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Abstract. An abstract domain for non pair-sharing and freeness analy-
sis of logic programs has been recently developed by using the automatic

technique of linear refinement. W.r.t. previously available domains, it
can be used for abstract compilation, which allows a modular and goal-
independent analysis of logic programs. In this paper, we describe our
implementation of an analyser which uses that domain. Sometimes, we
have sacrificed precision for efficiency. We evaluate it over a set of bench-
marks and we compare the results with those obtained through a goal-
dependent analysis. Not surprisingly, our goal-independent analysis is
slower. However, it is almost always as precise as the goal-dependent
one. To the best of our knowledge, this is the first goal-independent im-
plementation of sharing analysis based on abstract interpretation, as well
as the first implementation of a linearly refined domain.
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1 Introduction

Pair-sharing analysis [1, 16] determines those pairs of variables which, in a given
program point, can be bound to two terms which share some variable. It is a
particular case of set-sharing analysis [12]. In set-sharing analysis, indeed, sets of
variables are considered, and not just pairs. It is useful for avoiding occur-check
[16] and for automatic program parallelisation [12, 15]. As stressed in [1], pair-
sharing information is actually needed in program analysis and transformation,
set-sharing information being redundant w.r.t. pair-sharing information.

Freeness analysis [4, 15] determines those variables which are always bound
to a variable in a given program point. It is useful for optimising unification, for
goal reordering and for avoiding type checking. It is well known that performing
sharing and freeness analysis together improves the precision of both [12, 15].

When the fixpoint computation is based on a compositional definition, the
(i+1)-th iteration can re-use any intermediate results already computed during
the i-th iteration that are known not to change across iterations. Such results



are usually the denotations of some program parts which do not contain recur-
sive procedure calls. Therefore, these parts can be replaced by their denotation
and the fixpoint computed on this modified (partially compiled) program. This
technique is traditionally known as abstract compilation [5, 11], since it is an ap-
plication of abstract interpretation [9] where a program is iteratively compiled
to its abstract denotation. This leads, in general, to a more efficient computation
of the abstract fixpoint. Moreover, modular analysis is allowed. This means that
procedures or libraries can be analysed separately, and their analyses can then
be combined to obtain the analysis of a large program.

Linear refinement [10] is a technique for systematically improving abstract
domains for program analysis. It has been defined as a slight generalisation of
Cousot’s reduced power operation [8]. Given a basic abstract domain represent-
ing just the property of interest and a concrete operation ⊠ (in the case of logic
programming, unification) the new refined domain is constructed, and allows
us to define an abstract operation which is more precise than that of the basic
domain. This is achieved by enriching the basic domain with linear logic impli-
cations i _ o representing the propagation of the abstract property of interest
through the concrete operator ⊠. Namely, if the abstract property i holds for
the input of the operator ⊠ then the abstract property o holds for its output.
In this way, the development of new domains becomes almost automatic and we
can define the denotation for a procedure as a function from abstract properties
of the input to abstract properties of the output. Thus, static analysis can be
applied even if the source code of some procedures is not known (which can be
the result of some copyright policy), provided that its abstract denotation is
available.

In [13] an abstract domain for non pair-sharing and freeness analysis has
been developed through linear refinement. It is more precise than the traditional
domain of [12] and correct abstract operators have been explicitly defined. How-
ever, no experimental results are provided. Since the abstract operations are not
optimal, the usefulness of the domain was left unclear.

Our contribution is the implementation of the domain of [13], which is the
first implementation of a goal-independent sharing and freeness analysis of logic
programs based on abstract interpretation, as well as of a linearly refined domain.
Note that the traditional domains for groundness did exist before it became clear
they could be obtained through refinement. Beyond the implementation, this
paper contains a piece of theory about reduction rules, necessary for an efficient
analysis, and which can be tuned in such a way to avoid any loss of precision.

1.1 Related Works

Almost all works about sharing analysis are not amenable to abstract compi-
lation and have been developed without any automatic technique like linear
refinement. To the best of our knowledge, only [4, 6, 7] provide abstract domains
for sharing analysis which can be used for abstract compilation. The domain
in [4] models sharing, freeness and groundness. It is not based on abstract in-
terpretation. Its authors claim that its precision is no more than that of the



Sharing × Free domain of [12]. An implementation exists. The domain in [6] is
isomorphic to the Sharing domain of [12]. The domain in [7] is isomorphic to the
domain Pos for groundness analysis. Since in both cases the authors provided an
abstract unification algorithm over the abstract domain only (in contrast with
an abstract unification algorithm between an element of the abstract domain
and a concrete substitution, like in [12]), abstract compilation is allowed in both
cases. However, the domains in [6] and [7] induce abstraction maps which are too
coarse for practical applications. Namely, those maps cannot distinguish between
concrete substitutions like {x = y} and {x = f(y, y)} (as implied by Equation
(7) of [6] and Observation 4.1 of [7]). However, those substitutions must be dis-
tinguished in order to provide decent precision, as shown in Example 8 of [13].
Other sources of imprecision are shown by Examples 4 and 5 of [13]. Some of
those problems can be solved by adding freeness and linearity to the abstract
domain, but we are not aware of any implementation of the domains in [6] and
[7] coupled with freeness and linearity.

