = {[l, u] ⊆ Z | l ≤ u ∈ Z ∪ {−∞,∞}} ∪ {∅},

where ∅ denotes the empty set of concrete states, i.e., an unreachable control
point. The standard widening on intervals [4] is defined as follows:

∅ O I = I

I O ∅ = I

[l1, u1] O [l2, u2] = [l′, u′]

where

l′ =

{
l1 if l1 ≤ l2
−∞ otherwise

u′ =

{
u1 if u1 ≥ u2
+∞ otherwise

Essentially, it works by preserving stable bounds and removing unstable ones.
For instance, [0, 3] O [0, 4] = [0,∞]. In this way, infinite ascending chains are
precluded.

2 To the best of our knowledge, this is the first example in the literature which shows
a program analysis iterating over an infinite descending sequence in an integer nu-
merical domain.
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i=0
while(i<10) {

i=i+1
if ( i>=9)

i=0
}
while(i>=10) {

i=i+1
}
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(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨ x8

x3 = x2 ∧ [−∞, 9]

x4 = x3 + [1, 1]

x5 = x4 ∧ [9,∞]

x6 = [0, 0]

x7 = x4 ∧ [−∞, 8]

x8 = x6 ∨ x7

x9 = x2 ∧ [10,∞]

x10 = x9 ∨ x12

x11 = x10 ∧ [10,∞]

x12 = x11 + [1, 1]

x13 = x10 ∧ [−∞, 9]

(c) Equation system

Fig. 1. The example program doubleLoop.

Example 1. Consider the example program doubleLoop in Fig. 1(a), and the
corresponding flowchart and set of equations in Fig. 1(b) and 1(c). We perform
the analysis using the integer interval domain IntZ with the standard widening.
Therefore, we replace the second and the tenth equation in Fig.1(c) with

x2 = x2 O (x1 ∨ x8)

x10 = x10 O (x9 ∨ x12) .

Note that these two equations correspond to the loop joins. We assume to follow
a work-list based iteration sequence, although the result is analogous with other
iteration schemas.

The first time x2 is considered, we have x1 = [0, 0] and x2 = x8 = ∅. Widening
does not trigger and x2 gets updated to x2 := x1 ∨ x8 = [0, 0]. However, the
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second time x2 is considered we have x8 = [1, 1], hence x1 ∨ x8 = [0, 1], which
is widened to [0,+∞]. This eventually leads to x9 := [10,+∞], x10 := [10,+∞]
and x12 := [11,+∞] which is a post-fixpoint and the result of the ascending
phase of the analysis.

Starting from the post-fixpoint, we continue to evaluate the semantic equa-
tions, without applying neither widening nor narrowing, thus using the original
equations x2 = x1∨x8 and x10 = x9∨x12. We get a descending sequence, which
turns out to be infinite. In fact, the first time x2 is re-evaluated, we have

x2 := x1 ∨ x8 = [0, 0] ∨ [0, 8] = [0, 8]

which leads to x9 := ∅. When we evaluate the equations in the second while
loop, we get

x10 := x9 ∨ x12 = ∅ ∨ [11,+∞] = [11,+∞]

and x12 = [12,+∞]. At the second iteration we get

x10 := x9 ∨ x12 = ∅ ∨ [12,+∞] = [12,+∞]

and x12 := [13,+∞]. It is immediate to see that, while keeping on iterating,
the values computed at the control point x10 are [11,+∞], [12,+∞], [13,+∞],
[14,+∞], . . . in an infinite descending sequence, whose limit is the empty set. ut

It is worth noting that, in the previous example, the existence of an infinite
descending sequence depends on the fact that the second while loop is unreach-
able, although the initial ascending phase of the analysis computes a non-empty
over approximation. This leads to a descending sequence whose limit is the empty
set. This situation is not peculiar of our example. On the contrary, we will show
that this is the only way infinite descending sequences may arise in the integer
interval domain.

To avoid the insurgence of infinite descending chains, we may stop the de-
scending iteration at an arbitrary step, still obtaining a post-fixpoint, or we
may use a narrowing operator. Narrowing, generally denoted by M, is a binary
operator on a abstract domain A such that:

– a1 M a2 is only defined when a2 ≤ a1;
– it holds that a2 ≤ a1 M a2 ≤ a1;
– when used in equations of the kind xi = xiMΦi(x1, . . . , xn), it precludes the

insurgence of infinite descending chains for xi.

