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Abstract

Working within a semantic framework for sequent calculi developed in [3], we pro-
pose a couple of extensions to the concepts of correct answers and correct resultants
which can be applied to the full first order logic. With respect to previous proposals,
this is based on proof theory rather than model theory. We motivate our choice
with several examples and we show how to use correct answers to reconstruct an
abstraction which is widely used in the static analysis of logic programs, namely
groundness. As an example of application, we present a prototypical top-down
static interpreter for properties of groundness which works for the full intuitionistic
first order logic.

1 Introduction

One of the greatest benefits of logic programming, as presented in [20], is that
it is based upon the notion of executable specifications. The text of a logic
program is endowed with both an operational (algorithmic) interpretation and
an independent mathematical meaning which agree each other in several ways.
The problem is that operational expressiveness (intended as the capability of
directing the flow of execution of a program) tends to obscure the declara-
tive meaning. Research in logic programming strives to find a good balance
between these opposite needs.

Uniform proofs [21] have widely been accepted as one of the main tools for
approaching the problem and to distinguish between logic without a clear com-
putational flavor and logic programming languages. However, that of uniform
proofs being a concept heavily based on proof theory, researches conducted
along this line have always been quite far from the traditional approach based
on fixpoint semantics. In turn, this latter tradition has brought up several
important results concerning the effective utilization of Horn clauses as a real
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programming language. Among the others, problems such as compositionality
of semantics [10,9], modularity [6,8], static analysis [14], debugging [11], have
been tackled in this setting. Adapting these results to the new logic languages
developed via the proof theoretic approach, such as λProlog [23] or LinLog
[4], would probably require at least two things:

• provide a fixpoint semantics for these new languages;

• generalize a great number of concepts whose definition is too much tied to
the case of Horn clauses.

In [3], the authors propose a semantic framework which can be useful in such
an effort. The main idea is to recognize proofs in the sequent calculi as the
general counterpart of SLD resolutions for positive logic programs. Thus, the
three well-known semantics (operational, declarative and fixpoint) for Horn
clause logic can be reformulated within this general setting and directly applied
to all the logic languages based on sequent calculi.

Classical abstractions such as correct answers or resultants, used in the
semantic studies of logic programs, and abstractions for static analysis like
groundness, can be retrieved in terms of properties of proofs. Expressed in
such a way, rather than referring to a computational procedure like SLD res-
olution, they are more easily extendible to other logic languages.

However, the definition proposed in [3] for correct answers was based on
the model theoretic idea that a correct answer for an existentially quantified
formula ∃x.φ is a substitution θ for the variables in x such that φθ is true.
When we tried to extend this simple idea from the well known case of Horn
clauses to the full first order logic, we came with a general definition of correct
answers which was rather involved and far less general than expected.

Since most of the work in the field of logic programming are heavily based
on computed answers, which are the computational counterpart of correct
answers, defining a solid foundation for the latter is essential if we want to
adapt previous results to broader fragments of logic.

Here, we tackle the problem of correct answers from a proof theoretic point
of view. We argue that the natural extension of the idea of “correct answer”
to the first order logic is the recording of all the occurrences of quantifier
introduction rules in a proof. In the case of Horn clauses, if we only consider
the introductions of existential quantifiers, this turns out to be equivalent
to the standard definition. We also introduce a corresponding generalization
for “correct resultants”. Then, we consider a common abstraction for the
semantics of logic programs, namely groundness, and we examine its extension
to the case of full first order logic. A prototypical abstract interpreter for this
observable has been developed, and we show some of the results we have
obtained. At last, possible future developments are discussed.
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2 The Framework

We give here a presentation for sequent calculi which is a wide generalization
of most of the calculi which have been developed so far from the introduction
of Gentzen’s LK calculus [17] . Actually, our formalization is so general that
a name like tree calculi would probably be more appropriate. However, since
we only use the framework in the context of proofs for logic systems, we will
stick to the name of sequent calculi. A more detailed treatment of these topics
can be found in [3] and [1].

Definition 2.1 Given a set S of sequents, the set Sch(S) of proof skeletons
over S is defined inductively as follows:

• every S ∈ S is a proof skeleton;

• if S ∈ S, n ∈ N and Ti is a proof skeleton for each i ≤ n, then

T1 · · ·Tn

S
(1)

is a proof skeleton, which we also denote by tree(S, T1, . . . , Tn). We admit
the case n = 0.

We write Sch in the place of Sch(S) when S is clear from the context.

Then, we define two functions hyp : Sch(S) → S� and root : Sch(S) → S
such that

• hyp(S) = S ,

• hyp(tree(S, T1, . . . , Tn)) = hyp(T1) · · · hyp(Tn) ,

and

• root(S) = S ,

• root(tree(S, T1, . . . , Tn)) = S .

Given a proof skeleton π, hyp(π) is the sequence of hypotheses of π while
root(π) is the root of π. When we want to state that π is a proof skeleton
with hyp(π) = S1, . . . , Sn and root(π) = S, we write

π : S1, . . . , Sn � S . (2)

We also define the height of a proof skeleton π introducing the function height :
Sch(S) → N such that

• height(S) = 0 ,

• height(tree(S, T1, . . . , Tn)) = max{height(T1), . . . , height(Tn)} + 1 ,

with the obvious assumption that max(∅) = 0.