2 Preliminaries

We denote by ℘(S) the powerset of a set S, by #S its cardinality and by ℘f (S)
the set of all finite subsets of S.

Given a set of variables V and a set of function symbols Σ with associ-
ated arity, containing at least a symbol of arity 0, we define terms(Σ,V ) as
the minimal set of terms built from V and Σ, i.e., V ⊆ terms(Σ,V ) and if
t1, . . . , tn ∈ terms(Σ,V ) and fn ∈ Σ, then f(t1, . . . , tn) ∈ terms(Σ,V ). We de-
note by vars(t) the set of variables which occur in a term t. When vars(t) = ∅
we say that t is ground. If x is a variable, V ∪ x means V ∪ {x} and V \ x
means V \ {x}. The set of idempotent substitutions θ (dom(θ)∪ rng(θ) ⊆ V and
dom(θ) ∩ rng(θ) = ∅) is denoted by ΘV .

Let V be an infinite set of variables and V ∈ ℘f (V). We define the set
CV = ℘f{t

1 = t2 | t1, t2 ∈ terms(Σ,V )} of Herbrand constraints. Let W be an
infinite set of variables disjoint from V. For each V ∈ ℘f (V), we have the set of
existential Herbrand constraints

HV =

{

∃W c

∣

∣

∣

∣

W ∈ ℘f (W), c ∈ CV ∪W and there exists
θ ∈ ΘV ∪W s.t. rng(θ) ⊆ V and cθ holds

}

.

Here, V are called the program variables and W the existential variables, which
are a formalisation of the unnamed variables of Prolog. The condition about the
existence of θ such that cθ holds, means that we consider satisfiable constraints
only.

Four operations, called conjunction, restriction, expansion and renaming, are
defined over HV .

Definition 1. We define ⋆HV : HV × HV 7→ HV , restrict
HV

n : HV 7→ HV \n with

n ∈ V , expandHV

x : HV 7→ HV ∪x with x 6∈ V , and renameHV
x→n : HV 7→ H(V \x)∪n,



with x ∈ V and n 6∈ V as1

(∃W1
c1) ⋆

HV (∃W2
c2) =

{

∃W1∪W2
mgu(c1 ∪ c2) if mgu(c1 ∪ c2) exists,

undefined otherwise

restrictHV

n (∃W c) = ∃W∪Nc[N/n] with N ∈ W \W ,

expandHV

x (∃W c) = ∃W c ,

renameHV
x→n(∃W c) = ∃W (c[n/x]) .

Note that in the definition of ⋆HV we put the constraint in normal form through
the Martelli and Montanari unification algorithm [14]. The other operations are
closed on the set of existential Herbrand constraints in normal form.

Our concrete domain is the collecting version [9] of HV , i.e., the lattice
〈℘(HV ),∩,∪,HV , ∅〉. The operations on HV are point-wise extended to ℘(HV ).
The new operation ∪℘(HV )(S1, S2) = S1 ∪ S2 is defined. It is used to merge the
results of different branches of execution.

3 Non Pair-Sharing and Freeness Analysis

We briefly recall the definition of the abstract domain for non pair-sharing and
freeness described in [13]. Its abstract elements are sets of arrows.

Definition 2. Given V ∈ ℘f (V), we denote by V2 the set of unordered pairs of
elements of V . We define ShFV = ℘(V ∪ V2) as the domain used to express the
freeness of variables and the non-sharing of pairs of variables. We define AbsV =
℘(ShFV × (V ∪ V2)). We write the elements of V2 as (v1, v2), with {v1, v2} ⊆ V
and a pair ({l1, . . . , ln}, r) ∈ AbsV as l1 · · · ln ⇒ r, for n ≥ 0. The dimension
dim(s) of s ∈ ShF is its cardinality. If A ∈ AbsV , dim(A) =

∑

l⇒r∈A dim(l).

For instance, the object x(y, z) ∈ ShFV means that x is free and that y and z
do not share any variable. The arrow l1 · · · ln ⇒ r represents the set of existential
Herbrand constraints which, when unified with a constraint satisfying l1 · · · ln
(i.e., whose freeness and non pair-sharing properties are consistent with those
expressed by l1 · · · ln), give a result satisfying r.

We can approximate the operations of Definition 1. Entailment and tauto-
logical arrows are defined in [13]. Roughly speaking, l ∈ ShFV entails l′ ∈ ShFV

when every existential Herbrand constraint satisfying l satisfies l′, i.e., its free-
ness and non pair-sharing properties, when consistent with those expressed by l
are also consistent with those expressed by l′. For instance, we have that x(y, x)
entails (y, x) and x, and that (x, x) entails (x, y) (since (x, x) means that x is
ground). A tautological arrow is an arrow which is satisfied by every constraint.

1 In the definition of ⋆HV we assume W1∩W2 = ∅, since a constraint ∃W c is equivalent
to ∃W ′c[W ′/W ], with W ′ made of fresh variables. Similarly, different choices of N
in restrict

HV
n lead to equivalent constraints.