The standard narrowing for intervals [4], for example, is defined as:

I M ∅ = ∅
[l1, u1] M [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
l1 otherwise

u′ =

{
u2 if u1 = +∞
u1 otherwise
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Essentially, it works by refining only unbounded extremes. For instance, [0,∞]M
[0, 10] = [0, 10] but [0, 10]M [0, 9] = [0, 10]. Let us reconsider Example 1 and show
what happens when we use narrowing in the descending phase.

Example 2. Consider the same program, flowchart and equations of Example 1,
together with the result of the analysis after the ascending phase. We now replace
the equations for x2 and x10 with x2 = x2M (x1 ∨x8) and x10 = x10M (x9 ∨x12)
and start a descending iteration.

When the second equation is first re-evaluated, the current value for x2 is
[0,+∞], hence the standard narrowing allows to change +∞ into 8, and we have
x2 := [0, 8] as for the case without narrowing. However, when x10 is evaluated for
the first time in the decreasing sequence, we have x10 := [10,+∞] M [11,+∞] =
[10,+∞]: the standard narrowing precludes further improvements on the second
loop. The descending sequence terminates at the cost of a big loss of precision,
since we are not able to detect anymore that control points 10–12 are unreach-
able. ut

In the rest of the paper, we will show that narrowing for the integer interval
domain is superfluous, and may be removed upon adopting a slightly different
semantic operator for loop joins which preserves unreachability. Moreover, we
generalize this result to all the template abstract domains over integer variables.

Furthermore, we show that such a result can be used to design a more precise
narrowing on template abstract domain over reals, exploiting the fact that we
never get infinite descending chains of integer intervals.

2 Narrowing on intervals of integers

Example 1 shows an analysis which leads to an infinite descending chain of
intervals. In particular, the chain is [11,+∞], [12,+∞], [13,+∞], . . . and its
limit is the empty set. It turns out that the only infinite descending chains of
intervals are of the kind

[n0,+∞], [n1,+∞], [n2,+∞], . . .

or
[−∞,−n0], [−∞,−n1], [−∞,−n2], . . .

where {ni}i∈N is an infinite descending chain of integers. The limit of all these
chains is the empty set.

Proposition 3. Let {Ii}i∈N be an infinite descending chain of integer intervals.
Then ui∈NIi = ∅.

In the rest of the paper we assume to deal only with structured programs,
whose flowchart is reducible. Intuitively, this means that every loop has a single
well defined entry point.

Assume loop is the entry point of a loop and its corresponding equation is
xloop = xin ∨ xback , where in is the edge in the flowchart which comes from
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outside the loop and back the back edge. Since in a reducible flowchart the entry
point of a loop dominates all the nodes inside the loop, if control point in is
unreachable (i.e., xin = ∅ in the interval domain) the same holds for control
point loop.

Therefore, we may change the abstract semantics of the program by replacing
each equation corresponding to a loop join xloop = xin ∨ xback with xloop =
xin ∨∅ xback , where ∨∅ is a left-strict variant of the join operator defined as:

I1 ∨∅ I2 =

{
∅ if I1 = ∅
I1 ∨ I2 otherwise

(1)

The new set of equations is correct (again, only on reducible flowcharts) and
more precise. Moreover, during the descending phase of the analysis, narrowing is
not required to achieve termination. Actually, assume that an infinite descending
chain arises during the descending phase. Let loop be one of the outermost loop
heads whose variable xloop infinitely decreases. In the presence of left-strict joins,
this leads to a contradiction. The equation of xloop is xloop = xin ∨∅ xback . The
value of xin is definitively constant. Once it reaches its definitive value x̄in , we
may have only two cases:

– if x̄in = ∅, then the first time xloop is re-evaluated we have xloop := ∅ and
xloop cannot descend anymore, contradicting our hypothesis;

– if x̄in 6= ∅, then xloop ≥ x̄in always, and therefore it cannot descend infinitely,
due to Proposition 3.