Note that S, which we also denote by εS, and tree(S) are two different proof
skeletons. Actually, it is height(S) = 0 and hyp(S) = S but height(tree(S)) = 1
and hyp(tree(S)) = λ.
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Now, we fix a set R of proof skeletons of height one. We call inference
rules the elements of R. A proof skeleton π, which is obtained by pasting
together the empty proof skeletons and the inference rules, is called proof. A
proof with no hypothesis is said to be final. A sequent S is provable if there
is a final proof rooted at S. Finally, we call sequent calculus a pair (S,R).

2.1 Semantics

In the following, we assume fixed a sequent calculus (S,R). Given a sequent
S, we denote by SchS the set of all the proof skeletons rooted at S. For each
π ∈ SchS of the form

π : S1, . . . , Sn � S , (3)

we have a corresponding semantic operator π : SchS1 × · · · × SchSn → SchS

which works by pasting proof skeletons of the input sequents together with π,
to obtain a new proof skeleton of the output sequent S. If Sch is the set of
all the proof skeletons, π : S1, . . . , Sn � S ∈ Sch and Xi ⊆ Sch for each i, we
define a collecting variant of the semantic operator π, defined as

π(X1, . . . , Xn) = {π(π1, . . . , πn) | ∀1 ≤ i ≤ n. πi ∈ Xi ∩ SchSi
} . (4)

We will write π(X) as a short form for π(X, . . . , X) with n identical copies of
X as input arguments.

An interpretation for (S,R) is a subset of Sch. We denote by I the set of
all the interpretations, which is a complete lattice under subset ordering. A
model is an interpretation I such that, for each inference rule r ∈ R, it is

r(I) ⊆ I . (5)

Models form a complete lattice under the same ordering of the interpretations.
However, it is not a sublattice, since the join operator and the bottom element
differ. In particular, the bottom element of the lattice of models is what we
call declarative semantics of the sequent calculus and we denote it by D.

D turns out to be the set of final proofs of (S,R). Hence, the declarative
semantics precisely captures all the terminating computations. For a valid
treatment of compositionality, we also need information about partial compu-
tations [6]. If ε is the set of all the empty proof skeletons, we call complete
declarative semantics of (S,R) and we denote it by Dc, the least model greater
then ε. It is possible to prove that Dc is actually the set of all the proofs of
(S,R).

We have a bottom-up and a top-down construction of the least models
using a couple of operators, similar in spirit to the immediate consequence
operator TP and the unfolding operator UP for logic programs. The bottom-
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up T operator, mapping interpretations to interpretations, is defined as follows

T (I) = I ∪
⋃
r∈R

r(I) , (6)

while the top-down U operator is

U(I) =
⋃
π∈I

π(R∪ ε) . (7)

The following properties hold:

T ω(∅) = D , (8)

T ω(ε) = Dc = Uω(ε) . (9)

2.2 Abstractions

It is now possible to use the techniques of abstract interpretation [12] to de-
velop a range of abstract semantics for sequent calculi. We call observable a
triple (A, α, γ) where A (the abstract domain) is an ordered set w.r.t. the
relation � and α : I → A (the abstraction function) is a monotonic function
with γ as right adjoint. Since α and γ in (A, α, γ) uniquely determine each
other [13], we will often refer to an observable just by the abstraction function.

Given an observable and an operator on interpretations ⊗, we denote by
⊗α the corresponding optimal abstract operator on A. All the common results
of the theory of abstract interpretation are inherited by our framework. In
particular, the following properties hold:

T ω
α (α(∅)) � α(D) , (10)

T ω
α (α(ε)) � α(Dc) , (11)

Uω
α (α(ε)) � α(Dc) . (12)

This means we can compute an approximation of the abstract semantics α(D)
working entirely within the abstract domain A.

Following the terminology introduced in [10,9] and [2], when Tα is precise
(i.e. when Tα ◦ α = α ◦ T ) the observable α is said to be denotational.
In this case, the “greater than” sign in the equations (10) and (11) can be
replaced by an equality sign. When Uα is precise, the observable is operational
and the equation (12) become an equality. When α is both operational and
denotational, it is called perfect.

