
Fundamenta Informaticae XX (2017) 1–25 1

IOS Press

Observational Completeness on Abstract Interpretation

Gianluca Amato and Francesca Scozzari
Dipartimento di Scienze

Università di Chieti-Pescara

Pescara, Italy

{amato,scozzari}@sci.unich.it

Abstract. In the theory of abstract interpretation, a domain is complete when abstract computations
are as precise as concrete computations. In addition to the standard notion of completeness, we
introduce the concept of observational completeness. A domain is observationally complete for
an observable π when abstract computations are as precise as concrete computations, if we only
look at properties in π. We prove that continuity of state-transition functions ensures the existence
of the least observationally complete domain and we provide a constructive characterization. We
study the relationship between the least observationally complete domain and the complete shell.
We provide sufficient conditions under which they coincide, and show several examples where they
differ, included a detailed analysis of cellular automata.

Keywords: Abstract interpretation, completeness, static analysis, cellular automata.

1. Introduction

Abstract interpretation [5, 6] is a general theory for approximating the behavior of a discrete dynamic
system. It has been applied to many different fields, such as program analysis, verification, model
checking and semantics hierarchies. Abstract interpretation allows us to observe many kinds of
properties, e.g., termination, types and security properties. The idea is to replace the formal seman-
tics of a system with an abstract semantics, computed over a domain of abstract objects. There are
many different methods to describe the semantics of a system. Most of them are based on a partially
ordered set (poset) 〈C,≤C〉 of states and a set F of monotone state-transition functions f : C → C.
The semantics S is defined as the (least) fixpoint of a semantic function F obtained as a composition

Address for correspondence: Gianluca Amato, Dipartimento di Scienze, viale Pindaro 42, I-65127 Pescara, Italy

2 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

any

pos zero neg

empty

Figure 1: The abstract domain Sign

of state-transition functions. The poset 〈C,≤C〉 is called concrete domain and S = lfpF is called the
concrete semantics.

An abstract interpretation is specified by the poset 〈A,≤A〉 of abstract objects. The abstract objects
describe the properties of the system we are interested in. The relationship between concrete and
abstract objects is formalized by a monotone concretization map γ : A→ C which, given a property
a ∈ A, yields the biggest concrete state c ∈ C which enjoys the property a. Therefore, a property a
is a correct approximation of a concrete state c when c ≤C γ(a).

For instance, consider the concrete domain ℘(Z) with the standard ordering given by inclusion,
and Sign = {empty, pos, neg, zero, any} ordered as depicted in Figure 1. The intuition is that
pos represents the set of (strictly) positive integers, zero represents the singleton {0}, while empty
represents the empty set of integers. This may be formalized by defining γ as follows: γ(empty) =

∅, γ(pos) = {n ∈ Z | n > 0}, γ(neg) = {n ∈ Z | n < 0}, γ(zero) = {0}, γ(any) = Z.

Often, it is possible to define a monotone abstraction map α : C → A which yields the largest
properties a enjoyed by a concrete object c, such that c ≤C γ(a) ⇐⇒ α(c) ≤A a. In the previous
example, the abstraction is given by α(c) =

∨
A{a ∈ A | c ≤C γ(a)}. For instance, α({−1,−2}) = neg

while α({−1, 0}) = any.

An abstract domain is given by the poset A of the abstract objects and the pair of maps 〈α, γ〉.
However, since γ is uniquely determined by α and viceversa, in the following we specify an abstract
domain just by giving α.

The goal of any abstract interpretation is to compute α(S), that is, to find out the properties enjoyed
by the semantics of the system. Instead of computing S (which, in general, is not feasible) and then
applying α, the idea is to replace, in the the definition of F , every state-transition function f with an
abstract counterpart f # : A → A, which must be correct. We say that f # is correct if, whenever a is
a correct approximation of c, then f #(a) is a correct approximation of f (c). This is equivalent to say
that any abstract computation f #(α(c)) approximates the corresponding concrete computation f (c),
i.e.:

α ◦ f ≤A→A f # ◦ α , (1)

where ≤A→A is the pointwise extension of ≤A. If we replace the state-transition functions in the
definition of F with suitable correct abstractions, we obtain a new semantic function F# and a new
abstract semantics S# = lfpF#, and the theory of abstract interpretation ensures that

α(S) ≤A S# . (2)

In particular, each state-transition function f has a best correct abstraction, denoted by f α, and
defined as f α = α ◦ f ◦ γ. We denote by Fα the semantic function obtained by replacing each
state-transition function f in F with f α, while Sα = lfpFα. Note that Fα is not necessarily the best
correct abstraction of F .

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 3

As an example of abstract state-transition function, consider inc : ℘(Z) → ℘(Z) such that inc(X) =

{n + 1 | n ∈ X}. The best correct abstraction of inc is

incα(a) =

empty if a = empty,

pos if a = zero or a = pos,

any otherwise.

Completeness

Generally speaking, the inequalities (1) and (2) are strict. This means that computing in the abstract
domain is (strictly) less precise than computing in the concrete one. For instance, α(inc(−1)) = zero

but incα(α(−1)) = any. When α ◦ f = f α ◦ α we say that the abstract domain is complete for the
function f . Intuitively, when this happens, the best correct abstraction f α perfectly mimics the
concrete function f . For example, given sq(X) = {x2 | x ∈ X}, the best correct abstraction is

sqα(a) =

pos if a = pos or a = neg,

a otherwise.

It follows that sq({−1,−2}) = {1, 4}, and its abstraction is α(sq({−1,−2})) = pos, meaning that the
square of any integer in {−1,−2} is positive. The same result may be obtained by first abstracting
{−1,−2} and then computing sqα, since sqα(α({−1,−2})) = sqα(neg) = pos. It is easy to show that,
for any set of integers X ∈ ℘(Z), it holds that sqα(α(X)) = α(sq(X)). Thus, the abstract domain Sign
is complete for the function sq.

Completeness enjoys many good properties. If an abstract domain α is complete for f and g, then it
holds that:

• α is complete for f ◦ g and f α ◦ gα = (f ◦ g)α;

• α(lfp f) = lfp(f α).

When α is complete for all the state-transition functions in F, then Sα = α(S), and one does not lose
precision by computing on the abstract domain.

In most cases, we are interested in properties expressed by an abstract domain π which is not precise
enough, that is, the abstract semantics Sπ does not coincide with π(S). Therefore, we need to refine
the abstract domain π and replace it with a new domain α such that π(S) may be recovered by Sα.
The domain α is the computational domain and π is the observational domain, since it contains all
the properties we want to observe. The abstract objects in α which do not belong to π are only used
to compute intermediate steps in order not to lose precision. Obviously, we want to keep α as small
as possible.

In the literature of abstract interpretation, the standard way of refining π in order to get α is to
compute the least domain which includes π and is complete for the state-transition functions. This
is called the complete shell of π, and may be constructively computed [15].

The Goal

In this paper, we show that the complete shell may not be the smallest abstract domain which enables
us to recover the property π(S). This is because a complete domain α never loses precision for any
observation of objects in α, i.e., Sα = α(S), while we may allow some loss in precision as long as

4 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

observations in π are not affected, i.e., we only require π(Sα) = π(S). This observation naturally
suggests another notion of completeness, which we call observational completeness. A domain α is
observationally complete for a set F of state-transition functions and an observational domain πwhen
every concrete computation may be approximated in α without losing precision over the properties
in π. We show that, when all the state-transition functions are continuous, the least observationally
complete domain exists and we provide a constructive characterization.

We study the relationship between observational and standard completeness. We prove that any
complete domain which contains π is also observationally complete for π, but the converse does not
hold. We compare the least observationally complete domain and the complete shell and prove that,
in the general case, the former is more abstract than the latter. This is illustrated by several examples.
In particular, we develop a static analysis of cellular automata and show an instance where the least
observationally complete domain is strictly more abstract than the complete shell.

We prove that, under the hypothesis of additivity of the state-transition functions, least observa-
tionally complete domains and complete shells coincide. In the meanwhile, we give an alternative
constructive characterization of complete shells which simplifies the original one.

Observational completeness compares the precision of a computational domain α to the precision of
the concrete domain. We generalize this notion by comparing the precision of α with the precision
of a fixed domain β, different from the concrete one. However, we show that the notion of least
observational complete domain cannot be generalized to this case and provide a partial solution with
the concept of observational equivalence. Two abstract domains are observationally equivalent for
the domain π if they have exactly the same precision on every abstract computation, when the results
are observed over π. It turns out that the least domain which is observationally equivalent to a given
α does exist, and can be recovered as a special case of observational completeness.