The considerations above hold for any numerical abstract domain A with a
distinguished value denoting unreachability. In the following, we will refer to such
a distinguished value as ∅, which is the common notation in all the numerical
domains in the literature.

This discussion leads therefore to the following results.

Theorem 4. Assume given a numerical abstract domain A with a distinguished
value ∅ denoting unreachability. Assume we have a system of data-flow equations
Φ generated by a structured program whose loop head nodes are of the form
xloop = xin ∨ xback . Then, replacing ∨ with ∨∅ in all the loop heads, the new set
of data-flow equations is still correct.

Theorem 5. In the hypothesis of Theorem 4, assume A is the abstract domain
of integer intervals. Then every iteration strategy on the equations in Φ starting
from a post-fixpoint of Φ leads to a finite sequence.

Note that a descending sequence without narrowing always leads to a fixpoint
of the equation system, instead of a post-fixpoint.

Some of the restrictions of Theorem 4 may be easily lifted. For example, if a
loop join node has equation

xloop = xin1 ∨ · · · ∨ xinu ∨ xback1 ∨ · · · ∨ xbackv ,
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where all the edges ini come from outside the loop and all the back j ’s are back
edges, we may use left-strict join in this way:

xloop = (xin1 ∨ · · · ∨ xinu) ∨∅ (xback1 ∨ · · · ∨ xbackv ) .

Moreover, it is possible to extend Theorem 4 to non reducible flowcharts,
provided we only apply the left-strict join to the loop heads that dominate the
sources of the back edges.

When avoiding narrowing, we may find programs whose descending chain is
arbitrarily long, but finite. The next example shows this phenomenon.

Example 6. Consider the example program doubleLoop2 in Fig. 2(a), and the
corresponding flowchart and set of equations in Fig. 2(b) and 2(c). We first
perform the analysis using the integer interval domain IntZ with the standard
widening and narrowing and then we recompute the analysis without narrowing.

In the ascending phase we use widening on the join loops: x2 = x2O(x1∨∅x4)
and x6 = x6 O (x5 ∨∅ x8). The post-fixpoint is:

x1 = [0, 0] x4 = [1, 11] x7 = [−∞, 100]

x2 = [0,∞] x5 = [11,∞] x8 = [−∞, 99]

x3 = [0, 10] x6 = [−∞,∞] x9 = [101,∞]

Now we start the descending phase with the standard narrowing, using the equa-
tions x2 = x2M(x1∨∅x4) and x6 = x6M(x5∨∅x8). When we first apply narrowing
in the second equation, we get:

x2 = x2 M (x1 ∨∅ x4) = [0,∞] M [0, 11] = [0, 11]

and therefore x5 = [11, 11]. We now apply narrowing in the sixth equation:

x6 = x6 M (x5 ∨∅ x8) = [−∞,∞] M [−∞, 99] = [−∞, 99]

and therefore we have x7 = [−∞, 99], x8 = [−∞, 98] and x9 = ∅, which is the
fixpoint.

We now recompute the descending phase without narrowing, using the equa-
tions

x2 = x1 ∨∅ x4
x6 = x5 ∨∅ x8 .

The first while loop behaves as before with x5 = [11, 11]. Now we enter the
second while loop. The first iteration is the same as before using narrowing, and
we get:

x6 = [−∞, 99] x8 = [−∞, 98]

x7 = [−∞, 99] x9 = ∅

But now we are able to continue the descending phase, which is:
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i=0
while(i<=10) {

i=i+1
}
while(i<=100) {

i=i−1
}

(a) Program
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(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨∅ x4

x3 = x2 ∧ [−∞, 10]

x4 = x3 + [1, 1]

x5 = x2 ∧ [11,∞]

x6 = x5 ∨∅ x8

x7 = x6 ∧ [−∞, 100]

x8 = x7 − [1, 1]

x9 = x6 ∧ [101,∞]

(c) Equation system

Fig. 2. The example program doubleLoop2.