3 Correct Answers and Resultants

The concepts of correct answer and computed answer are the cornerstones
of the theory and practice of logic programming. If we want to extend the
results we have for Horn clauses to other logic languages, we need to find

5



Amato

Γ1, B,C, Γ2 � ∆
Γ1, C,B, Γ2 � ∆

interchangeL
Γ � ∆1, B,C, ∆2

Γ � ∆1, C,B, ∆2
interchangeR

Γ, B,B � ∆
Γ, B � ∆

contractionL
Γ � B,B, ∆

Γ � B, ∆
contractionR

Γ, B � B, ∆
id where B = ⊥ or B is an atomic formula

Γ � ⊥
Γ � ∆

⊥R

Γ � B, ∆
Γ � B ∨ C, ∆

∨R1
Γ � B, ∆

Γ � C ∨ B, ∆
∨R2

Γ, B � D, ∆ Γ, C � D, ∆
Γ, B ∨ C � D, ∆

∨ L

Γ, B1, B2 � C, ∆
Γ, B1 ∧ B2 � C, ∆

∧ L
Γ � B, ∆ Γ � C, ∆

Γ � B ∧ C, ∆
∧ R

Γ � B, ∆ Γ, C � ∆
Γ, B ⊃ C � ∆

⊃ L
Γ, B � C, ∆

Γ � B ⊃ C, ∆
⊃ R

Γ, B[x/t] � ∆
Γ,∀x.B � ∆

∀L
Γ � B[x/a], ∆
Γ � ∀x.B, ∆

∀R where a is a fresh free variable

Γ, B[x/a] � ∆
Γ,∃x.B � ∆

∃L where a is a fresh free variable
Γ � B[x/t], ∆
Γ � ∃x.B, ∆

∃R

Fig. 1. Inference rules for classical logic

an analogous of these concepts in the new settings. Actually, since we are
not discussing any computational mechanism, we only focus our attention to
correct answers.

For the sake of clarity, we will assume to work in the domain of first order
classical and intuitionistic logic. Therefore, we have a term signature Σ, a
predicate signature Π and two infinite dijoint sets V and W of free and bound
variables. The use of different sets for free and bound variables, although it is
not needed, greatly simplifies proofs and statements of theorems [15].

Terms and formulas are defined as usual, sequents are made of two se-
quences of formulas, separated by the symbol �, and inference rules are those
obtained as instances of the schemas in Figure 1. When we want to denote a
particular inference rule, we index the name of the schema in figure with the
formulas occurring in the instance. For example, ∧Lλ,φ,φ′,ψ,∆ is

φ, φ′ � ψ,∆

φ ∧ φ′ � ψ,∆
. (13)

Intuitionistic logic differs from classical one by allowing at most one formula in
the right hand side of the sequents. The common abbreviation ∃x1, . . . , xn.φ
stands for ∃x1. · · · ∃xn.φ. We also write ∃φ and ∀φ for the existential and
universal closure of φ. A Horn sequent is a sequent of the form Γ � ∃φ where
Γ is a sequence of universal closures of definite clauses, and φ is a definite goal.
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3.1 Correct Answers as Proof-Theoretical Properties

Given a Horn sequent S = Γ � ∃x.φ, according to the standard definition,
a correct answer for the goal ∃x.φ in the program Γ is a substitution θ for
x such that Γ � φθ is provable. In the following, we refer to θ as a correct
answer for the sequent S. According to this definition, the concept of correct
answer seems strictly related to model theory. It is essentially an assignment
for the variables in x such that φ in valid in every Herbrand model of Γ.

However, if π is an intuitionistic proof for S, a correct answer for ∃x.φ can
be extracted from π by examining the instances in π of the ∃R schema.

Example 3.1 If S is the sequent p(0), ∀x.p(x) � ∃y.p(y), then y/t is a correct
answer for each term t. If π is the proof

id∀x.p(x), p(0) � p(0) ∃R∀x.p(x), p(0) � ∃y.p(y)
(14)

the ∃R rule gives origin to the correct answer y/0.

When we use hereditary Harrop formulas, we can keep the same defini-
tion of correct answers we have for Horn clauses. However, the amount of
information we obtain in this way is rather limited. For example, the sequent
∀x.p(x, x) � ∀y.∃z.p(y, z), only has a trivial empty correct answer, since the
right hand side of the sequent is not an existentially quantified formula. On
the contrary, let us give a look to a proof of the same sequent:

id
p(a, a) � p(a, a) ∃R

p(a, a) � ∃z.p(a, z) ∀R∀x.p(x, x) � ∃z.p(a, z) ∀L∀x.p(x, x) � ∀y.∃z.p(y, z)

(15)

If we keep track of the occurrences of both the ∃R and ∀R inference rules,
we obtain a substitution {y/a, z/a}. This makes explicit that for each y we
have a z such that p(y, z) is true, and that y and z do coincide. Moreover,
if we apply the substitution {y/a, z/a} to the right hand side, discarding all
the quantifiers, we obtain the sequent ∀x.p(x, x) � p(a, a) which is trivially
provable.

If we further extend the language to handle the full first order logic, we
have to treat with sequents like ∃x.p(s(x)) � ∃y.p(y). Here, again, the stan-
dard “model-theoretic” definition of correct answers gives us no interesting
information, since there are no correct answers according to that definition.
Actually, the sequent ∃x.p(s(x)) � p(t) is not provable for any term t. Let us
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consider the following proof:

id
p(s(a)) � p(s(a)) ∃R
p(s(a)) � ∃y.p(y) ∃L∃x.p(s(x)) � ∃y.p(y)

(16)

If we keep track of all the instances of a quantifier introduction rule, we
obtain a substitution {x/a, y/s(a)}. Here, the role of a is that of a witness.
The existential quantifier on the left hand side produces a new object a such
that p(s(a)) holds. The binding {y/s(a)} makes clear that the object y such
that p(y) holds is s(a), where a is the same produced by the other existential
quantifier. Again, if we apply the substitution discarding the quantifiers, we
obtain the sequent p(s(a)) � p(s(a)) which is provable.