Plan of the Paper

The next section is devoted to presenting completeness and the motivations which led to the intro-
duction of observational completeness. In Section 3 we formally define the notion of observational
completeness and give a constructive characterization for the least observationally complete domain.
In Section 4 we study the relationship between observational completeness and standard complete-
ness. In Section 5 we provide an example of static analysis of cellular automata. In Section 6 we
generalize observational completeness and introduce observational equivalence. Finally, in Section 7
we compare observational completeness to other notions of completeness in the literature.

2. Completeness on Abstract Interpretation

In the abstract interpretation theory, abstract domains can be equivalently specified either by Galois
connections or by upper closure operators (ucos) [5]. When an abstract domain A is specified by a
Galois connection, i.e., a pair of abstraction and concretization maps 〈α, γ〉, then γ ◦ α ∈ uco(C) is
the corresponding uco on C. On the contrary, given an uco α, the corresponding Galois connection is
〈α, id〉. While Galois connections are closer to implementation, since they provide a representation
for abstract objects, ucos are more convenient for theoretical reasoning, expecially when comparing
abstract domains. In the rest of the paper, we will use ucos. Moreover, we assume that the concrete
domain C is a complete lattice, which is a standard hypothesis in the abstract interpretation theory.

An uco α on the concrete domain C is a monotone, idempotent (i.e., α(α(x)) = α(x)) and extensive
(i.e., α(x) ≥ x) operator on C. Each uco α on C is uniquely determined by the set of its fixpoints,

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 5

which is its image, i.e. α(C) = {x ∈ C | α(x) = x}, since α = λx.
∧
{y ∈ α(C) | x ≤ y}. Moreover, a

subset X ⊆ C is the set of fixpoints of an uco on C iff X is meet-closed, i.e. X =M (X) = {
∧

Y | Y ⊆
X}, with the proviso that

∧
∅ = >X . For any X ⊆ C,M (X) is called the Moore-closure of X. Often,

we will identify closures with their sets of fixpoints. This does not give rise to ambiguity, since one
can distinguish their use as functions or sets according to the context. It is well known that the set
uco(C) of all ucos on C, endowed with the pointwise ordering ⊆, gives rise to a complete lattice.
Intuitively, α ⊆ β means that α is more abstract than β (or β is more concrete than α). The most
abstract domain in uco(C) is {>C}, while the most concrete domain in uco(C) is C itself.

In order to simplify notation, we only consider the standard case when the computational ordering on
C corresponds to the approximation ordering. This is always the case when working with operational
semantics, while denotational semantics might need two different orderings [7]. However, the latter
would only require to modify the fixpoint preservation theorem (Theorem 3.2).

2.1. Completeness

The notion of completeness in abstract interpretation first appeared in Cousot and Cousot’s seminal
work [5]. An abstract domain α ∈ uco(C) is complete for a function f : C → C iff α ◦ f = α ◦ f ◦ α
holds. Mycroft [17] introduced the idea of refining abstract domains in order to ensure completeness.
Working in a predicate-based approach to abstract interpretation, he proposed to remove useless
objects from the abstract domain, inspired by algorithms for automata state minimization. This idea
has been fully developed in Giacobazzi et al. [15], which give a constructive characterization of
complete abstract domains, under the assumption of dealing with continuous concrete functions.
A function f : C → C is (Scott-)continuous if it preserves least upper bounds of chains in C,
i.e., f (

∨
B) =

∨
f (B) for any chain B ⊆ C. The goal is to build the least (i.e., most abstract)

domain in uco(C) which includes a given domain α and which is complete for a set F ⊆ C → C
of continuous state-transition functions, i.e., for each function in F. Giacobazzi et al. [15] define a
mapping RF : uco(C)→ uco(C) as follows:

RF(α) =M
(⋃

f∈F, a∈α max({x ∈ C | f (x) ≤ a})
)
, (3)

where max(X) is the set of maximal elements in X. They prove that the most abstract domain which
includes α and is complete for F is lfp(λη.M (α ∪ RF(η))). This domain is called the complete shell
of α for F and will be denoted by S α,F .

Completeness and its many variants has been subsequently applied in many different areas, such as
abstract model checking [12, 13], behavioural equivalences [18, 19], abstract domain refinements
[16, 21], and security [9, 11].

2.2. Towards Observational Completeness

We argue that the notion of completeness has been often misused in the literature, for a lack of a more
suitable concept. We consider an example from Giacobazzi and Ranzato [13], based on Cousot and
Cousot temporal abstract interpretation [8]. Cousot and Cousot introduce a temporal calculus called
x
µ∗-calculus, a past- and future-time extension of Kozen’s µ-calculus, endowed with a generalized
quantification over traces. The semantics of a temporal formula ~φ� is the set of traces making φ
true and is inductively defined on the structure of φ starting from a set of basic trace transformers.
If M is the set of traces generate by a transition system, it is possible to define a universal model
checking abstraction αstate : ℘(Traces)→ ℘(States) such that, for every linear formula φ, αstate(~φ�)
is the set of states which satisfy φ.

6 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

The state-based semantics ~φ�state is inductively defined by replacing each trace transformer with its
corresponding best abstraction. Abstract interpretation guarantees the obvious correctness property,
namely, αstate(~φ�) ⊇ ~φ�state

1, but the inequality is generally strict, essentially for the same reason
that LTL and CTL have incomparable expressive powers. This means that we cannot use a state-
based algorithm for universal model checking of linear x

µ∗-formulas.

Giacobazzi and Ranzato [13] observe that:

This opens the question whether it is possible to find some different approximation A
of the trace-based model checking problem which (1) is still related to states, namely A
refines or abstracts from sets of states, and (2) induces an approximated model checking
which is instead equivalent to trace-based model checking: for any s ∈ States and any
linear formula φ,

M, s |=A φ⇔ M, s |=trace φ . (*)

The above formula amounts to say that αstate(~φ�A) = αstate(~φ�), where ~φ�A is the abstract seman-
tics inductively defined from A. Giacobazzi and Ranzato [13] determine such an A by calculating
the complete shell of αstate, which is the most abstract domain αB including αstate and such that
~φ�B = αB(~φ�). They find that αB is essentially the powerset of traces, and therefore the only
refinement of the state-based semantics that induces a trace-complete model checking is the trace-
based semantics itself.

We argue that looking for complete domains is restrictive. There may be an intermediate domain
between states and traces which is not complete, but nonetheless satisfies (*). In other words, we
are not interested in the complete shell of αstate, but in the least domain which is observationally
complete for αstate. In this paper we introduce the machinery needed to compute least observationally
complete domains. As a consequence, we will be able to show that, in this case, the two abstractions
coincide.

3. Observational Completeness

In abstract interpretation, it is common that, in order to observe a property π with a good deal of
precision, we need to compute in a richer domain α ⊇ π. In the following, we call π the observational
domain and α the computational domain. In the rest of the paper, we assume given a complete lattice
C (the concrete domain), a set F ⊆ C → C of monotone functions and an uco π ⊆ C which represents
the set of observable properties.

A common problem is to find a domain α such that if we perform any computation on α and we
project over π, we obtain the same result of the concrete computation, projected over π. In order to
formalize this notion, we first need to define the concept of computation.

Definition 3.1. (Computation)
A finite, possibly empty, sequence ξ = 〈 f1, . . . , fn〉 of elements of F is called computation (over F).
For any domain α ∈ uco(C), we denote by ξα the function α ◦ f1 ◦ . . . ◦ α ◦ fn ◦ α. As a special case,
when ξ is the empty computation, we let ξα = α.

Note that, if id is the identity abstraction, then ξid = f1 ◦ . . .◦ fn. When it does not cause ambiguities,
we will use ξ to denote both the computation and the function ξid. We believe that a generalization
of the notion of computation to infinite sequences would be troublesome, since there is no standard

1Here we have ⊇ instead of ⊆ because the concrete and abstract domains are ordered by the superset ordering.

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 7

definition for infinite composition of functions. However, considering only finite computations is
not restrictive, since the interesting cases of infinite computations, generated by least fixpoints, are
covered by the fixpoint preservation theorem (Theorem 3.2).

We are now able to compare domains in terms of the precision of their computations. We say that a
domain α is more precise than a domain β if the result of any computation on α projected over π is
more precise than (it is approximated by) the result of the corresponding computation on β projected
over π.