Definition 3. Let A1, A2 ∈ AbsV . Let T be made of tautological arrows2. Then

A1 ⋆
AbsV A2 =















l1 · · · ln ⇒ r

∣

∣

∣

∣

∣

∣

∣

∣

r1 · · · rn ⇒ r ∈ A2 ∪ T, li ⇒ r′i ∈ A1 ∪ T
and r′i entails ri for i = 1, . . . , n, or
r1 · · · rn ⇒ r ∈ A1 ∪ T, li ⇒ r′i ∈ A2 ∪ T
and r′i entails ri for i = 1, . . . , n















.

In our implementation, in Definition 3 we use T = {(v, v) ⇒ (v, v) | v ∈ V }.

Example 1. In Definition 3, let T = {}, V = {x, y, z} and

A1 = {xy ⇒ x, (x, y)(x, z) ⇒ (x, y), (x, x) ⇒ (z, z)} ,

A2 = {x(x, y) ⇒ x, ⇒ (y, y)} .

Then
A1 ⋆

AbsV A2 = {xy(x, y)(x, z) ⇒ x, ⇒ (y, y)} .

Note that we do not obtain the arrow {(x, x) ⇒ (z, z)}, since the set T is empty.
But this arrow must hold for A1 ⋆

AbsV A2, since it holds for A1 and groundness
dependencies cannot be lost. By using T ⊇ {(v, v) ⇒ (v, v) | v ∈ V } we would
include that arrow in the conjunction.

Definition 4. Let V ∈ ℘f (V) and n ∈ V . Let X = {n} ∪ {(v, n) | v ∈ V } and
A,A1, A2 ∈ AbsV . We define

restrictAbsV
n (A) =

{

l \X ⇒ r

∣

∣

∣

∣

l ⇒ r ∈ A, (n, n) 6∈ l,
r 6≡ n and r 6≡ (n, v) for every v ∈ V

}

.

If x ∈ V , n 6∈ V and A ∈ AbsV , we define

renameAbsV
x→n (A) = A[n/x] .

Finally, we define

∪AbsV (A1, A2) = {l1l2 ⇒ r | l1 ⇒ r ∈ A1, l2 ⇒ r ∈ A2} .

Example 2. Let V = {x, y, z} and

A = {xy ⇒ x, xy ⇒ y, (x, x) ⇒ (y, z), (y, z)(x, y)(x, z) ⇒ (y, z)} .

Then
restrictAbsV

x (A) = {y ⇒ y, (y, z) ⇒ (y, z)} .

For the expansion, we use a distinguished variable ?1 ∈ V which stands for all
the variables which do not occur in the Herbrand constraints. In order to compute
expandAbsV

x (A), we substitute x for ?1 in A. Since non pair-sharing is a property
of pairs of variables, we wish to know how this new x behaves in conjunction
with the distinguished variable itself. Thus we use two distinguished variables
?1 and ?2. By using the abstraction map (Definition 6) with {?1, ?2} ⊆ V , we
introduce these variables in the constraints.

2 The larger T is, the more precise ⋆AbsV is.



Definition 5. Let V ∈ ℘f (V) and x ∈ V \ V . Let {?1, ?2} ⊆ V and A ∈ AbsV .
We define

expandAbsV
x (A) = A ∪ {l[x/?1][?1/?2] ⇒ r[x/?1][?1/?2] | l ⇒ r ∈ A} .

Example 3. Let V = {x, y, z} and

A = {?1(x, ?1) ⇒ ?1, (?1, x)(?1, z)(?1, ?2) ⇒ (?1, ?2), xyz ⇒ z} .

Given n ∈ V \ V we have

expandAbsV
n (A) =

{

xyz ⇒ z, n(x, n) ⇒ n, (n, x)(n, z)(n, ?1) ⇒ (n, ?1),
?1(x, ?1) ⇒ ?1, (?1, x)(?1, z)(?1, ?2) ⇒ (?1, ?2)

}

.

We show here how to compute an approximation of the abstraction map. It
considers separately the information of groundness, non pair-sharing and freeness
contained in a binding. A substitution is then abstracted by combining through
⋆AbsV the abstraction of every binding of which it is composed.

Definition 6. Let V ∈ ℘f (V), v ∈ V and t ∈ terms(Σ,V ). We define

αV (v = t) = αV
gr(v = t) ∪ αV

nsh(v = t) ∪ αV
fr(v = t) ,

where αV
gr, αV

nsh and αV
free are defined below. We write t(v1, . . . , vn) for t if

vars(t) = {v1, . . . , vn}. If n = 0 then t(v1, . . . , vn) is ground. Variables with
different names are different variables.