In the general case, we cannot bind a variable with a single term. For
example, consider the sequent p(a) ∨ p(b) � ∃x.p(x), and the proof

id
p(a) � p(a) ∃R

p(a) � ∃x.p(x)

id
p(b) � p(b) ∃R

p(b) � ∃x.p(x) ∨L
p(a) ∨ p(b) � ∃x.p(x)

(17)

We have two different instances of the ∃R schema, each with a different term
which is bound to the variable x. Therefore, we are led to consider bindings
of the kind {x/{a, b}}.

3.2 Formalization

We now try to make precise the above informal discussion. Given a first order
language (Σ,Π, V,W ), a candidate answer is a function θ : W → ℘f (TΣ(V ))
such that {v ∈ W | θ(v) �= ∅} is finite. We denote with Ans the set of
candidate answers.

For each proof skeleton π, we have a corresponding candidate answer θπ

or answer(π), defined as follows:

θπ(x) =




∅ if π = idΓ,B,∆

{a} if π = ∃LΓ,B,∆,x,a(π
′) or π = ∀RΓ,B,∆,x,a(π

′)

{t} if π = ∃RΓ,B,∆,x,t(π
′) or π = ∀LΓ,B,∆,x,t(π

′)⋃
j=1...n θπj

(x) if π = r(π1, . . . , πn)

(18)

If π is a proof, then θπ is called the partial correct answer for π. If π is a
final proof of the sequent S, then θ is a correct answer for the sequent S. The
set of correct answers for the sequent S will be denoted by CAns(S), which is
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defined as

CAns(S) = {θπ | π ∈ D ∩ SchS} . (19)

We write CAnsc(S) or CAnsi(S) when we want to make clear if we are working
in the realm of classical or intuitionistic logic.

Example 3.2 Let us consider the sequent S = ∀x.(p(x) ⊃ p(s(x))), p(0) �
∃y.p(y). In classical logic, θ is a correct answer for S if and only if

• θ(x) ∈ ℘f (Term),

• θ(y) ∈ ℘f (Term) and there exists si(0) ∈ θ(y) such that sj(0) ∈ θ(x) for
every j ∈ {0, . . . , i− 1}.

Here si(0) is the term s(s(· · · s(0) · · · )) where s is repeated i times. In intu-
itionistic logic, the form of the correct answers is simpler. In particular, θ is
a correct answer for S if and only if

• θ(x) ∈ ℘f (Term),

• θ(y) = {si(0)} for some i ∈ N such that sj(0) ∈ θ(x) for every j ∈ {0, . . . , i−
1}.

The difference is due to the fact we cannot apply the contraction rule on the
consequent.

Note that, often, a correct answer for the sequent S is meaningful only if
there are no two different bindings for the same variable. In the following, we
will call pure every sequent which satisfies this condition.

Our definition of correct answers essentially collects all the occurrences of
introduction rules for quantifiers in a proof. A problem is that most of the
answers we obtain are trivial. For example, given a sequent ∀x.φ � ∆ and a
correct answer θ, then θ[x/L] is a correct answer, too, for each L = θ(x) ∪ T
where T is a set of terms renamed apart from θ.

As a result, we are particularly interested to minimal correct answers, ac-
cording to the obvious point-wise ordering. Proofs corresponding to minimal
answers are a sort of “non-redundant” proofs, where quantifiers are intro-
duced only when they are really needed. In formulas, we denote by mAnsc(S)
(mAnsi(S)) the set of minimal correct answer for the sequent S w.r.t. classical
(intuitionistic) logic.

Example 3.3 In the previous example, both classic and intuitionistic logic
have the same set of minimal correct answers, i.e. those θ such that

• θ(y) = {si(0)} for some i ∈ N,

• θ(x) = {sj(0) | j ∈ {0, . . . , i− 1}}.
Note that we have a lot of information from these. We know that p(si(0)) is
true for every i ∈ N. Moreover, we know that, in order to prove p(si(0)), we
need to apply a ∀L introduction rule for the first binding with different terms,
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namely all the sj(0) for j from 0 to i− 1.