Definition 3.2. (More Precise than)
We say that α is more precise than β (for computing F observing π), and we write it as α �πF β, when

πξα(c) ≤ πξβ(c)

for every computation ξ and c ∈ C.

When it does not cause ambiguities, we will write just � instead of �πF . It is easy to check that � is a
preorder, which may be viewed as a generalization of the standard ordering between ucos: if α ⊇ β
then α � β. Our notion is more general than the standard ordering since it allows us to compare two
different domains (α and β) w.r.t. their precision on a third domain (π), and does not require neither
α nor β to be in any relation with π. Due to the empty computation, if π = id then α � β iff α ⊇ β.

Our formal notion of precision suggests to define a corresponding notion of completeness. We say
that a domain α is observationally complete (for F and π) if any computation on α projected over π
gives the same result of the corresponding concrete computation, projected over π.

Definition 3.3. (Observational Completeness)
We say that a domain α is observationally complete (for F and π) if α is more precise than the
concrete domain, i.e., α �πF id.

When π = α, the above definition boils down to the standard notion of completeness of α for the set
of functions F.

Among all the observationally complete domains, we are interested in the least (most abstract) one
w.r.t. set inclusion, which will be denoted by σπ,F . In general, the least observationally complete
domain does not exist, as the following example shows.

Example 3.1. Let us consider the diagram on Figure 2, where the nodes are the elements of the
domain C = {>,⊥, a, b, c1, c2, . . . , ci, . . .}, solid and dotted edges represent the ordering on C and
dashed arrows represent a function f : C → C.

Let π = {>, a}, α = {>, a, b,⊥} ∪ {ci | i is even} and β = {>, a, b,⊥} ∪ {ci | i is odd}. It is easy
to check that both α and β are observationally complete. However, γ = α ∩ β = {>, a, b,⊥} is
not observationally complete, since, for the computation ξ = 〈 f 〉, we have that π(ξ(c1)) = a while
π(ξγ(c1)) = π(γ(f (γ(c1)))) = π(γ(f (a)) = >. �

As a key result we show that, if all the functions in F are continuous, the least observationally
complete domain exists. In some proofs we will make use of the Hausdorff’s maximality principle
[1]. We recall that a chain Y in a poset P is maximal (with respect to set inclusion) whenever for any
other chain Y ′ in P, Y ⊆ Y ′ implies Y = Y ′. The Hausdorff’s maximality principle says that every
chain in a poset P can be extended to a maximal chain in P.

8 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

>

a

VV

// b

hh

ci

77

c3

??

c2

DD

c1

GG

⊥
xx

Figure 2: No least observationally complete domain for π = {>, a}.

Theorem 3.1. If F is a set of continuous functions and π ∈ uco(C), then the least observationally
complete domain (for F and π) is

σπ,F =M
(⋃
{max{x ∈ C | ξ(x) ≤ a} | ξ computation and a ∈ π}

)
.

Proof:
To ease notation, in this proof we will write σ in place of σπ,F . First of all, we show that σ is
observationally complete. We prove, by induction on the length of ξ, that ξ(x) ≤ a implies ξσ(x) ≤ a
for each computation ξ and a ∈ π. If |ξ| = 0, then ξ(x) = x and ξσ(x) = σ(x). Note that σ ⊇ π since if
a ∈ π then a =

∨
{x ∈ C | x ≤ a}. Hence x ≤ a implies σ(x) ≤ a. Now assume |ξ| = i + 1. If ξ(x) ≤ a,

consider the poset C′ = {c ∈ C | ξ(c) ≤ a} and the chain {x} ⊆ C′. By Hausdorff’s maximality
principle there exists a maximal chain Y ⊇ {x} which is contained in C′. Let y =

∨
Y . By continuity

of ξ, we have that ξ(y) ≤ a. Since Y is a maximal chain in C′, then y ∈ max C′. Moreover, by
definition of σ we have that y ∈ σ. It follows that ξ(σ(x)) ≤ ξ(y) ≤ a. If ξ = ξ′ · f , we have that
ξσ(x) = ξ′σ(f (σ(x))) ≤ a since ξ′(f (σ(x))) = ξ(σ(x)) ≤ a and the inductive hypothesis.

Now we show that σ is the least observationally complete domain. Assume, without loss of general-
ity, that v ∈ max{x ∈ C | ξ(x) ≤ a} for some computation ξ and a ∈ π. By continuity of functions in
F and by the Hausdorff’s maximality principle, we have that ξ(v) ≤ a. Let α be a domain such that
v < α. Then, ξ(α(v)) � a since α(v) > v and by definition of v. Hence, also ξα(v) � a, which means
that α is not observationally complete. ut

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 9

The hypothesis of continuity for state-transition functions is absolutely non-restrictive, since we are
assuming that the approximation ordering of C corresponds to the computational ordering, and con-
tinuity is a standard requirement of semantic functions. When the two orderings differ and continuity
does not hold for the approximation ordering, we may move to a collecting semantics with additive
state-transition functions [7].

Theorem 3.2. (Fixpoint Preservation)
Let α be observationally complete for the set of continuous functions F and π. Given a computation
ξ and c ∈ C such that ξ(c) ≥ c, we have that

π(lfpc ξ) = π(lfpc ξα) ,

where lfpc f is the least fixpoint of f bigger than c.

Proof:
Remember that lfpc ξ =

∨
i<ω ξ

i(c) and lfpc ξα =
∨

i<ω ξ
i
α(c). It clearly holds that π(lfpc ξ) ≤

π(lfpc ξα), since α is extensive. We now show the other direction. Since π is an uco, it is com-
plete for arbitrary lubs [6]. It follows that:

π
(∨

i<ω ξ
i
α(c)

)
= π

(∨
i<ω π(ξi

α(c))
)
.

Since α is observationally complete for F and π, then

π
(∨

i<ω π(ξi
α(c))

)
= π

(∨
i<ω π(ξi(c))

)
,

which is equivalent to π
(∨

i<ω ξ
i(c)

)
. ut

The previous theorem allows us to safely approximate the concrete semantic function F (which is
ξid for some computation ξ) with ξα, without losing precision on π: in other words, the abstract
semantics projected over π is equal to the concrete semantics projected over π, i.e., π(S) = π(lfp ξ) =

π(lfp ξα) = π(Sα).

3.1. A Constructive Characterization

If we look for an explicit representation of the least observationally complete domain using the
characterization given in Theorem 3.1, we need to find out the set max{ξ(x) | x ≤ a} for each
computation ξ and a ∈ π. This is in general difficult to achieve, even in the case when C is finite.
Therefore, we present an alternative constructive characterization which works iteratively and does
not require to compute the composition of the functions in F. This characterization is similar to the
one given in [15] for the complete shell.

Definition 3.4. (Maximal preimage)
Given S ∈ ℘(C) and a function f : C → C, we denote by f ∗(S) ∈ ℘(C) the maximal preimage of S
under f , defined as

f ∗(S) = max f −1(↓ S) ,

where ↓ S is the downward closure of S , i.e., the set {x ∈ C | ∃a ∈ S .x ≤ a}. When S is the singleton
{a}, we will write f ∗(a) in place of f ∗(S).

10 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

Example 3.2. Consider the concrete domain
C = {>, a, b, c, d,⊥} and the function f depicted
in Figure 3. We consider the observable domain
π = {>, a} and compute f ∗(a). By definition,
it is given by max f −1(↓{a}) = max{x ∈ C |

f (x) ≤ a} = {b, c}. Intuitively, it means that we
need to consider the points b and c if we want to
observe the computation f on π without losing
precision. Most importantly, the fact that both b
and c are in the preimage of a, suggests us that
we do not need to distinguish between these two
points. Formally, if we know that either x ≤ c
or x ≤ b, we also know that π(f (x)) ≤ a, even
if we do not know which of the two inequal-
ities holds. In fact, if we compute f ∗({b, c}),
we find out that f −1(↓{b}) = {b, d,⊥}, while
f −1(↓{c}) = {⊥}. But we only need the maxi-
mal elements of f −1(↓{b}) ∪ f −1(↓{c}), which is
the singleton {b}. Note that, in this case, we do
not select any point in the preimage of c. But this
choice does not lose precision. In fact, any com-
putation starting from ⊥ (the only object in the
preimage of c) will converge towards b, and thus
⊥ is useless for observing a. �

>
��

a

VV

b
%%

c

hh

d

WW

⊥

HH

Figure 3: Examples 3.2 and 4.2

This idea, however, only works if f ∗(S) is a faithful representation of f −1(↓ S), i.e., if ↓ f ∗(S) =

↓max f −1(↓ S) = f −1(↓ S). In the general case, ↓max U , U. However, if U is Scott-closed, i.e., it
is downward closed and every chain in U has a least upper bound, then the equality holds.