αV
gr(v = t(v1, . . . , vn)) =

⋃

v′∈V

{

(v1, v1) · · · (vn, vn) ⇒ (v, v′),
(v, v) ⇒ (v1, v

′), . . . , (v, v) ⇒ (vn, v
′)

}

αV
nsh(x = t) = ∪{v,v′}⊆V α

(v,v′)
nsh (x = t)

α
(v,v′)
nsh (v = t(v′, v1, . . . , vn)) = {} = α

(v,v′)
nsh (v = t′) t′ ground

α
(v,v′)
nsh (x = t(v, v′, v1, . . . , vn)) = {x(v, v′) ⇒ (v, v′)}

α
(v,v′)
nsh (v = t(v1, . . . , vn)) = {(v′, v)(v′, v1) · · · (v

′, vn) ⇒ (v′, v)}

t(v1, . . . , vn) non ground

α
(v,v′)
nsh (x = t(v, v1, . . . , vn)) =

{

(v′, v)(v′, x)(v′, v1) · · · (v
′, vn) ⇒ (v′, v),

(v′, v)(v′, x)x ⇒ (v′, v)

}

α
(v,v′)
nsh (x = t) = {(v, v′) ⇒ (v, v′)} t ground

α
(v,v′)
nsh (x = t(v1, . . . , vn)) =







(v, v′)(v, x)(v, v1) · · · (v, vn) ⇒ (v, v′),
(v, v′)(v′, x)(v′, v1) · · · (v

′, vn) ⇒ (v, v′),
(v, v′)(v, x)(v′, x)x ⇒ (v, v′)







t(v1, . . . , vn) non ground



αV
fr(x = t) = ∪v∈V αv

fr(x = t)

αv
fr(v = x) = {vx ⇒ v} = αv

fr(x = t(v, v1, . . . , vn))

αv
fr(v = t(v1, . . . , vn)) = {} t(v1, . . . , vn) 6∈ V

αv
fr(x = y) = {v(x, v)(v, y) ⇒ v, vxy ⇒ v}

αv
fr(x = t(v1, . . . , vn)) = {vx(x, v) ⇒ v, v(x, v)(v1, v) · · · (vn, v) ⇒ v}

t(v1, . . . , vn) 6∈ V .

We can compute the abstract information contained in an abstract constraint,
i.e., the set of variables which are free and the set of pairs of variables which do
not share in any existential Herbrand constraint belonging to the concretisation
of the abstract constraint.

Definition 7. Given V ∈ ℘f (V), we define freeV : AbsV 7→ ℘(V ) and nshV :
AbsV 7→ V2 as

freeV (A) = {v ∈ V | l ⇒ v ∈ A and v′(v′, v′) 6⊆ l for any v′ ∈ V } ,

nshV (A) = {(v1, v2) ∈ V2 | l ⇒ (v1, v2) ∈ A and (v, v) 6∈ l for any v ∈ V } .

4 Implementation

We describe now our prototypical implementation3 of the domain of Section
3. We did not aim at efficiency, though much care has been taken to avoid
the explosion of the computational cost of the abstract conjunction operator
(Definition 3).

Constraints are manipulated by C procedures, while the normalisation, ab-
straction and fixpoint computation phases (see below) are written in Prolog. The
choice of C as implementation language for the constraints is a consequence of ef-
ficiency considerations. Indeed, constraints are represented by arrays of bitmaps.
Every basic token of information, i.e., the freeness of a variable or the non-sharing
of a pair of variables, is associated with a bit position. Elements of ShFV (Defi-
nition 2) are then implemented as strings of bits.

4.1 Normalisation, Abstraction and Fixpoint Computation

We describe the three phases of our analysis, normalisation, abstraction and
fixpoint calculation of the abstract s-semantics for computed answers [3] (a call-
pattern or resultant semantics could be used here), by using the traditional
member/2 program as a running example:

member(X,[X|Xs]).

member(X,[Y|Ys]):-member(X,Ys).

3 Downloadable at http://www.di.unipi.it/∼amato/papers/flops01.tgz.



Normalisation transforms a program in such a way that procedure calls are
made only in their most general form, i.e., with variables v(0), v(1), and so on,
as arguments. Moreover, the structure of the program (disjunctions, conjunc-
tions, expansions and similar) is made apparent, which simplifies the subsequent
fixpoint iteration. For instance, the normalisation of member/2 is

member(2):-

rename(v(16), v(0), rename(v(17), v(1), or(

restrict(v(18), bi_eq(v(17), [v(16)|v(18)])),

restrict(v(20), and(

expand(v(16), restrict(v(19), bi_eq(v(17), [v(19)|v(20)]))),

expand(v(17), rename(v(0), v(16), rename(v(1), v(20),

call(member(2)))))

))

)))

The program has been compiled in a code which contains calls to the abstract
operations of the domain, as well as built-in’s, like bi eq, which unifies two terms,
and procedure calls, like call(member(2)), where 2 is the arity of the procedure.
This preliminary transformation has the advantage of keeping the set of variables
used for the analysis of a given program point as small as possible. For instance,
if a variable is not used in a constraint, then it will be added (through expand)
after the analysis (i.e., the abstraction) of the constraint. See the case of v(16)
and v(17) in the normalisation of member/2 above. If a variable is not used
after a conjunction, then it can be removed (through restrict). See the case
of v(20) in the normalisation of member/2 above. This reduces the complexity
of the analysis, since the abstract operations have computational complexities
which are proportional to the dimension of the elements of the abstract domain,
and this dimension is in its turn proportional to the number of variables used.