In general, if mAnsc(S) �= mAnsi(S), it means that there is a proof of S
which is “intrinsically” classical. We do not make precise this statement, since
it requires further investigations. However, from an intuitive point of view,
consider the following proof π of the sequent p(a) ∨ p(b) � ∃x.p(x) :

id
p(a) � p(a), p(b)

id
p(b) � p(a), p(b) ∨L

p(a) ∨ p(b) � p(a), p(b) ∃R 2 times
p(a) ∨ p(b) � ∃x.p(x), ∃x.p(x)

contractionR
p(a) ∨ p(b) � ∃x.p(x)

(20)

If we move the ∃R rules upward, before the ∨L rule, we can easily obtain an
intuitionistic proof π′ such that θπ′ ≤ θπ = {x/{a, b}}. However, consider the
following proof π

id
p(a), p(b) � p(b),⊥ ∃R

p(a), p(b) � ∃x.p(x),⊥ ∃L
p(a),∃y.p(y) � ∃x.p(x),⊥ ⊃ R
p(a) � ∃y.p(y) ⊃ ⊥, ∃x.p(x) ∨R (2 times)

p(a) � ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥), ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥)
contractionR

p(a) � ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥)
(21)

Although the root sequent is intuitionistically provable, we are not able to
write an intuitionistic proof π′ such that θπ′ ≤ θπ = {x/b, y/b}. This is
because the use of the contraction rule in π is essential to the effort of moving
∃y.p(y) on the left side while keeping ∃x.p(x) on the right side.

If we compare the “standard” correct answers for Horn clauses with our
minimal correct answers, we have a more general definition. However, if we
restrict our answers to the existential quantifiers, we obtain the same results.

Theorem 3.4 If S = Γ � ∃x1. · · · ∃xn.φ is a pure Horn sequent, then η is a
“standard” correct answer for S iff there is a minimal correct answer θ such
that θ(xi) = xiη for each i ∈ {1, . . . , n}.

Note that we have not specified if the minimal correct answer should be
considered w.r.t. intuitionistic or classical logic. Actually, if S is a pure Horn
sequent, it is mAnsi(S) = mAnsc(S).
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3.3 Resultants

Another typical abstraction of SLD-derivations is those of resultants [16]. A
resultant for a goal G in a program P is a pair made of a partial computed
answer for G and a new goal G’ which still needs to be refuted. We present
an observable for proof skeletons which is inspired by this “standard” idea of
resultant, although the relation here is more shallow than for correct answers.

Until now we have considered sequents as sequences of formulas. However,
classical and intuitionistic logics are often presented by defining a sequent as
a set of formulas. We use the term set sequent to refer to this alternative
definition and we denote by SetS the collection of all the set sequents. If
S ∈ S, we write S̄ for the corresponding element in SetS.

We call resultant a pair (θ, S) where θ ∈ Ans and S is a finite multi-set of
set sequents. We denote by Res the set of all the resultants. For each proof
skeleton π : S1, . . . , Sn � S, we define a corresponding res(π) as

res(π) = (θπ, �S̄1, . . . , S̄n ) , (22)

where �  denote a multi-set. If π is a proof for the sequent S, then res(π) is
a correct resultant for S. The set of correct resultants for S will be denoted
by CRes(S), which is defined as

CRes(S) = {res(π) | π ∈ Dc ∩ SchS} . (23)

We write CResc(S) or CResi(S) when we want to specify if we are working
in the realm of classical or intuitionistic logic. We define an order relation
between two resultants, according to the following equation

(θ, S) ≤ (θ′, S′) iff θ ≤ θ′ and S ⊆ S′ . (24)

Again, we talk of minimal correct resultants for the elements of CRes(S) which
are minimal w.r.t. ≤. We denote the corresponding sets as mResc(S) and
mResi(S).

Example 3.5 Let us consider the sequent S = p(0) � ∃x.p(x). The set
mResc(S) contains all the pairs (θ, S) such that

• θ = {x/0} and S = ∅, or

• θ = {x/t} for t �= 0 and S = �p(0) � p(t) , or

• θ = {x/t} for t �= 0 and S = �p(0) � ⊥ .
The same happens for mResi(S).

It is trivial to prove that the following correspondences hold between cor-
rect answers and correct resultants:

CAns(S) = {θ | (θ, ∅) ∈ CRes(S)} , (25)

mAns(S) = {θ | (θ, ∅) ∈ mRes(S)} . (26)
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4 Observables

Now that we have defined what a correct answer is, we would like to find a
bottom-up and a top-down construction for CAns and mAns. Following the
abstract framework in [3], we define the observable of candidate answers as a
tuple 〈[S → ℘(Ans)], αc, γc〉 where [S → ℘(Ans)] is the set of functions from
sequents to sets of candidate answers and

αc(I)(S) = {θπ | π : · � S ∈ I} . (27)

It is trivial to show that αc(D)(S) is exactly the set CAns(S) of all the correct
answers for the sequent S. The optimal abstract operator corresponding to T
is Tαc . Assuming A in the image of αc, it is

Tαc(A)(S) = A(S) ∪
⋃

{rαc(A) | r ∈ R, root(r) = S} , (28)

where, for each r : S1 . . . Sn � S ∈ R,

rαc(A) = {rαc(θ1, . . . , θn) | ∀i ∈ {1, . . . , n}, θi ∈ A(Si)} , (29)

and

rαc(θ1, . . . , θn) =




θ1 ∪ [x/t] if r is an introduction rule for a quantifier
which replaces the bound variable x with
t,

θ1 ∪ · · · ∪ θn otherwise.

(30)

Here we write θ1∪θ2 for the candidate answer θ such that θ(x) = θ1(x)∪θ2(x)
for each x ∈ V and [x/t] for the candidate answer θ such that θ(x) = {t} and
θ(y) = ∅ for y �= x.