Lemma 3.1. Given U ∈ ℘(C), if U is Scott-closed, then ↓max U = U.

Proof:
It is immediate to check that, if U is downward closed, then ↓max U ⊆ U. On the converse, given
x ∈ U, consider a maximal chain V in the set of all the elements of U bigger than x (which exists by
Hausdorff’s maximal principle). Then, since U is Scott-closed,

∨
V ∈ U. Since V is maximal, v is

maximal too, i.e., v ∈ max U and x ∈ ↓max U. ut

Lemma 3.2. If U ∈ ℘(C), ↓U is Scott-closed and f1, f2 : C → C are two continuous functions,
then (f1 ◦ f2)∗(U) = f ∗2 (f ∗1 (U)).

Proof:
By Lemma 3.1 and since preimages of Scott-closed sets are Scott-closed, we have that f ∗2 (f ∗1 (U)) =

max f −1
2 (↓max f −1

1 (↓U)) = max f −1
2 (f −1

1 (↓U)) = (f1 ◦ f2)∗(U). ut

Using the concept of maximal preimage, we may rewrite RF in Equation 3 as follows:

RF(α) =M
(⋃

f∈F, a∈α f ∗(a)
)
. (4)

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 11

The RF operator takes subsets of C into subsets of C: it computes the maximal preimage of every
element in its argument and put all the results together. We now define a variant of RF which works
over subsets of subsets of C: at each step it takes a subset of C, computes the maximal preimage,
and collect all these results without joining them together.

Definition 3.5. Given a set F of continuous functions, the refinement operator

ṘF : ℘(℘(C))→ ℘(℘(C))

is given by
ṘF(H) = { f ∗(S) | f ∈ F, S ∈ H} .

Note that when H ∈ ℘(℘(C)) is a set of singletons, i.e. H = {{a1}, {a2}, . . .}, we have that
⋃
ṘF(H) =

RF (
⋃

H) = RF({a1, a2, . . .}).

The previous definition is the key point which allows us to keep together objects which have been
generated by the same property a ∈ π and the same computation. Intuitively, working with sets of
sets of object, keeps tracks of the history of objects.

Theorem 3.3. (Constructive characterization)
Given a set F of continuous functions and an observable domain π, the least observationally complete
domain for F and π is

σπ,F =M
(⋃
{S | i < ω, S ∈ Ṙi

F(Hπ)}
)
,

where Hπ = {{a} | a ∈ π}.

Proof:
First of all, if ξ = 〈 f1, . . . , fn〉 is a computation and c ∈ C, then max{x ∈ C | ξ(x) ≤ c} = ξ∗(c). We
may rewrite the characterization of σπ,F given in Theorem 3.1 as follows:

σπ,F =M
(⋃
{ξ∗(a) | ξ computation and a ∈ π}

)
.

Therefore, it is enough to prove that, for each i < ω,

Ṙi
F(Hπ) = {ξ∗(a) | ξ computation of length i and a ∈ π} ,

The proof is by induction. For i = 0, we have that Ṙ0
F(Hπ) = Hπ by definition. The only computation

of length 0 is the empty computation, which corresponds to the identity map. Hence {id∗(a) | a ∈
π} = {{a} | a ∈ π} = Hπ.

If i = j+1, we have that Ṙi
F(Hπ) = ṘF({ξ∗({a}) | ξ computation of length j and a ∈ π}) = { f ∗(ξ∗(a)) |

f ∈ F, ξ computation of length j and a ∈ π}. Every computation ξ̄ of length i is of the form ξ · f with
f ∈ F and ξ of length j. By Proposition 3.2, and since ↓{a} is Scott-closed, we have that ξ̄∗(a) =

f ∗(ξ∗(a)), hence Ṙi
F(Hπ) = {ξ̄∗(a)) | ξ̄ is a computation of length i and a ∈ π}, which concludes the

proof. ut

Example 3.3. Consider the concrete domain C = {>, a, b, c, d,⊥} depicted in Fig. 3. Assume π =

{>, a}. Therefore Hπ = {{>}, {a}}. At the first step we compute Ṙ1
F({{>}, {a}}) = { f ∗(>), f ∗(a)}. It is

immediate to see that f ∗(>) = max f −1(C) = {>} (it holds for any function f) and

f ∗(a) = max{x ∈ C | f (x) ≤ a} = max{b, c, d,⊥} = {b, c} .

12 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

At the second step, we need to compute Ṙ2
F({{>}, {a}}) = ṘF({{>}, {b, c}}) = { f ∗(>), f ∗({b, c})}. We

have that:

f ∗({b, c}) = max(f −1(↓{b}) ∪ f −1(↓{c})) = max({b, d,⊥} ∪ {⊥}) = max{b, d,⊥} = {b} .

Therefore Ṙ2
F({{>}, {a}}) = {{>}, {b}}. With another step we get Ṙ3

F({{>}, {a}}) = {{>}, {b}} =

Ṙ2
F({{>}, {a}}). We may stop the iteration and

⋃
{S | i < ω, S ∈ Ṙi

F(Hπ)} = {>, a, b, c}. Now we
compute the Moore-closureM({>, a, b, c}) = {>, a, b, c, d} and obtain the least observationally com-
plete domain (for f and π). It is worth noting that the object ⊥ is not included in this domain, even if
it is a maximal element of f −1(↓{c}). This is because we only need to consider the maximal elements
in f −1(↓{b}) ∪ f −1(↓{c}), since both b and c are generated by the same computation and object a in
the observable π (see Example 3.2). �

4. Observational Completeness and Complete Shell

In this section we study the relationship between observational completeness and the standard notion
of completeness, in particular between the least observationally complete domain and the complete
shell.

It is immediate to show that if α is complete for F and α ⊇ π, then α is observationally complete for
F and π. In particular, α is observationally complete for F and α. We wonder whether:

a) every observationally complete domain for F and π is complete for F;

b) the least observationally complete domain for F and π is the complete shell of π for F.

With respect to the first question, note that if α is observationally complete for F and π, every β ⊇ α
is still observationally complete. This does not hold for completeness: α may be complete for F,
although some β ⊇ α may not. This is because in the observational completeness the observable
properties remain fixed when we refine, while for standard completeness the notion of observational
domain coincides with the computational domain.

Example 4.1. Consider the concrete domain C = {>, a, b, c,⊥} depicted in Fig. 4a. The domain
α = {>, a, b} is complete for the function depicted in the diagram, hence it is also observationally
complete for π = {>, a}. However, the domain {>, a, b, c} is observationally complete for π but it is
not complete. �

Since completeness implies observational completeness, we may argue that the least observationally
complete domain for F and π coincides with the complete shell of π. In the general case this is not
true and the least observationally complete domain is more abstract than the complete shell. The
next examples illustrate this point.

Example 4.2. Consider the concrete domain C = {>, a, b, c, d,⊥} depicted in Fig. 3. Assume π =

{>, a}. If we build the complete shell of π for f , in the first step we include the elements b and c,
since they are the maximal x ∈ C such that f (x) ≤ a, and the element d since it is the meet of b and c.
At the second step, we also include ⊥, which is the greatest element x ∈ C such that f (x) ≤ c. Thus
the complete shell of π for f is the whole concrete domain C. Note that, in each step, we consider
all the elements generated in the previous steps, forgetting the observational domain π which started
the process. However, from Example 3.3 we know that the domain α = C \ {⊥} is observationally
complete, and thus it has the same precision of C when observing π, i.e. π f i(x) = π(α fα)i(x) for

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 13

>
xx

a

VV

b
zz

c

VV

⊥

VV

(a) Example 4.1

>
��

a

VV

c1
''

b1

hh

c2

''

b2

ww
⊥EE

(b) Example 4.3

Figure 4: Counterexamples

every x ∈ C and i ∈ N. When x ∈ α, the stronger property f i(x) = (α fα)i(x) holds. When x = ⊥,
it is not true that f i(⊥) = (α fα)i(⊥): for example it does not hold for i = 1. However, for each i,
π f i(⊥) = a = π(α fα)i(⊥), since α is observationally complete. �

Example 4.3. Consider the concrete domain C = {>, a, b1, b2, c1, c2,⊥} depicted in Fig. 4b. If
π = {>, a}, the complete shell is the entire domain C. However, c2 is useless when observing π,
since the least observationally complete domain is C \ {c2}. �

4.1. The Case of Additive Functions

When all the functions in F are (completely) additive, the least observationally complete domain and
the complete shell coincide. However, in order to prove this result, we need to give an alternative
construction for the complete shell, more similar to the construction for the least observationally
complete domain. We replace the standard refinement operator RF : uco(C) → uco(C) given in
Section 2 with a new operator R̂F : ℘(C) → ℘(C) simply obtained by removing the Moore-closure
from the definition of RF . Therefore, we define

R̂F(X) =
⋃

f∈F, a∈X

f ∗(a) .

