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Abstract

We show several properties of the abstract interpretation settings regarding re-
lationships between precision of semantic operators and abstract domains composi-
tion. Then, we apply these results to the framework for logic programs introduced
in [3], extended with the new class of operational observables. We prove that the
classes of perfect, denotational and operational observables are complete lattices
and we discuss some problems that arise studying them. Finally, we show how
to use functional dependencies to systematically derive new domains in which our
semantic operators enjoy desired precision properties.

keywords: logic programming, semantics, compositionality, abstract interpreta-
tion, abstract semantics.

1 Introduction

Our goal is showing several useful properties enjoyed by the lattice of abstractions in-
troduced in [3] and subsequently developed in [17], [4] and [5]. In these papers, an op-
erational top-down and a denotational bottom-up semantics for positive logic programs
are defined, both of them expressed in terms of SLD-derivations, and several properties
of compositionality, correctness, minimality, and equivalence are stated. Then, abstract
interpretation techniques are introduced to model abstraction, giving as a result a set of
simple conditions which guarantee the validity of several general theorems.

This brings to the introduction of some classes of abstractions characterized by differ-
ent properties. Some of these classes (i.e. perfect and denotational observables) contain
abstractions such as resultants [12], computed answers [10, 11] and call patterns [13],
already used to define various notions of semantics for logic programs. Other classes (i.e.
semi-denotational), on the contrary, are characterized by a loss of precision which makes
them useful for program static analysis.

In this paper we focus on the first kind of abstraction classes. The properties which
are used to characterize them are based on the precision of semantic operators. Since
precision is a general property of abstract interpretation frameworks, some of the results
we obtain are useful in this general setting too.

After some preliminary definitions, in section 2 we prove that meet and join on the ab-
straction lattices preserve precision for every additive operator over the concrete domain.
Moreover, we state some useful conditions that imply precision in functional dependencies
domains.

The framework for logic programs is briefly discussed in section 3, where it is ex-
tended with the new class of operational observables, characterized by a precise and
goal-compositional operational semantics.



In section 3 we apply the results of section 2 to the framework. We prove that the
classes of perfect, denotational and operational observables are complete lattices and we
discuss some problems that arise studying them. One is the existence of observables
which, although their operational and/or denotational semantic is precise and composi-
tional, do not fall in any of our categories. Another problem is the existence of perfect
(or denotational or operational) observables that are not comparable with well known
abstract domains, such as resultants, that we thought strictly related to all observables
in that class. We can partially overcome this problem restricting ourselves to the subset
of all observables that are concretizations of Herbrand’s success set. Finally, we show
how to use functional dependencies to systematically derive new domains in which our
semantic operators enjoy desired precision properties.

Conclusions and notes about possible future works complete the paper in section 5.

1.1 Preliminaries

Throughout the paper we will assume familiarity with the basic notions of lattice theory
[2], logic programming [1, 16] and abstract interpretation [7], in the form presented in [9].
We will model abstractions by upper closure operators rather then by Galois insertions,
as done, for instance, in [6].

Remember that, given a complete lattice C, an (upper) closure operator on C (uco in
short) is a function ρ : C → C monotonic, idempotent and extensive (viz. ∀x ∈ C. x ⊑
ρ(x)). Each closure operator is uniquely determined by the set of its fix points, equals to
ρ(C). To be more precise, it is ρ(x) =

d
{y ⊒ x | y ∈ ρ(C)}. A set X ⊆ C is the set of

fixpoints of a closure operator if and only if X is a Moore family of C, i.e. ⊤C ∈ X and
X is meet closed. Moreover, the set of fixpoints of an uco ρ is a complete lattice but,
unless ρ is additive, it is not a sublattice of C because the join operators are different.

We denote with uco(C) the set of all the upper closure operators on C. uco(C) is a
complete lattice such that, for each ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C:

1. ρ ⊑ η iff ∀x ∈ C. ρ(x) ⊑ η(x) iff ρ(C) ⊇ η(C),

2.
(d

i∈I ρi
)

(x) =
d

i∈I ρi(x),

3.
(
⊔

i∈I ρi
)

(C) =
d

i∈I ρi(C).

It is possible [8] to assign to each Galois insertion 〈γ, C,D, α〉 the upper closure opera-
tor γ◦α and, in the opposite direction, to each uco ρ on C, the Galois insertion 〈ι−1, C,D,

ι ◦ ρ〉 where ι : ρ(C)→ D is an isomorphism of complete lattices. Therefore, using uco’s
we can reason about properties of abstractions up to isomorphism of abstract domains,
with a simplified notation compared with the approach that use Galois insertions.