2ns descending iteration 3rd d. i. 4th d. i. . . . last d. i.
x6 [−∞, 98] [−∞, 97] [−∞, 96] . . . [−∞, 11]
x7 [−∞, 98] [−∞, 97] [−∞, 96] . . . [−∞, 11]
x8 [−∞, 97] [−∞, 96] [−∞, 95] . . . [−∞, 10]

Note that, by continuing the descending phase till the fixpoint, we are able
to detect that the guard in the second while loop is over dimensioned, since the
variable i never reaches the value 100. ut

2.1 Template abstract domains

The above result on intervals can be extended to the whole family of template
abstract domains. We call template abstract domains those numerical domains
where the coefficients of the allowed constraints are fixed in advance, before
starting the analysis. Most important template abstract domains are the domain
of intervals (also called box domain) [4], octagons [13] and template polyhedra
[14]. Non-template abstract domains are, among others, polyhedra [8] and two-
variable for linear inequality [15].
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All the template abstract domains may be described using a fixed matrix
which describes the constraints and any abstract object o is a subset of Rn (or
Zn if working with integer variables) of the form o = {x ∈ Rn | l ≤ Ax ≤ u}
where A is the constraint matrix, l and u are, respectively, the lower and upper
bounds.

A box is an abstract object where A is the identity matrix. Octagons are those
objects where the coefficient matrix A allows constrains of the form ±x± y ≤ c.
Finally, template polyhedra are those objects where the coefficient matrix A is
arbitrary but fixed a priori.

Under the hypothesis of Theorem 4, it is possible to extend Theorem 5 to all
the template abstract domains. In fact, given a narrowing operator on intervals,
we can immediately define a corresponding component-wise narrowing operator
on any template abstract domain. We first show that template abstract domains
over integers enjoy a property similar to Prop. 3. Note that a template domain
over integers only needs to have integer bounds, while the coefficients of the
constraint matrix may be reals.

Proposition 7. Let A be a template abstract domain over integers and {Ii}i∈N
be an infinite descending chain of objects Ii ∈ A. Then ui∈NIi = ∅, where ∅ is a
distinguished value of A denoting unreachability.

Exploiting the above proposition and Theorem 4, we can prove a result ana-
logue to Theorem 5 which, in presence of a left-strict join, allows us to avoid
narrowing, still guaranteeing termination.

Theorem 8. In the hypothesis of Theorem 4, assume A is a template abstract
domain over integers. Then every iteration strategy on the equations in Φ starting
from a post-fixpoint of Φ leads to a finite sequence.

3 Narrowing on reals

The left-strict join we have introduced for integer domains may also be used with
abstract domains over real variables. This improves the precision of the analysis,
but does not ensure that the descending phase will terminate. This depends
on the fact that, once we admit real variables, we can have infinite descending
chains whose limit is not the empty set. Nonetheless, in this case the left-strict
join may be exploited to define a narrowing more precise than the standard one.

The next example shows that on the standard interval domain IntR for real
variables, the descending phase of the analysis may lead to an infinite descending
chain whose limit is not the empty set. We recall that

IntR = {[l, u] ⊆ Rn | l ≤ u ∈ R ∪ {−∞,∞}} ∪ {∅}.

Example 9. Consider the example program realLoop in Fig. 3(a), and the cor-
responding flowchart and equations in Fig. 3(b) and 3(c). The ascending phase
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i=0
while(true) {

if ( i>10) {
i=0
}
i=(i+2)/2
}

(a) Program

i = 0

i > 10

i = 0

i = (i + 2)/2

1
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true
3

5

4

6

7

(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨∅ x7

x3 = x2 ∧ [10,+∞]

x4 = [0, 0]

x5 = x2 ∧ [−∞, 10]

x6 = x4 ∨ x5

x7 = (x6 + [2, 2])/2

(c) Equation system

Fig. 3. The example program realLoop.

using left-strict join and standard widening, i.e., x2 = x2 O (x1 ∨∅ x7), reaches a
post-fixpoint in two iterations.

1st ascending iteration 2nd ascending iteration
x1 [0, 0] [0, 0]
x2 [0, 0] [0, 0] O∅ [1, 1] = [0,+∞]
x3 ∅ [10,+∞]
x4 [0, 0] [0, 0]
x5 [0, 0] [0, 10]
x6 [0, 0] [0, 10]
x7 [1, 1] [1, 6]

We now start from the post fixpoint a descending iteration without applying
narrowing, using the original equation x2 = x1 ∨∅ x7.