Note that R̂F(X) may not be an uco even if X is an uco, and that RF(X) =M
(
R̂F(X)

)
.

Lemma 4.1. For every set F of continuous functions and every X ∈ ℘(C), we have

M
(
R̂F(M (X))

)
=M

(
R̂F(X)

)
.

Proof:
It is immediate by monotonicity of R̂F andM () thatM

(
R̂F(M (X))

)
⊇ M

(
R̂F(X)

)
. For the other

14 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

direction, sinceM () is an uco on ℘(C), it is enough to prove that R̂F(M (X)) ⊆ M
(
R̂F(X)

)
. Given

y ∈ R̂F(M (X)), we have y ∈ f ∗(a) and a =
∧

i∈I ai where f ∈ F and {ai}i∈I ⊆ X.

For each i ∈ I, consider the set Yi = f ∗(ai) ⊆ R̂F(X). Since f (y) ≤ a ≤ ai and f is continuous,
there exists yi ∈ Yi such that yi ≥ y. We may find yi as the least upper bound of a maximal chain
in Yi containing y, which exists by Hausdorff’s maximality principle. It is enough to prove that
y =

∧
i∈I yi. By definition of the yi’s, we have y ≤

∧
i∈I yi. Moreover, f (

∧
i∈I yi) ≤ f (yi) ≤ ai hence

f (
∧

i∈I yi) ≤ a. Since y is a maximal element such that f (y) ≤ a, this means that y =
∧

i∈I yi. ut

Theorem 4.1. For every set F of continuous maps, the complete shell of π for F is given by

S π,F =M
(
R̂ωF(π)

)
.

Proof:
We recall that the complete shell of π for F may be computed as:

S π,F =M (Gω({>C})) ,

where G : uco(C)→ uco(C) is the map

G(α) =M (π ∪ RF(α)) =M
(
π ∪ R̂F(α)

)
.

It is enough to prove that M
(
R̂ωF(π)

)
is a subset of S π,F and a fixpoint of G. In order to prove

M
(
R̂ωF(π)

)
⊆ S it is enough to show that R̂i

F(π) ⊆ Gi+1({>C}) for every i < ω. The proof is by

induction over i. For i = 0, we have R̂0
F(π) = π ⊆ G({>C}). If i = j + 1, R̂i

F(π) = R̂F(R̂ j
F(π)) ⊆

R̂F(Gi({>C})) ⊆ G(Gi({>C})) = Gi+1({>C}). Now we prove thatM
(
R̂ωF(π)

)
is a fixpoint of G. We

have that

G
(
M

(
R̂ωF(π)

))
=M

(
π ∪ R̂F

(
M

(
R̂ωF(π)

)))
=M

(
π ∪M

(
R̂F

(
M

(
R̂ωF(π)

))))
=M

(
π ∪M

(
R̂F(R̂ωF(π))

))
=M

(
π ∪

⋃
{R̂i+1

F (π) | i < ω}
)

=M
(
R̂ωF(π)

)
.

This concludes the proof. ut

This new construction, which is the key result to prove Theorem 4.2, is interesting in itself, since
it sheds a new light on the construction of the complete shell. It shows that it is not necessary to
compute the Moore-closure at each step of the refinement, but it suffices to compute it at the end.

We recall that a function f : C → C is (completely) additive if it preserves arbitrary least upper
bounds, i.e., f (

∨
B) =

∨
f (B) for any B ⊆ C.

Theorem 4.2. If F is a set of completely additive functions, the complete shell S π,F of π for F is
the least observationally complete domain σπ,F for F and π.

Proof:
By Theorems 3.3 and 4.1, we have that

S π,F =M
(
R̂ωF(π)

)
, σπ,F =M

(⋃
ṘωF(Hπ)

)
.

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 15

Note that, if f is completely additive, f ∗(y) is a singleton for any y ∈ C. Hence, if H ∈ ℘(℘(C))
is a set of singletons, like Hπ, we have that ṘF(H) is a set of singletons. Hence, Ṙi

F(Hπ) is a set of
singletons for each i < ω. This allows us to prove that R̂i

F(π) = ∪Ṙi
F(Hπ) for every i ≤ ω. The

proof is by induction on i. For i = 0, we have R̂0
F(π) = π = ∪Hπ = ∪Ṙ0

F(Hπ). If i = j + 1, we
have that R̂i

F(π) = R̂F(R̂ j
F(π)) = R̂F(

⋃
Ṙ

j
F(Hπ)) Since Ṙ j

F(Hπ) is a set of singletons, we have that
R̂F(

⋃
Ṙ

j
F(Hπ)) =

⋃
ṘF(Ṙ j

F(Hπ)) = ∪Ṙi
F(Hπ). The case i = ω is trivial. This concludes the proof.

ut

It is worth noting that, even if F is a set of additive functions, this theorem does not imply that
observational completeness and completeness are the same thing: in Example 4.1 the function f is
additive, yet there is an observationally complete domain which is not complete.

Example 4.4. (Temporal abstract interpretation)
We may now come back to the question in Section 2.2. Giacobazzi and Ranzato [13] show that,
even considering the two connectives ∪ and x alone, the complete shell is the same as for the entire
logic. Since these operators are additive, their complete shell corresponds to the least observationally
complete domain. Hence, there is no intermediate refinement of states which does not loose precision
w.r.t. the trace semantics when observing properties of states only.

5. An Example

In this section, we present a detailed example of static analysis of cellular automata (CA), and we
show a case where the least observationally complete domain differs from the complete shell. A
cellular automaton consists of a grid of cells, and each cell can be in a finite number of states. In
our example, we consider one-dimensional CA, where each cell can be in four different states: ⊥
(empty),� (right-directed),� (left-directed) and�� (collision). Intuitively, the state� can be
thought of as a right-directed entity in a cell, and the state�� as a collision of two (right-directed
and left-directed) entities. A configuration (at time t) assigns a state to each cell. For instance:

i−3 i−2

�

i−1 i

��

i+1 i+2 i+3

is a configuration where the cell in position i − 2 is in the state� and the cell i is in the state��.
All the other cells are in the empty state. To improve readability, we prefer to draw them empty
instead of using the symbol ⊥. More formally, if States = {⊥,�,�,��} is the set of states, a
configuration is a map Z→ States.

A cellular automaton evolves from time t to time t +1 according to some fixed rules. In our example,
we consider two rules: the moving rule and the collision rule. The moving rule applies when the
state of a cell is either� or�. Starting from the configuration at time t:

i−3 i−2 i−1 i

�

i+1 i+2 i+3

16 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

the configuration at time t + 1 will be:

i−3 i−2 i−1 i i+1

�

i+2 i+3

Symmetrically for�, where the affected cell is i − 1. The collision rule applies when the state of a
cell is��. Starting from a configuration at time t:

i−3 i−2 i−1 i

��

i+1 i+2 i+3

the configuration at time t + 1 is:

i−3 i−2

�

i−1

�

i i+1

�

i+2

�

i+3

Intuitively, the collision generates two new entities. The effects of the two rules sum up. For instance,
from the configuration at time t:

i−3 i−2

�

i−1 i

��

i+1 i+2 i+3

we get at time t + 1:

i−3 i−2

�

i−1

��

i i+1

�

i+2

�

i+3

Often, cellular automata only have a finite number n of cells. In this case, it is generally assumed
that the grid space is circular and a configuration becomes a map Zn → States, where Zn is the set of
integers modulo n. We denote the set of all the configurations by Confn. For instance, in a cellular
automaton with 7 cells and configuration at time t:

0 1 2 3 4 5 6

�

we have, at time t + 1, the configuration:

0

�

1 2 3 4 5 6

The rules are typically formalized by a function which computes the new state of a cell in terms of
the current state of the cell and of some of its neighbors. The function for updating the state of a cell
is the same for each cell, does not change over time, and is applied to the whole grid simultaneously.