Theorem 4.1 The observable αc of candidate answers is denotational.

We also have an observable for resultants which gives origin to complete
bottom-up and top-down semantics. It is defined as the tuple 〈[SetS →
℘(Res)], αr, γr〉 with the abstraction function

αr(I)(S̄) = {res(π) | π ∈ I, root(π) = S̄} . (31)

The definition of the optimal bottom-up fixpoint operator is straightfor-
ward. With respect to the top-down fixpoint operator, assuming A in the
image of αr, we have

Uαc(A)(S̄) =
⋃

δ∈A(S̄)

δ(R∪ ε) , (32)

12
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where, if δ = (θ, �S̄1, . . . , S̄n ),

δ(X) = {δ(�π1, . . . , πn ) | ∀i ∈ {1 . . . n}, πi ∈ X ∩ SchS′
i
and S̄ ′

i = S̄i} ,

(33)

and

δ(�π1, . . . , πn ) =
(
θ ∪ [x1/t1] ∪ · · · ∪ [xm/tm], �hyp(π1), · · · , hyp(πn) 

)
,

(34)

where, for each pair (xi, ti), there is an introduction rule for quantifiers among
{π1, . . . , πn} which replaces the variable xi with ti.

Theorem 4.2 The observable αr of correct resultants is perfect.

Since αr is a perfect observable, we could build a top-down interpreter
which computes correct resultants. However, the efficient implementation of
such an interpreter is a very difficult task which is the realm of automatic
deduction. Here, we are more interested in computing abstractions of correct
resultants, which can be used for static analysis of logic languages.

4.1 Groundness

If θ is a candidate answer for the sequent S, we say that θ is grounding
for the variable x when θ(x) only contains variables which occur free in S.
Let us define by GAns the set of functions V → ℘({g, ng}), which we call
groundness answers. Given a candidate answer θ for the sequent S, we define
a corresponding groundness answer β = groundS(θ) such that

• g ∈ β(x) iff there exists t ∈ θ(x) such that vars(θ) ⊆ FV(S),

• ng ∈ β(x) iff there exists t ∈ θ(x) such that vars(θ) �⊆ FV(S),

where FV(S) is the set of free variables in S. Then, we can define a Galois
connection 〈αg, [S � ℘(Ans)], [S � ℘(GAns)], γg〉 where

αg(A)(S) = {groundS(θ) | θ ∈ A(S)} . (35)

Then, by composing αg with αc, we obtain an observable 〈℘(GAns), αg◦αc, γc◦
γg〉 for groundness answers. If β ∈ αg(CAns(S)), then β is a correct groundness
answer. Moreover, if β ∈ αg(mAns(S)), then β is minimal according to the
obvious point-wise ordering.

Example 4.3 Let us give some examples of sequents and their corresponding

13
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correct minimal groundness answers for intuitionistic logic.

sequent groundness answers

∀y.p(y) � ∃x.p(x) {x/g, y/g} {x/ng, y/ng}
∀y.(p(a, y) ∧ p(y, b)) � ∃x.p(x, x) {x/g, y/g}
p(a) ∨ r(b) � ∃x.(p(x) ∨ r(x)) {x/g}

⊥ � ∃x.p(x) {}
∀y.p(y, y) � ∀x1.∃x2.p(x1, x2) {y/g, x1/g, x2/g}, {y/ng, x1/ng, x2/ng}
∀x1. ∃x2. p(x1, x2) � ∃y.p(y, y) —

∃y.p(y) � ∃x.p(x) {x/ng, y/ng}
p(t(a)) � ∃x.p(r(x)) —

p(a) ∨ ∃x.r(x) � ∃y.(p(y) ∨ r(y)) {x/ng, y/{g, ng}}

Note that if θ is a correct answer for S and x is a bound variable which
only appears in a negative existential quantifier, then θ is not grounding for
x. The same happens for positive universal bindings.

We may ask ourselves which is the correspondence between our observable
and standard domains for analysis of groundness such as POS [5]. It is possible
to prove the following

Theorem 4.4 Let P be a definite program and G a definite goal. We work in
the realm of intuitionistic logic. Assume S = Γ � ∃x1, . . . , xn. G is the cor-
responding pure Horn sequent. Consider x1, . . . , xn as propositional symbols
and define the formula

Θ =
∨

β∈GAns(S)

{∧ix
β(xi)
i } , (36)

where x
{g}
i = xi and x

{ng}
i = ¬xi. Then Θ is a positive formula.

Moreover, if X is the set of correct answers of G in P, let ℵ = αPOS(X).
Then ℵ and Θ are equivalent formulas.