1st descending iteration 2nd descending iteration
x1 [0, 0] [0, 0]
x2 [0, 0] ∨∅ [1, 6] = [0, 6] [0, 0] ∨∅ [1, 4] = [0, 4]
x3 ∅ ∅
x4 [0, 0] [0, 0]
x5 [0, 6] [0, 4]
x6 [0, 6] [0, 4]
x7 [1, 4] [1, 3]
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At the next iterations, we obtain:

x2 = [0, 3] x7 =

[
1,

5

2

]
x2 =

[
0,

5

2

]
x7 =

[
1,

9

4

]
and so on, without terminating. The fixpoint, which is x2 = [0, 2] and x7 = [1, 2],
is not the empty set. ut

Exploiting Proposition 3, we can define a new narrowing operator on intervals
for real variables which refines successive descending iterations at the nearest
integer, since we cannot have an infinite descending chain whose bounds are all
integers.

Definition 10 (Narrowing on reals). We define a narrowing operator M1 on
IntR as follows:

I M1 ∅ = ∅
[l1, u1] M1 [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
max(l1, bl2c) otherwise

u′ =

{
u2 if u1 = +∞
min(u1, du2e) otherwise

The new narrowing M1 refines infinite bounds to finite values, as the standard
one, and refines finite bounds only to new integer values. Since infinite descending
sequences on integer template domains are precluded by the use of left-strict
joins, the descending sequence terminates.

Theorem 11. The operator M1 is a narrowing operator on template domains
when the loop join is left-strict.

In the next example we compare the standard narrowing with the new nar-
rowing on reals M1.

Example 12. We compute the descending chain of Example 9 using the standard
narrowing on intervals. We start from the post fixpoint and use the equation
x2 = x2 M (x1 ∨∅ x7). At the first descending iteration we get

x2 = [0,+∞] M ([0, 0] ∨∅ [1, 6]) = [0,+∞] M [0, 6] = [0, 6] .

Note that we get exactly the same value as in the first descending iteration
without narrowing. Therefore, we compute for the other unknowns exactly the
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same values, in particular x7 = [1, 4]. It is immediate to see that this is a fixpoint
for the computation using the standard narrowing, since no more unbounded
values appear. In fact, we have that

x2 = x2 M (x1 ∨∅ x7) = [0, 6] M [0, 4] = [0, 6] .

We now recompute the descending chain of Example 9 using the narrowing on
reals M1 in Def. 10. The first descending iteration is the same as for the standard
narrowing, and we get x2 = [0, 6] and x7 = [1, 4]. In the second descending
iteration we have

x2 = x2 M
1 (x1 ∨∅ x7) = [0, 6] M1 [0, 4] = [0, 4]

and x7 = [1, 3]. In the third descending iteration we have

x2 = [0, 4] M1 [0, 3] = [0, 3]

and x7 = [1, 52 ]. This is the fixpoint, since

x2 = [0, 3] M1

[
0,

5

2

]
= [0, 3] .

In this case, we get a result strictly more precise than with the standard nar-
rowing. ut

It is worth noting that M1 could be easily generalized by rounding numbers
at the multiple of any strictly positive constant value δ ∈ R.

Definition 13 (δ-narrowing). Let δ ∈ R such that δ > 0. We define a new
narrowing on intervals of reals:

I Mδ ∅ = ∅
[l1, u1] Mδ [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
max(l1, δbl2/δc) otherwise

u′ =

{
u2 if u1 = +∞
min(u1, δdu2/δe) otherwise

The above narrowing produces a descending chain whose elements differ for a
multiple of δ, which is fixed in advance. Since the limit of these chains is still the
empty set, it is immediate to see that Mδ in the above definition is a narrowing
operator on intervals of reals. It generalizes M1 given in Definition 10. In fact,
Def. 13 boils down to Def. 10 when δ = 1. Moreover, it can be easily generalized
to template abstract domains.
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Theorem 14. For any δ ∈ R such that δ > 0, the operator Mδ is a narrowing
operators on template abstract domains when the loop join is left-strict.

The next example applies the new narrowing Mδ to the program realLoop.