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 17

��

� �

⊥

Figure 5: Ordering on States

The updating function f : Confn → Confn corresponding to our rules is the following:

f (c)(i) =

�� if

 (c(i − 1) ∈ {�,��} OR c(i − 2) =��)
AND (c(i + 1) ∈ {�,��} OR c(i + 2) =��)

� otherwise, if c(i − 1) ∈ {�,��} OR c(i − 2) =��

� otherwise, if c(i + 1) ∈ {�,��} OR c(i + 2) =��

⊥ otherwise,

where c ∈ Confn and i ∈ Zn is a position.

5.1. Static Analysis of Cellular Automata

The choice of the concrete domain depends on the properties we want to analyze. Here we are
interested in properties of the kind: “the cell i is empty”, “the cell i does not contain a right-directed
entity”, “every cell whose index is odd does not contain a left-directed entity“. We endow the set
States with the ordering ≤s depicted in Figure 5, and we lift ≤s pointwise to the ordering ≤c on
configurations. This allows us to formalize the above properties. For instance, the property “starting
from the configuration c, the cell 0 will always be empty”, is formalized by

∀ j < ω, f j(c) ≤c c′ ,

where c′ is the configuration:

0 1

��

2

��

3

��

4

��

5

��

6

��

Hence, in our settings, Confn plays the role of the concrete domain.

We compute the least observationally complete domain and the complete shell, in the case of a
simple CA with 3 cells. Since f is continuous w.r.t. ≤c, both domains exist and we show a case
where they are different (due to the fact that f is not additive).

To simplify the notation, a configuration c ∈ Conf3 will be denoted by the triple 〈c(0), c(1), c(2)〉.
We consider the observable domain π = {〈��,��,��〉, 〈��,�,�〉}, which corresponds to
the property that the cells in position 1 and 2 can be only in the states ⊥ or �, i.e., they cannot
contain any left-directed entity.

In order to carry on the constructions given in Theorems 3.3 and 4.1, we need to compute f ∗. Al-
though would be theoretically possible to use the definition of f ∗ as an algorithm, this would require

18 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

a long search in the space of all the configurations. However, it is possible to compute f ∗ with a
simpler method. We first define f ∗ on the configurations where two cells are in the state��. The
state of the third cell will enforce some constraints on the configurations c′ such that f (c′) ≤c c. For
example, given c = 〈��,��,�〉, the state� forbids the state� in position 0 at the previous
time. This may be formalized as follows:

f ∗(〈s,��,��〉) =

{〈��,��,��〉} if s =��,

{〈��,�,�〉, 〈��,�,�〉} if s =�,

{〈��,�,�〉, 〈��,�,�〉} if s =�,

{〈��,�,�〉} if s = ⊥.

The definitions for the cases when the state s is in the positions 1 or 2 are the obvious permutations
of the above definition. If c is a generic configuration, the constraints which originate by the different
cells of c sum up, hence we may define

f ∗(c) = max (f ∗(〈c(0),��,��〉) ∧c f ∗(〈��, c(1),��〉) ∧c f ∗(〈��,��, c(2)〉)) ,

where ∧c is the greatest lower bound of configurations according to the ordering ≤c, applied point-
wise to sets of configurations. Finally, f ∗(S) = max

⋃
c∈S f ∗(c).

For instance, given the configuration c = 〈�,�,�〉, we have

f ∗(〈�,��,��〉) = {〈��,�,�〉, 〈��,�,�〉}

f ∗(〈��,�,��〉) = {〈�,��,�〉, 〈�,��,�〉}

f ∗(〈��,��,�〉) = {〈�,�,��〉, 〈�,�,��〉}

hence f ∗(c) = {〈⊥,�,�〉, 〈⊥,�,�〉}. In the same way, we have f ∗({〈�,�,�〉}) =

{〈�,�,�〉} and therefore

f ∗({〈�,�,�〉, 〈�,�,�〉}) = max{〈⊥,�,�〉, 〈⊥,�,�〉, 〈�,�,�〉}

= {〈⊥,�,�〉, 〈�,�,�〉} .

Now, using f ∗, we compute the least observationally complete domain for f and π, defined as

M
(⋃{

S | i < ω, S ∈ Ṙi
{ f }({{〈��,��,��〉}, {〈��,�,�〉}})

})
We now show the iterates of Ṙ{ f }. For the sake of conciseness, we will omit the configuration
>c = 〈��,��,��〉 since f ∗(>c) = {>c}.

Ṙ0
{ f }({{〈��,�,�〉}}) = {{〈��,�,�〉}}

Ṙ1
{ f }({{〈��,�,�〉}}) = {{〈�,�,�〉, 〈�,�,�〉}

Ṙ2
{ f }({{〈��,�,�〉}}) = {{〈⊥,�,�〉, 〈�,�,�〉})
Ṙ3
{ f }({{〈��,�,�〉}}) = {{〈�,⊥,⊥〉, 〈�,�,�〉})
Ṙ4
{ f }({{〈��,�,�〉}}) = {{〈⊥,�,⊥〉, 〈�,�,�〉})
Ṙ5
{ f }({{〈��,�,�〉}}) = {{〈⊥,⊥,�〉, 〈�,�,�〉})
Ṙ6
{ f }({{〈��,�,�〉}}) = Ṙ3

{ f }({{〈��,�,�〉}})

Since Ṙ6
{ f }({{〈��,�,�〉}}) = Ṙ3

{ f }({{〈��,�,�〉}}), we cannot generate any new point and
we may stop the computation. It follows that:

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 19

σπ,{ f } =M{〈��,��,��〉 〈��,�,�〉, 〈�,�,�〉, 〈�,�,�〉,

〈⊥,�,�〉, 〈�,⊥,⊥〉, 〈⊥,�,⊥〉, 〈⊥,⊥,�〉}

= {〈��,��,��〉 〈��,�,�〉, 〈�,�,�〉, 〈�,�,�〉,

〈⊥,�,�〉, 〈�,⊥,⊥〉, 〈⊥,�,⊥〉, 〈⊥,⊥,�〉,

〈�,⊥,�〉, 〈⊥,�,⊥〉, 〈⊥,⊥,⊥〉} .

We now show that the complete shell of π for { f } is strictly more concrete than the least observation-
ally complete domain.

R̂0
{ f }(π) = π

R̂1
{ f }(π) = {〈��,��,��〉, 〈�,�,�〉, 〈�,�,�〉}

R̂2
{ f }(π) = {〈��,��,��〉, 〈⊥,�,�〉, 〈⊥,�,�〉, 〈�,�,�〉}

Note that, the object 〈⊥,�,�〉 does not appear in the least observationally complete domain.
In fact, it is generated by f ∗({〈�,�,�〉} = {〈⊥,�,�〉, 〈⊥,�,�〉}. But this object is
useless, since f ∗({〈�,�,�〉}) = 〈�,�,�〉, but 〈⊥,�,�〉 ≤C 〈�,�,�〉 and they
are generated by the same object 〈��,�,�〉 at the same iteration. This result agrees with our
intuition. In fact, since we are interested in observing the property that the cells 1 and 2 cannot
contain the entity�, it follows that we are not interested in distinguish whether the cell 0 contains
an entity�, as long as it cannot cause collisions, since it does not affect the observable property in
any future time.

For the sake of completeness, the complete shell is given by:

S π,{ f } = σπ,{ f } ∪ {〈⊥,�,�〉, 〈�,⊥,⊥〉, 〈�,�,⊥〉, 〈⊥,⊥,�〉} .

6. Observational Equivalence

The least observationally complete domain is generally quite “big”, i.e., its size is comparable with
that of the concrete domain. Most of the time, if C is infinite, the least observationally complete
domain is infinite, too. It turns out that completeness is a tool which is well suited for compar-
ing different semantics of a dynamic system (see, for example, [2, 13]) but not so much for static
analysis.

Often, in the latter case, a computational domain α is already known, but it may be computationally
too expensive. Therefore, we look for a different computational domain which is simpler, yet more
precise than α. In other words, we want to compare the precision of abstract domains with reference
to the computational domain α, instead of the concrete domain. Formally, we look for the least
abstract domain β such that β �πF α. In the general case, this problem has no solution.