We can also build an abstraction for groundness analysis starting from re-
sultants. Given a formula φ, we denote by αv(φ) an abstract formula obtained
from φ by replacing each term with the set of free variables occurring in them.
Let us call by GS the set of abstract set sequents obtained from abstract for-
mulas. A groundness resultant is a pair (β, ν) such that β ∈ GAns and ν is
a multi-set of elements of GS. We write as GRes the set of groundness resul-
tants. Then, we can define a Galois connection 〈αrg, [SetS → ℘(Res)], [GS →
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℘(GRes)], γrg〉, where

αrg(A)(S) = {(groundS(θ),{αv(S̄1), . . . , αv(S̄n))} |
(θ, {S̄1, . . . , S̄n}) ∈ A(S̄), S = αv(S̄)} .

(37)

We can compose αrg with αr to obtain a new observable which is well suited
for a top-down analysis of correct groundness resultants. Following this idea,
we have developed a prototypical abstract interpreter for intuitionistic logic.
It is written in PROLOG and can be found at the author home page:

http://www.dimi.uniud.it/~amato

Example 4.5 By applying our analyzer to the sequents in the Example 4.3 we
obtain precisely the same set of correct groundness answers, with the following
exceptions:

sequent groundness answers

p(t(a)) � ∃x.p(r(x)) {x/ng}
∀x1. ∃x2. p(x1, x2) � ∃y.p(y, y) {y/ng, x1/ng, x2/ng}

The previous example shows two different situations in which we loose
precision. The first one is due to the fact that we abstract a term with the set
of its free variables, discarding information about the functors. The second
situation arises from the fact that the abstract domain is not enough powerful
to keep track of the side condition for the ∃L and the ∀R introduction rules.
To overcome this problem, we would need to improve the representation of
abstract terms, by introducing a sort of labeling similar to what [22] does for
hereditary Harrop formulas.

5 Conclusions and Future Works

In this paper we have presented a new definition for correct answers and correct
resultants which can be applied to the full first order logic (both classical and
intuitionistic). Moreover, we have shown that a well known abstraction of logic
program semantics, namely groundness, can be easily reintroduced inside our
framework. This definitions are so general that they can be reused with only
slight changes for every logic system with standard quantifier rules, such as
linear logic or modal logic. We think that, w.r.t. [3], our new definitions of
correct answers and groundness answers give us more intuitive and accurate
results and a much cleaner theory.

From the point of view of the implementation of abstract domains, several
things can be improved in the framework. For example, while a top-down
analyzer can often be implemented straightforwardly, like our interpreter for
groundness, the same definitely does not hold for bottom-up analyzers. Since
for a bottom-up analysis we have to build the entire abstract semantics of a
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sequent calculus, we need a way to isolate a finite number of “representative
sequents” from which the semantics of all the others can easily be inferred: it
is essentially a problem of compositionality.

We are actually studying this problem and we think that extending the
notion of a sequent calculus with the introduction of some rules for the decom-
position of sequents will add to the theoretical framework the power needed
to easily derive compositional T operators.

We also need a way to reduce nondeterminism in abstract interpreters.
This is a problem which has been tackled thoroughly in the field of automatic
deduction. A standard solution is to use unification to reduce nondeterminism
in the introductions of quantifiers [7,24]. We would like to treat unification in
our framework, and we want to do this without any major modification. We
are working in the direction of defining an abstraction of proof skeletons using
extra-logical variables such that the corresponding optimal abstract operators
automatically computes the semantics trough unification.

6 Proofs

Lemma 6.1 If the pure sequent S = Γ � ∃x.φ has a correct answer θ such
that θ(x) = ∅, then Γ � ⊥ is provable.

Proof. If π is a final proof of S and θπ(x) = θ(x) = ∅, then there are no
occurrences of ∃R inference rules, with ∃x.φ as the principal formula, in π.
However, looking at the form of inference rules in Figure 1, it is evident that
we need a way to discard the existential quantifier from the right hand side of
the sequent and the only way, other than an ∃R rule, is a ⊥R rule.

Then, for each path in π from the root to the leafs, either ∃x.φ is never the
principal formula of an introduction rule, or a ⊥R inference rule is applied.
We can obtain a new proof π′ of Γ � ⊥ just replacing every occurrence of
∃x.φ with ⊥, and deleting the ⊥R rules which are now useless. ✷

Proof. [of theorem 3.4] Assume η is a standard correct answer for S. It means
that S ′ = Γ � φη is provable. Let π′ be a proof of S ′. If we apply a series of
∃R rules to π′, we obtain a proof π for S. It is trivial that θπ(xi) = {xiη} for
each i ∈ {1, . . . , n}. Now, consider the set of all the correct answers θ′ for S
such that θ′ ≤ θπ. If θ′(xi) �= θπ(xi), then θ

′(xi) = ∅, since θ(xi) is a singleton.
By the previous lemma, however, this would mean that Γ is inconsistent, and
this is not possible for Horn clauses. Then, if we take θ to be a minimal θ′,
we prove half of the theorem.