Note that the normalisation phase above is not abstract compilation. Instead,
abstract compilation substitutes the built-in’s with their abstract behaviour, i.e.,
a constraint of the abstract domain. In the case of bi eq it applies the abstraction
map of Definition 6. Moreover, it applies partial evaluation when the operands
of an abstract operation are known (i.e., if they do not contain any procedure
call), by substituting the operation with its result. In our case, we obtain

member(2):-

rename(v(16), v(0), rename(v(17), v(1), or(

abs(177072),

restrict(v(20), and(

abs(203050),

expand(v(17), rename(v(0), v(16), rename(v(1), v(20),

call(member(2)))))

))

)))

An element of AbsV is written as abs(N), N being the pointer in memory
where the constraint is stored. Indeed, as we have said, constraints are manipu-
lated by C procedures.



The calculation of the abstract fixpoint is just an iterated depth-first eval-
uation of the abstract program, by using the operations of Section 3. The call
graph of the program is used. Namely, if a procedure p is called by a procedure
q but not vice versa (even through intermediate procedures), the denotation of
p is computed first, and that of q later. In the case of member/2, this machinery
is of no help.

Even for a procedure as simple as member/2, our abstract analyser would not
reach the abstract fixpoint in a reasonable time, since the computational cost of
the analysis explodes. We show now how to obtain a reasonable performance.

4.2 Reduction Rules and Widening

Since several elements of AbsV may have the same concretisation (γRep is de-
fined in the proofs appendix) and the computational complexity of the abstract
operators of Section 3 depends on the dimension of their operands, we wish to
use the elements of AbsV of smallest dimension. This is the goal of reduction
rules.

Definition 8. A reduction rule is a family of maps {ρV }V ∈℘f (V) such that, for
every V ∈ ℘f (V),

i) ρV : AbsV 7→ AbsV ,
ii) dim(ρV (A)) ≤ dim(A) and
iii) γRep(ρV (A)) = γRep(A) for every A ∈ AbsV .

The last two conditions say that a reduction rule reduces the dimension of a
constraint without losing any information. Though it can be shown that not all
the operations of Section 3 are monotonic w.r.t. dim, our evaluation (Section 5)
suggests that reduction rules are useful in practice. If we apply a reduction rule
after every abstract operator, Definition 8 guarantees that we obtain a correct
result. The following condition entails that we do not lose any precision, which
was not obvious, since the abstract operators are not optimal.

Proposition 1. For V ∈ ℘f (V) and A1, A2 ∈ AbsV , let A1 � A2 if and only if
for every l2 ⇒ r ∈ A2 there is l1 ⇒ r ∈ A1 with

l1 ⊆ l2 ∪ {(v, v′) | v, v′ ∈ V, v 6= v′ and (v, v) ∈ l2} .

Every reduction rule ρ which is reductive w.r.t. � (i.e., ρ(A) � A for every
A ∈ AbsV ) does not introduce any loss of precision.

We show now two examples of reduction rules which are reductive w.r.t. �.

Proposition 2. Let ρ1 = {ρ1V }V ∈℘f (V), where

ρ1V (A) =

{

l ⇒ r ∈ A

∣

∣

∣

∣

there is no l′ ⇒ r ∈ A s.t.
l′ ⊂ l ∪ {(v, v′) | v, v′ ∈ V, v 6= v′ and (v, v) ∈ l}

}

for any V ∈ ℘f (V) and A ∈ AbsV . Then ρ1 is a reduction rule and is reductive
w.r.t. �. Moreover, it is possible to prove that ρ1V (A) =

⋂

{X ⊆ A | X � A},
i.e., ρ1(A) is the smallest set of A to precede A w.r.t. �.



Example 4. Let V = {v, x, y, z} and

A = {x(x, y)(x, z)(x, v) ⇒ (x, v), x(v, v) ⇒ (x, v), xy ⇒ y, x(x, v) ⇒ (x, v)} .

Then
ρ1V (A) = {xy ⇒ y, x(x, v) ⇒ (x, v)} .

Proposition 3. Let ρ2 = {ρ2V }V ∈℘f (V), where

ρ2V (A) = {l \ ({(v, v′) | v, v′ ∈ V, v 6= v′ and (v, v) ∈ l} ⇒ r) | l ⇒ r ∈ A}

for any V ∈ ℘f (V) and A ∈ AbsV . Then ρ2 is a reduction rule and is reductive
w.r.t. �.

Example 5. Let V = {v, x, y, z} and

A = {x(x, y)(y, y)(y, z)(x, z) ⇒ (x, z), xy ⇒ y, y(y, z)(z, z)(v, v) ⇒ y} .

Then
ρ2V (A) = {x(y, y)(x, z) ⇒ (x, z), xy ⇒ y, y(z, z)(v, v) ⇒ y} .

The efficiency of the analysis can be obviously improved by removing some
arrows from the elements of AbsV , possibly introducing some imprecision, like
with every widening operation [9]. In our implementation we use syntactical
equality for the entailment test of Definition 3, which means that some arrows
allowed by the theory are not generated by the implementation.