Example 6.1. Consider the concrete domain C = {>, a, b,⊥} depicted in Figure 6, the observable
π = {>, a} and the computational domain α = {>, a,⊥}. It is immediate to see that both α and
β = {>, a, b} are more precise then α when observing π. However, their intersection α ∩ β = {>, a}
is strictly less precise than α. Therefore, the problem has no solution in this case. Anyway, one may
prefer β to α, since β is more precise than α in observing π (while the opposite is not true). �

20 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

>
xx

a

VV

b
zz

⊥
xx

Figure 6: Counterexample

It is worth noting that, in Example 6.1, the function f is (completely) additive. This prevents us from
finding a suitable condition on f which guarantees the existence of such a least domain.

Given an observable π and a domain α, the previous example shows that, in general, there are several
minimal domains β such that β �πF α. It is possible to choose among those β’s on the base of several
criteria, such as precision or size. A sensible choice may be to restrict the search space to the
abstractions of α. We look for the least β ⊆ α (if it exists) such that β �πF α. This domain exists
when α is continuous, and may be obtained using the definition of least observationally complete
domain, by simply considering α as the concrete domain.

Theorem 6.1. Given a continuous2 domain α, an observable domain π ⊆ α and a set of continuous
functions F, let Fα = { f α : α→ α | f ∈ F}. The least abstract domain β ⊆ α such that β �πF α is the
least observationally complete domain σπ,Fα

.

Proof:
Since α is continuous, then each f α is continuous too, for any f ∈ F. Thus, we may apply The-
orem 3.1 by considering α as the concrete domain and Fα as the set of functions. As a result,
σπ,Fα

is the least abstract domain β ⊆ α such that β �πFα
α. We first show that σπ,Fα

�πF α. For
each computation ξ = 〈 f1, . . . , fn〉 in F and c ∈ C, we have that πσπ,Fα

f1 . . . σπ,Fα
fnσπ,Fα

(c) =

πσπ,Fα
α f1 . . . σπ,Fα

α fnσπ,Fα
α(c) since σπ,Fα

⊆ α. Moreover, πσπ,Fα
α f1 . . . σπ,Fα

α fnσπ,Fα
α(c) ≤

πα f1 . . . α fnα(c) since σπ,Fα
is observationally complete for Fα and π.

We now show that for any β ⊆ α such that β �πF α, then it holds that σπ,Fα
⊆ β. We prove that β �πFα

α. For each computation ξ = 〈α f1, . . . , α fn〉 in Fα and c ∈ C, we have that πβ(α f1) . . . β(α fn)β(c) =

πβ f1 . . . β fnβ(c) since β ⊆ α. Moreover, πβ f1 . . . β fnβ(c) ≤ πα f1 . . . α fnα(c) since β �πF α. This
shows that β �πFα

α. Since σπ,Fα
is, by definition, the least abstraction of α which is more precise

than α for Fα and π, it immediately follows that σπ,Fα
⊆ β. ut

Actually, the domain σπ,Fα
enjoys a stronger characterization, since it is the least domain which is

exactly as precise as α, among all the domains in uco(C).

Definition 6.1. (Observational Equivalence)
Two domains α and β are observationally equivalent for F and π if π ◦ ξα = π ◦ ξβ for every
computation ξ in F, i.e., if α �πF β and β �πF α.

2An abstract domain α is continuous when the function α is continuous on C.

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 21

>
��

a

VV

b

VV

c

77

d

gg

⊥EE

Figure 7: Observational equivalence

As a special case, it holds that α is observationally equivalent to the concrete domain iff it is obser-
vationally complete.

Theorem 6.2. In the hypothesis of the previous Theorem, σπ,Fα
is the least domain in uco(C) which

is observationally equivalent to α.

Proof:
Clearly σπ,Fα

is observationally equivalent to α for F and π. To show that it is the least one in uco(C),
assume that β is observationally equivalent to α, but β is incomparable with σπ,Fα

, i.e., there exists
s ∈ σπ,Fα

\β such that s ∈ max{x ∈ α | ξ(x) ≤ a} for some computation ξ in Fα and a ∈ π. Therefore,
for each s′ > s it holds that πξα(s′) > πξα(s). Let ξ̄ the corresponding computation in F. Since s < β,
then β(s) > s, hence πξ̄α(β(s)) = πξ(α(β(s)) > πξ̄α(s). On the converse, πξ̄β(β(s)) = πξ̄β(s) = πξ̄α(s)
since β �πF α. Therefore α 6�πF β, which is a contradiction. ut

As a consequence, if β is observationally equivalent to α, it follows that σπ,Fα
= σπ,Fβ

.

Coming back to the original problem, which is to find out minimal domains β such that β �F
π α, it

is important to observe that restricting the focus on subsets of α may not be a good choice. More
precise or smaller domains may be found, which are not abstractions of α. The following example
shows a case where a domain β exists which is more precise and smaller in size of σπ,Fα

. A more
complex example, in the field of sharing analysis of logic programs, may be found in [21].

Example 6.2. Consider the concrete domain C = {>, a, b, c, d,⊥} depicted in Figure 7, the ob-
servable π = {>, a} and the computational domain α = {>, a, c, d,⊥}. The least domain which is
observationally equivalent to α for f and π is α itself, but {>, a, b} is strictly more precise than α
(when observing π) and smaller (in terms of number of points) than α.

22 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

7. Conclusions and Related Work

Different kinds of completeness have been proposed in the literature. The first notion of complete-
ness appears in Cousot and Cousot [5]. In the same paper, the notion of fixpoint completeness is
formalized. A domain α is fixpoint complete for a function f when it preserves the least fixpoint of
f , in formulas α(lfp f) = lfp(α ◦ f ◦ α). Cousot and Cousot have shown that complete domains are
also fixpoint complete. A detailed study on completeness and fixpoint completeness can be found
in Giacobazzi et al. [15], where the authors solve the problem of synthesizing complete abstract
domains.

Cousot and Cousot [4] introduced a different notion of completeness called exactness. The same
notion has been renamed as forward completeness (F-completeness) by Giacobazzi and Quintarelli
[12] who apply the completeness results on model checking. Moreover, to distinguish between stan-
dard completeness and F-completeness, Giacobazzi and Quintarelli renamed the former as backward
completeness (B-completeness). A domain α is F-complete for a function f when f ◦ α = α ◦ f ◦ α.
Intuitively, this means that the result of any abstract computation coincides with the result of the
corresponding concrete one, when the starting object is an abstract object.

Observational completeness differs from all the previous notions (B-completeness, fixpoint com-
pleteness, F-completeness). The main point is that we have two concepts of observational and
computational domain and, most importantly, the observational domain is kept fixed when refin-
ing. We believe that, in any static analysis or semantics definition, the observable property does
not change when looking for better domains. On the contrary, B-completeness is self-referential,
since the observational domain changes when refining the domain. More precisely, given a domain
π, the complete shell of π for f is the least abstract domain β containing π which is observationally
complete for β (and thus it is observationally complete for π). Moreover, the self-referentiality of
completeness yields some counter-intuitive behaviors. For instance, if α is complete and β contains
α, it may well happen that β is not complete even if, according to our intuition, β is “richer” than α.
This does not happen for observational completeness, where supersets of observationally complete
domains are still observationally complete (see Example 4.1).

The notion of F-completeness does not fix any observable property. This kind of completeness is
useful when we are interested in a subset of the concrete domain closed for the application of any
state-transition function.

Finally, fixpoint completeness does not take into consideration intermediates steps during the ab-
stract computation. In fact, it is only required that the abstract least fixpoint (computed on the
abstract domain) coincides with the abstraction of the concrete least fixpoint. Giacobazzi et al. [15]
show that, even under strong hypotheses, the existence of the least fixpoint complete domain con-
taining π cannot be ensured. They show that, even if the concrete domain is a complete Boolean
algebra or a finite chain, and the concrete function f is both additive and co-additive, the least fix-
point complete domain containing π does not necessarily exist. The counterexamples suggest that
finding reasonable conditions for the existence of least fixpoint complete domains is not viable.

Relative Completeness

In [15] a different notion of completeness is introduced. Given complete lattices C and D and two
ucos ρ ∈ uco(C) and η ∈ uco(D), the pair 〈ρ, η〉 is complete for the monotone map g : C → D
when η ◦ g = η ◦ g ◦ ρ. The pair 〈ρ, η〉 is complete for a set G of monotonic maps from C to
D when it is complete for all g ∈ G. In the following, we call relative completeness this variant of
completeness. Relative completeness has been recently used for modeling secrecy in language-based
security problems, in particular (abstract) non-interference [11].