Now, assume θ is a minimal correct answer for S. We want to prove that,
if we define η(xi) = θ(xi) for i ∈ {1, . . . , n}, then Γ � φη is provable. If π
is a proof such that θ = θπ, we can think of permuting the inference rules
to obtain a new proof π′ with θπ′ = θ and all the ∃R rules applied just after
the root. Since in Horn clauses we do not have positive universal quantifiers
or negative existential quantifiers, in π there are no occurrences of ∀R or ∃L
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rules. As a result, in π there are no eigenvariables. Therefore, rules in classical
logic can be permuted freely to obtain π′. If we work in intuitionistic logics,
not all the permutations are allowed, but Kleene in [19] shows that the only
rules ∃R does not permute with are ∨L and ∃L. Neither of this can never be
applied if Γ is made of Horn clauses, hence π′ can be found in intuitionistic
logic, too. If we drop the ∃R rules from π′, we remain with a proof of Γ � φη
and the theorem is proved. ✷

Proof. [of Theorem 4.1] We need to prove that

Tαc(αc(I)) ⊆ αc(T (I)) , (38)

since the opposite disequality is trivial.

Assume θ ∈ Ans and θ ∈ Tαc(αc(I))(S). We have two cases: θ ∈ αc(I)(S)
or θ ∈ rαc(αc(I)) for some r : S1, . . . , Sn � S ∈ R. If θ ∈ αc(I)(S), then
θ ∈ αc(T (I))(S) follows trivially. Otherwise, it is θ = rαc(θ1, . . . , θn), with
θi ∈ αc(I)(Si) for each i ∈ {1, . . . , n}.

If r is an introduction rule for a quantifier, which replaces the variable x
with the term t, then θ = θ1 ∪ [x/t]. Since θ1 ∈ αc(I)(S1), there exists a final
proof skeleton in I with θ1 = θπ. By applying the rule r to π, we obtain a
new final proof skeleton π′ : · � S such that θ = θπ′ . Since π′ ∈ T (I), it is
θ ∈ αc(T (I))(S).

If r is not and introduction rule for a quantifier, then θ = θ1∪ . . .∪ θn. For
each θi, there exists a proof πi : · · · � Si in I. By applying the rule r to π, we
can reason as in the previous case, and we prove the theorem. ✷

Proof. [of Theorem 4.2] We need to prove that αr is both operational and
denotational. We only prove it is operational, since the other proof proceeds
as for Theorem 4.1. Actually, we only need to check the disequality

Uαr(α(I)) ⊆ αr(U(I)) , (39)

since the opposite one is trivial.

If δ = (θ, �S̄1, . . . , S̄n ) ∈ Uαr(αr(I))(S), there is a δ′ = (θ′, �S̄ ′
1, . . . , S̄

′
m )

in αr(I)(S) such that δ = δ′(�r1, . . . , rm ), where ri ∈ R ∪ ε for each i ∈
{1, . . . ,m}. By the definition of αr, there is a proof π′ : Z ′

1, . . . , Z
′
l � Z in

I with Z,Z ′
i ∈ S, Z̄ = S̄, �Z̄ ′

1, . . . , Z̄
′
l = �S̄ ′

1, . . . , S̄
′
m and θπ′ = θ′. We

can apply π′ to appropriate r′1, . . . , r
′
n such that �r̄1, . . . , r̄n = �r̄′1, . . . , r̄′n to

obtain a proof π : Z1, . . . , Zr � Z ∈ U(I) with �Z̄1, . . . , Z̄r = �S̄1, . . . , S̄m 
and θπ = θ. This proves the theorem. ✷

Proof. [of Theorem 4.4] First of all, since Horn clauses are always consistent,
it follows from Lemma 6.1 that, if β is a correct groundness answer for S, then
θ(xi) �= ∅. Moreover, since we work in intuitionistic logic, each ∃R inference
rule can be applied only once for each variable, hence β(xi) is a singleton for
each xi. Therefore, xβ

i (xi) is well defined.
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Now, consider an ordering � on {g, ng} such that g � ng with the corre-
sponding lifting to groundness answers. If S = Γ � ∃x1, . . . , xn. G is a pure
Horn sequent and β is a correct groundness answer, we call existential ground-
ness answer the restriction of β to {x1, . . . , xn}. We denote by EAns(S) the
set of all the existential groundness answer for the sequent S. If β ∈ EAns(S),
then β′ ∈ EAns(S) for each β′ � β. Therefore, consider the formula Θ. If S is
a provable, there is an existential groundness answer β and, by the previous
property, the answer β′ � β such that β′(xi) = {g} for each i is an element of
EAns. Hence Θ is positive.

We still need to prove that Θ and ℵ are equivalent. Given an assignment
ν of truth values to x1, . . . , xn, Θ is true iff there is an existential answer β
such that β(xi) = {g} if ν(xi) = true, β(xi) = {ng} otherwise. In turn, this
means that there exists a correct answer θ such that vars(θ(xi)) �⊆ FV(S) for
each i with ν(xi) = false. Since FV(S) = ∅, it means that there is a correct
answer θ such that θ(xi) is not ground for each xi ∈ ν−1(false).

By the definition of αPOS, we have that ℵ is true under the assignment
ν iff for each correct answers θ, θ(xi) is ground if ν(xi) = true. But this is
equivalent to state that there exists a correct answer θ such that ν(xi) = false
implies θ(xi) not ground. Actually, this is the same statement which holds for
Θ, then we have proved the required equivalence. ✷
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