4.3 The Result of the Analysis

By using the techniques of Subsection 4.2, our analyser computes the following
denotation for member/2:

?1,(a1,?1),(a0,?1),(a0,a1)=>?1

?1,a1,(a1,?1)=>?1

(?1,?2),(a1,?1),(a0,?1),(a0,a1)=>(?1,?2)

(?1,?1)=>(?1,?1)

(a1,?1),(a0,?1),(a0,a1)=>(a1,?1)

(a1,a1)=>(a1,a1)

a1,a0,(a0,a1)=>a0

(a1,?1),(a0,?1),(a0,a1)=>(a0,?1)

(a1,a1)=>(a0,?1)

(a0,a0)=>(a0,a0)

(a1,a1)=>(a0,a0)

The variables a0 and a1 are the two argument positions of the procedure.
Beyond simple groundness dependencies, note that the analyser concludes that
a1, a0, (a0, a1) ⇒ a0. Indeed, if member/2 is called with two different free vari-
ables, then the freeness of the first variable cannot be lost. Note that the simple
freeness of a1 and a2 is not judged enough to this purpose. Indeed, a call like
member(X,X) binds X to the term [X| ] if the occur-check is not applied. If the
occur-check is applied, the freeness of a1 and a2 would be enough.



Benchmark Bytes Prepr. Fix. Conj. Others Shell

ackermann.pl 139 0.06 0.10 35.0% 7.2% 57.8%

append.pl 62 0.03 0.52 77.5% 6.9% 16.5%

eliza.pl 1400 0.42 2.20 70.1% 6.0% 23.9%

hanoi.pl 199 0.09 2.91 88.9% 4.3% 5.7%

heapify.pl 508 0.16 106.67 99.5% 0.0% 0.5%

map coloring.pl 419 0.08 0.49 57.6% 12.9% 29.5%

queens.pl 735 0.24 1.01 52.7% 14.9% 33.3%

quicksort.pl 431 0.18 18.45 97.0% 1.0% 2.0%

openlist.pl 159 0.76 0.48 80.3% 10.5% 9.2%

Fig. 1. The analysis times.

5 Experimental Evaluation

We show now the behaviour of our analyser on some benchmarks. We have used
SWI-Prolog 3.3.2 over an AMD K5 100Mhz processor with 64Mbytes of memory,
running Linux 2.2. The techniques of Subsection 4.2 have been applied.

In Figure 1, for every benchmark, we report its dimension in bytes, the time
in seconds spent in the preprocessing phase (normalisation, abstraction and call
graph construction), that spent for the fixpoint calculation, and the relative
computational cost of the conjunction operation (Definition 3) w.r.t. the other
operations of the domain and the shell (preprocessor) which normalises, ab-
stracts and computes the fixpoint. As you can see, the preprocessing time is
always small, while the fixpoint calculation is sometimes expensive and is much
more related to the number of variables in the clauses of the program than to
its dimension (compare the lucky case of eliza.pl with that of heapify.pl).
Indeed, when that number becomes large, the time spent for the abstract con-
junction explodes, as the fifth column shows. Thus a clever implementation of
the conjunction is welcome.

We have compared our analyser with a goal-dependent analysis performed by
using the Sharing×Free domain [12] inside the China analyser4 [2]. The result is
shown in Figure 2. The goal-dependent analysis is definitely more efficient, but
must be re-executed for every query. W.r.t. precision, we have run some abstract
queries with the goal-dependent analyser and we have compared the resulting
abstract information with what we get by instantiating our goal-independent
denotation on the queries.

In the third column, “A” means “A free”, while “(A,B,C)” means that A, B and
C are mutually independent, and is a compact notation for (A,B)(A,C)(B,C).
The last two columns show the results of the analysis with our analyser and
with China, expressed in our domain. Our analyser is always as precise as China
except for app/6, a version of append/3 for incomplete lists.

4 We thank Roberto Bagnara for his help with this experiment.



Benchmark Predicate call Input constraint Our response China’s

ackermann.pl ackermann(A,B,C) ABC(A,B,C) (A,A) (A,A)

(B,B)
(A,A)(B,B)

(C,C)

(A,A)(B,B)

(C,C)

append.pl append(A,B,C) ABC(A,B,C) B(A,B) B(A,B)

BC(A,B,C) B(A,B) B(A,B)

C(A,B,C) (A,B) (A,B)

(C,C)
(A,A)(B,B)

(C,C)

(A,A)(B,B)

(C,C)

eliza.pl eliza(A) A true true

hanoi.pl hanoi(A,B,C,D,E) ABCDE(A,B,C,D,E) (A,A) (A,A)

(E,E)
(A,A)(B,B)

(C,C)(E,E)

(A,A)(B,B)

(C,C)(E,E)

heapify.pl heapify(A,B) AB(A,B) true true

(A,A) (A,A)(B,B) (A,A)(B,B)

map coloring.pl color map(A,B) AB(A,B) true true

queens.pl queens(A,B) AB(A,B) (A,A)(B,B) (A,A)(B,B)

(A,A) (A,A)(B,B) (A,A)(B,B)

quicksort.pl quicksort(A,B) AB(A,B) (A,A)(B,B) (A,A)(B,B)

(A,A) (A,A)(B,B) (A,A)(B,B)

openlist.pl nil(A,B) AB(A,B) B B

cons(A,B,C,D,E) CDE(A,A)(B,D,E)

(C,D,E)

CE(A,A) CE(A,A)

app(A,B,C,D,E,F) BDEF(A,C,E,F)

(A,D,E,F)(B,C,E,F)

(B,D,E,F)

true DF

list2open(A,B,C) BC(B,C)(A,A) C(A,A) C(A,A)

Fig. 2. The comparison of our analysis with that done through China.