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 23

Observational completeness is a particular case of relative completeness. Given a set F ⊆ C → C
of monotonic maps and π ∈ uco(C), it turns out that α ∈ uco(C) is observationally complete for F
and π iff 〈α, π〉 is complete for the set ΞF of all the computations built from F. Actually, the latter
means that π ◦ ξ ◦ α = π ◦ ξ for each computation ξ, while observational completeness means that
π ◦ ξα = π ◦ ξ. Even if the two notions may seem different, it is easy to prove that they are actually
the same.

Giacobazzi et al. [15] also defines an operation on abstract domains called relative complete shell.
The relative complete shell of ρ ∈ uco(C) w.r.t. η ∈ uco(D), denoted by SηG(ρ), is the most abstract
domain α such that α ⊇ ρ and 〈α, η〉 is complete for G. By the previous correspondence of obser-
vational completeness with relative completeness, it turns out that σπ,F is Sπ

ΞF
({>C}), i.e., the most

abstract domain α such that 〈α, π〉 is complete for ΞF . However, [15] does not further develop the
special case when the set F of functions is closed by composition, as it happens in observational
completeness. Therefore, they do not prove any other property, neither the constructive characteri-
zation in Theorem 3.3, nor the fixpoint preservation in Theorem 3.2, and they do not investigate on
the relationship between the least observationally complete domain and the complete shell.

Quotient of Abstract Interpretation

Another construction related to observational completeness has been introduced by Cortesi and Filè
in [3]. In that paper, the authors define a transformation of abstract domains called quotient. Given
an observable domain π ⊆ α and a function f : α→ α, they define an equivalence relation rπ ⊆ α×α
as follows:

〈a1, a2〉 ∈ rπ ⇐⇒ ∀i < ω.π(f i(a1)) = π(f i(a2)) .

Roughly speaking, 〈a1, a2〉 ∈ rπ when a1 and a2 are equivalent w.r.t. the observable π. Then quotient
Qπ(α) is the subset of α composed of all the lubs of all equivalence classes in rπ. If [a] is the
equivalence class of a, then Qπ(α) = {∨[a] | a ∈ α}. The paper shows that if rπ is additive, then
Qπ(α) is an uco and π ⊆ Qπ(α) ⊆ α.

Later, [14] shows that Qπ(α) is Sπ
{ f i |i<ω}({>α}), the relative complete shell of π w.r.t. α. According to

what we said before,s Qπ(α) = σπ,{ f }, the least observationally complete domain for π and f (where
α is the concrete domain).

Other Definitions of Completeness

Other notions of completeness have been proposed for dealing with logic (see, for instance, Cousot
and Cousot [8], Schmidt [20], Dams et al. [10]). In general, completeness problems on fragments
of temporal logic are considered (covering, preservation, strong preservation). All these notions are
very different from the other forms of completeness, since they consider only fixed logical operators,
and, in general, one is not interested in least fixpoint preservation.

Observational completeness naturally arises once we fix the preorder � on domains, which formal-
izes the intuitive notion of precision. The novelty with respect to the standard treatment of com-
pleteness is that we have two orderings on ucos: standard inclusion ⊆ and precision �. The latter is
used to define what an observationally complete domain is, while the former selects, among obser-
vationally complete domains, the preferred one. In the complete shell construction the two orderings
coincide. In principle, we could change the standard inclusion ordering, obtaining a different notion
of “least” observationally complete domain. For instance, we could compare two abstract domains
on the base of their cardinality or of a suitable notion of “complexity” of their abstract objects.

24 G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation

References

[1] Birkhoff, G.: Lattice Theory, vol. XXV of AMS Colloquium Publications, third edition, Amer-
ican Mathematical Society, 1967.

[2] Comini, M., Levi, G., Meo, M. C.: A Theory of Observables for Logic Programs, Information
and Computation, 169(1), 2001, 23–80, ISSN 0890-5401.

[3] Cortesi, A., Filé, G., Winsborough, W. W.: The Quotient of an Abstract Interpretation, Theo-
retical Computer Science, 202(1–2), July 1998, 163–192, ISSN 0304-3975.

[4] Cousot, P.: Types as Abstract Interpretations, invited paper, in: POPL ’97: Proceedings of
the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM
Press, New York, NY, USA, January 1997, ISBN 0-89791-853-3, 316–331.

[5] Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks, in: POPL ’79:
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, ACM Press, New York, NY, USA, January 1979, 269–282.

[6] Cousot, P., Cousot, R.: Abstract Interpretation and Applications to Logic Programs, The Jour-
nal of Logic Programming, 13(2–3), July 1992, 103–179, ISSN 0743-1066.

[7] Cousot, P., Cousot, R.: Higher-Order Abstract Interpretation (and Application to Comportment
Analysis Generalizing Strictness, Termination, Projection and PER Analysis of Functional
Languages), Proceedings of the 1994 International Conference on Computer Languages, IEEE
Computer Society Press, Los Alamitos, CA, USA, May 1994, ISBN 0-8186-5640-X, Invited
paper.

[8] Cousot, P., Cousot, R.: Temporal Abstract Interpretation, in: POPL ’00: Proceedings of
the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM
Press, New York, NY, USA, January 2000, ISBN 1-58113-125-9, 12–25.

[9] Dalla Preda, M., Giacobazzi, R.: Semantic-based Code Obfuscation by Abstract Interpretation,
Journal of Computer Security, 17(6), 2009, 855–908, ISSN 0926-227X.

[10] Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems, ACM Trans-
actions on Programming Languages and Systems, 19(2), 1997, 253–291, ISSN 0164-0925.

[11] Giacobazzi, R., Mastroeni, I.: Adjoining classified and unclassified information by abstract
interpretation, Journal of Computer Security. To appear.

[12] Giacobazzi, R., Quintarelli, E.: Incompleteness, Counterexamples, and Refinements in Ab-
stract Model-Checking, in: Static Analysis, 8th International Symposium, SAS 2001 Paris,
France, July 16–18, 2001 Proceedings (P. Cousot, Ed.), vol. 2126 of Lecture Notes in Com-
puter Science, Springer, Berlin Heidelberg, 2001, ISBN 978-3-540-42314-0, 356–373.

[13] Giacobazzi, R., Ranzato, F.: Incompleteness of states w.r.t. traces in model checking, Informa-
tion and Computation, 204(3), 2006, 376–407, ISSN 0890-5401.

[14] Giacobazzi, R., Ranzato, F., Scozzari, F.: Complete Abstract Interpretations Made Construc-
tive, in: Mathematical Foundations of Computer Science 1998, 23rd International Symposium,
MFCS’98 Brno, Czech Republic, August 2428, 1998, Proceedings (L. Brim, J. Gruska, J. Zla-
tuska, Eds.), vol. 1450 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg,
1998, ISBN 978-3-540-64827-7, 366–377.

[15] Giacobazzi, R., Ranzato, F., Scozzari, F.: Making Abstract Interpretations Complete, Journal
of the ACM, 47(2), 2000, 361–416, ISSN 0004-5411.

[16] Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing, ACM Trans-
actions on Computational Logic, 6(1), 2005, 33–60, ISSN 1529-3785.

G. Amato, F. Scozzari /Observational Completeness on Abstract Interpretation 25

[17] Mycroft, A.: Completeness and predicate-based abstract interpretation, Proceedings of the
ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipulation,
PEPM’93, ACM Press, New York, NY, USA, 1993, ISBN 0-89791-594-1.

[18] Ranzato, F., Tapparo, F.: Generalizing strong preservation by abstract interpretation, Journal of
Logic and Computation, 17(1), 2007, 157–197, ISSN 1465-363X (online) 0955-792X (print).

[19] Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract interpretation,
Information and Computation, 206(5), 2008, 620–651, ISSN 0890-5401.

[20] Schmidt, D. A.: Comparing Completeness Properties of Static Analyses and Their Logics,
in: Programming Languages and Systems, 4th Asian Symposium, APLAS 2006, Sydney, Aus-
tralia, November 8–10, 2006. Proceedings (N. Kobayashi, Ed.), vol. 4279 of Lecture Notes in
Computer Science, Springer, Berlin Heidelberg, 2006, ISBN 978-3-540-48937-5, 183–199.

[21] Scozzari, F.: Abstract domains for sharing analysis by optimal semantics, in: Static Analysis,
7th International Symposium, SAS 2000, Santa Barbara, CA, USA, June 29 – July 1, 2000,
Proceedings (J. Palsberg, Ed.), vol. 1824 of Lecture Notes in Computer Science, Springer,
Berlin Heidelberg, 2000, ISBN 978-3-540-67668-6, 397–412.