Example 15. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using δ-narrowing with δ = 1

100 . We get the following values
for x2:

[0, 6], [0, 4], [0, 3],

[
0,

5

2

]
,

[
0,

9

4

]
,

[
0,

213

100

]
,

[
0,

207

100

]
,

[
0,

204

100

]
,

[
0,

202

100

]
,

[
0,

201

100

]
where the last one is the fixpoint. ut

As an alternative, instead of rounding bounds to a multiple of δ, we may
refine bounds with the new value only if the difference w.r.t. the previous value
is greater than a given δ. We call this δ*-narrowing.

Definition 16 (δ*-narrowing). Let δ ∈ R such that δ > 0. We define a new
narrowing on intervals of reals:

I Mδ∗ ∅ = ∅
[l1, u1] Mδ∗ [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞ or l2 − l1 ≥ δ
l1 otherwise

u′ =

{
u2 if u1 = +∞ or u1 − u2 ≥ δ
u1 otherwise

The above narrowing keeps iterating while the difference between two successive
iterations is greater than δ. Since the limit of any such descending chain is still
the empty set, we can prove that Mδ∗ is a narrowing operator under the same
hypothesis of Th. 14

Theorem 17. For any δ ∈ R such that δ > 0, the operator Mδ∗ is a narrowing
operators on template domains when the loop join is left-strict.

The next example shows the narrowing Mδ∗ in the program realLoop.

Example 18. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using δ*-narrowing with δ = 1

100 . We get the following values
for x2:

[0, 6], [0, 4], [0, 3],

[
0,

5

2

]
,

[
0,

9

4

]
,

[
0,

17

8

]
,

[
0,

33

16

]
,

[
0,

65

32

]
,

[
0,

129

64

]
where the last one is the fixpoint. ut
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4 Conclusion and related work

We believe the main contribution of this paper is a deeper theoretical under-
standing of termination issues during descending iterations within the framework
of static analysis by abstract interpretation. In details, we have:

– introduced a refined join operator for loop heads which improves precision
by preserving unreachability;

– shown that, when using the new join operator with an integer template ab-
stract domain, the descending phase of the analysis terminates even without
using a narrowing operator;

– presented several improved (more precise) narrowings for template abstract
domains over reals, to be used with the new join operator;

– shown, for the first time, examples of programs over integers and reals where
the descending phase of the analysis is either infinite or arbitrarily long.

Both the new join and the improved narrowings may be easily applied to
existent analyzers with little effort. In the case of structured program, they only
require a single check in the abstract join in order to make it strict.

The new join operator may be used systematically with structured programs,
since it improves both precision and speed at the same time. The same cannot
be said for the new narrowings over reals or for the idea of not using narrowing
at all with integer domains. In this case, we may get better precision, as shown
in Example 9, but at the expense of a greater computational cost, since the
analysis of the loops might be repeated several times. The good point is that
we increase the computational cost only when we improve precision w.r.t. the
standard narrowing.

The impact of the repeated computations of loops might be probably reduced
by delaying analysis of the inner loops until outer loops are stabilized, so that
a long descending sequence in a loop does not force to repeatedly analyze the
inner loops. However the impact of the new narrowing on the precision and
performance of the analysis on realistic test cases will be the topic of a future
work.

Only a few papers in the literature deal with narrowing and the descending
phase of the analysis. In [12], the authors try to recover precision by restarting
the analysis after that a post-fixpoint has been reached. In [1] and [2], the au-
thors propose to combine widening and narrowing during the analysis, resulting
in multiple intertwined ascending and descending phases. Moreover, [1] also pro-
poses to restart (part of) the analysis when the abstract value associated to the
exit node of a loop is refined during the descending phase. Our left-strict join
operator may be viewed as a variant of the restarting policy in [1], where restart
is triggered only when unreachability is detected. However, while in the previous
work restarting is a feature of the equation solver, here it is realized directly at
the semantic level.

Mostly, our work is orthogonal to the ones cited above: the new operators we
have defined may be used within these frameworks to get more precise results.
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The idea of avoiding narrowing in the descending phase is used in many
papers, with the proviso of bounding the number of descending iterations to
ensure termination. In this paper we show that, under certain conditions and
ignoring performance issues, we do not need to bound the number of iterations.
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