6 Conclusion

We have described the implementation of a static analyser based on the abstract
domain for non pair-sharing and freeness of [13]. It shows that linear refinement
can be used to devise practically useful domains. We do not know of any other
implementation of a static analysis developed through linear refinement.

We have shown that reduction rules are necessary in order to obtain an
efficient analysis. We have studied a sufficient condition which entails that a
reduction rule does not introduce any loss of precision.

A promising widening operation would delete all the arrows whose dimension
is too big. They are the cause of the computational cost of the analysis and are
seldom useful in practice. Preliminary experiments have shown that a drastic
performance improvement can be obtained.

Our analysis is almost always as precise as a traditional goal-dependent anal-
ysis. This justifies the research of more efficient implementations. At the same
time, it challenges us to exploit the full power of the domain.
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PROOFS

We recall from [13] the following definitions.

Definition 9. Given V ∈ ℘f (V) and {v, v1, v2} ⊆ V , we define (v1,v2)V =
{∃W c ∈ HV | vars(c(v1)) ∩ vars(c(v2)) = ∅} and vV = {∃W c ∈ HV | c(v) ∈ V ∪
W}. When the set V is obvious from the context, we write (v1,v2) for (v1,v2)V
and v for vV . Given {(v11 , v

2
1), . . . , (v

1
n, v

2
n), v1, . . . , vm}, we write (v1

1
,v2

1
) . . .

(v1

n
,v2

n
)v1 . . .vm (the order is irrelevant) for (∩i=1,...,n(v

1

i
,v2

i
))∩ (∩i=1,...,mvi).

The linear arrow l _ r is defined as

l _ r = {h ∈ HV | for every h′ ∈ l if h ⋆HV h′ is defined then h ⋆HV h′ ∈ r}

for every l, r ∈ ℘(HV ).
We define the concretisation map γRep : AbsV 7→ ℘(HV ) as

γRep(A) =
⋂

l⇒r∈A

l _ r

for any A ∈ AbsV .

The following definition formalises the intuitive concept of computation.

Definition 10. A computation is whether an element of AbsV , for any V ∈
℘f (V), or a term of the form op(c1, . . . , cn), where the ci’s are computations, op
is the name of one of the abstract operators defined in Section 3 and its signature
is respected. The evaluation of a computation is defined as [[A]] = A if A ∈ AbsV
for some V ∈ ℘f (V) and [[op(c1, . . . , cn)]] = op([[c1]], . . . , [[cn]]). Moreover, if ρ
is a reduction rule, we define [[A]]ρ = ρV (A) if A ∈ AbsV for some V ∈ ℘f (V)
and [[op(c1, . . . , cn)]]

ρ = ρV (op([[c1]]
ρ, . . . , [[cn]]

ρ)) if op([[c1]]
ρ, . . . , [[cn]]

ρ) ∈ AbsV
for some V ∈ ℘f (V).

Proof (Proof of Proposition 1). We have to prove that every computation
c is such that freeV ([[c]]) ⊆ freeV ([[c]]

ρ) and nshV ([[c]]) ⊆ nshV ([[c]]
ρ). We prove

that all the abstract operators of Section 3 are monotonic w.r.t. �. This will
entail the thesis by induction on c, since ρV (A) � A and it is easy to check that
A1 � A2 entails freeV (A2) ⊆ freeV (A1) and nshV (A2) ⊆ nshV (A1).

Assume V ∈ ℘f (V) and A,A1, A2 ∈ AbsV such that A1 � A2.
We have trivially renameAbsV

x→n (A1) � renameAbsV
x→n (A2).

For restrictAbsV , consider l2 ⇒ r ∈ restrictAbsV
x (A2). Then l2 = l′2 \ X with

l′2 ⇒ r ∈ A2, (x, x) 6∈ l′2 and X as defined in Definition 4. Then there exists
l′1 ⇒ r ∈ A1 such that l′1 ⊆ l′2 ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l′2}. Since
(x, x) 6∈ l′2, we have (x, x) 6∈ l′1. Therefore, l

′
1 \X ⇒ r ∈ restrictAbsV

x (A1), and
l′1 \ X ⊆ l′2 ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l′2} \ X = (l′2 \X) ∪ {(v, v′) |
v, v′ ∈ V \ x, v 6= v′, (v, v) ∈ l′2 \X}, since (x, x) 6∈ l′2.

For expandAbsV , let l2 ⇒ r ∈ expandAbsV
n (A2) with l2 ⇒ r ∈ A2. Then there

exists l1 ⇒ r ∈ A1 with l1 ⊆ l2 ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l2} and
l1 ⇒ r ∈ expandAbsV

n (A1). If l2[n/?1][?1/?2] ⇒ r[n/?1][?1/?2] ∈ expandAbsV
n (A2)



with l2 ⇒ r ∈ A2, then there exists l1 ⇒ r ∈ A1 with l1 ⊆ l2 ∪ {(v, v′) | v, v′ ∈
V, v 6= v′, (v, v) ∈ l2}. Therefore, l1[n/?1][?1/?2] ⊆ l2[n/?1][?1/?2] ∪ {(v, v′) |
v, v′ ∈ V, v 6= v′, (v, v) ∈ l2}[n/?1][?1/?2] ⊆ l2[n/?1][?1/?2] ∪ {(v, v′) | v, v′ ∈
V ∪n, v 6= v′, (v, v) ∈ l2[n/?1][?1/?2]}. Since l1[n/?1][?1/?2] ⇒ r[n/?1][?1/?2] ∈
expandAbsV

n (A1), we have the thesis.
For ∪AbsV , consider l2l ⇒ r ∈ ∪AbsV (A2, A), with l2 ⇒ r ∈ A2 and l ⇒ r ∈

A. There exists l1 ⇒ r ∈ A1 with l1 ⊆ l2∪{(v, v
′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l2}.

Therefore, l1l ⊆ l2l ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l2} ⊆ l2l ∪ {(v, v′) |
v, v′ ∈ V, v 6= v′, (v, v) ∈ l2l}. Since l1l ⇒ r ∈ ∪AbsV (A1, A) and the same
argument can be used for the symmetrical case of the definition of ∪AbsV , we
have the thesis.

For ⋆AbsV , consider l1 · · · ln ⇒ r ∈ A2 ⋆
AbsV A, with r1 · · · rn ⇒ r ∈ A ∪ T

(T is the set of Definition 3), li ⇒ r′i ∈ A2 ∪ T and r′
i
⊆ ri for i = 1, . . . , n.

Then l′i ⇒ r′i ∈ A1 ∪ T with l′i ⊆ li ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ li}
and l′1 · · · l

′
n ⇒ r ∈ A1 ⋆

AbsV A with l′1 · · · l
′
n ⊆ l1 · · · ln ∪ {(v, v′) | v, v′ ∈ V, v 6=

v′, (v, v) ∈ l1 · · · ln}. Consider now l1 · · · ln ⇒ r ∈ A2 ⋆
AbsV A with r1 · · · rn ⇒

r ∈ A2 ∪ T , li ⇒ r′i ∈ A ∪ T and r′
i
⊆ ri. There exists l′ ⇒ r ∈ A1 ∪ T

such that l′ ⊆ r1 · · · rn ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ r1 · · · rn}. Given
k ∈ l′, whether k ∈ r1 · · · rn or k = (v, v′) with (v, v) ∈ r1 · · · rn. In both cases
there exists i, 1 ≤ i ≤ n, such that r′

i
⊆ ri ⊆ k, and we can select a set S

of natural numbers between 1 and n such that ∪i∈Sli ⇒ r ∈ A1 ⋆AbsV A and
∪i∈Sli ⊆ l1 · · · ln ⊆ l1 · · · ln ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l1 · · · ln}. The
other case of ⋆AbsV is symmetrical.

Given V ∈ ℘f (V) and two arrows l ⇒ r and l′ ⇒ r′, we write l ⇒ r � l′ ⇒ r′ if
and only if r = r′ and l ⊆ l′ ∪ {(v, v′) | v, v′ ∈ V, v 6= v′, (v, v) ∈ l′}. The relation
� turns out to be a well founded partial order. It is obvious that A � A′ if and
only if for each arrow a′ ∈ A′ there exists an arrow a ∈ A such that a � a′.

Proof (Proof of Proposition 2). Given an arrow a ∈ A, let us consider the set
of all the arrows b ∈ A with b � a, which we denote by ↓a. If A′ � A, the least
element of ↓a, namely

⋂

↓a has to be in A′. It turns out that Ā = {
⋂

(↓a) | a ∈ A}
is the least subset of A according to the � ordering. It is easy to check that
Ā = ρ1(A).

Now, we want to prove that γRep(ρ
1(A)) = γRep(A). It is enough to prove

that, given two arrows a and a′, if a � a′ then γRep(a) ⊆ γRep(a
′). If a � a′,

then a = l ⇒ r, a′ = l′ ⇒ r and γRep(l) ⊇ γRep(l
′). By properties of the linear

refinement, γRep(a) ⊆ γRep(a
′) follows.

Proof (Proof of Proposition 3). Given V ∈ ℘f (V), the map ρ2V , applied to
A ∈ AbsV , removes (v, v′) from the left hand side of l ⇒ r if and only if (v, v) ∈ l
and v 6= v′. Therefore it is reductive w.r.t. �. Moreover, dim(ρ2V (A)) ≤ dim(A)
and γRep(A) = γRep(ρ

2
V (A)). Indeed, given h ∈ HV , if h ∈ (v,v) then h is

ground and h ∈ (v,v′) for any v′ ∈ V .