Definitions of correct, optimal and precise operators have a formal counterpart in this
setting. Given õp : ρ(C)n → ρ(C) and op : Cn → C, we say that õp, w.r.t. op, is:

• correct if ∀x ∈ Cn.op(x) ⊑ õp(ρ(x))

• optimal if ∀x ∈ ρ(C)n. õp(x) = ρ(op(x))

• precise if ∀x ∈ Cn. õp(ρ(x)) = ρ(op(x)).

The optimal abstract operator corresponding to op is precise if and only if

∀x ∈ Cn. ρ(op(ρ(x))) = ρ(op(x))

If this happens, we say that ρ is precise w.r.t. to op or op is precise over ρ. Clearly, an
operator op can be precise only on a subset of its arguments.



2 Some properties of the lattice of upper closure operators

As already noted, our abstraction classes are characterized by various precision properties
w.r.t. semantic operators. Since precision is a general property in abstract interpretation,
several interesting problems can better be faced in the general setting, rather than in our
instance for logic programs.

In particular, we are interested in studying how precision is affected by operators
over abstract domains. There is a vast literature on this subject and there exist several
operators, defined to perform different kinds of composition or refinement. Since the set
of all the abstractions is a complete lattice, the very first operators which come to mind
are the meet and join operator over this lattice. Meet has been widely used for attribute
independent analysis in [8] while join, partly because of its intrinsic non-constructive
flavour, has not found a similar interest in the research community. However, a better
knowledge of the properties of both operators can improve our understanding of the
structure of abstraction lattices.

2.1 Meet and join

What we want to know is whether meet and join do preserve precision or, to be more
precise, whether meet and join of abstract domains, which are precise w.r.t. some operator
op, are still precise w.r.t. op. The case of meet is quite simple, since it has a constructive
and local definition. If ρ1 and ρ2 are two different abstractions, let ρ be ρ1 ⊓ ρ2. Then
ρ(x), for every element x, can be derived from the values of ρ1(x) and ρ2(x) by means of
a simple meet operation over the concrete domain. The following result is almost trivial.

Theorem 2.1 Let op : Cn → C be a monotonic function and {ρi}i∈I ⊆ uco(C) be
precise w.r.t. op. Then ρ =

d
i∈I ρi is precise w.r.t. op.

Moreover, if the ρi are precise only on a subset X of C, then ρ is precise on that
subset too. One might guess that the same theorem still holds if we replace ⊓ by ⊔.
Unfortunately, this is not the case, as shown by the following example.

Example 2.2 Take the following concrete domain

C = ω + 2 = {0, 1, . . . , n, . . . , ω, ω + 1}

and let ρ1 and ρ2 be two abstractions such that ρ1(C) = {2n | n ∈ N} ∪ {ω, ω + 1} and
ρ2(C) = {2n + 1 | n ∈ N} ∪ {ω, ω + 1}. Then consider the unary operator op : C → C

defined as

op(x) =

{

ω if x < ω

ω + 1 otherwise

It’s easy to verify that op is precise over both ρ1 and ρ2. In the ρ1 case, we have

(ρ1 ◦ op ◦ρ1)(x) =

{

(ρ1 ◦ op)(x) if x ∈ ρ1(C)

ρ1(op(x+ 1)) = ρ1(ω) = (ρ1 ◦ op)(x) otherwise

and the ρ2 case is similar. Nevertheless, op is not precise over ρ = ρ1 ⊔ ρ2. In fact, for
every n ∈ N

(ρ ◦ op ◦ρ)(n) = ρ(op(ω)) = ω + 1



but

(ρ ◦ op)(n) = ρ(ω) = ω

and so ρ ◦ op ◦ρ 6= ρ ◦ op.

Moreover, if ρ = ρ1 ⊔ ρ2, ρ(x) needs to be computed from the images of ρ1 and ρ2,
possibly infinite sets, in an essentially non-constructive way. For this reason it is much
more difficult to study the join rather than the meet operator.

However, we can strengthen our hypothesis by requiring op to be additive rather than
monotonic. In this case, we will be able to prove the precision of

⊔

i∈I ρi. The proof can
better be based on the following constructive characterization of the join operator.

Theorem 2.3 Let {ρi}i∈I ⊆ uco(C) and T : C → C be the operator

T (x) =
⊔

i∈I

ρi(x).

Then
(

⊔

i∈I

ρi

)

(x) =
l
{y ∈ C | T (y) = y ∧ y ⊒ x} = T α(x)

for some ordinal α.

In short, ρ(x) is the least fix point of T greater than x. Theorem 2.3 gives a construc-
tive way of computing values of the joint abstraction. However, α is in general greater
than ω. Therefore, apart from the case of finite abstract domains, the computation is
nonterminating. However, Theorem 2.3 is still useful to prove, by transfinite induction,
the following

Theorem 2.4 Let op : Cn → C be an additive function and {ρi}i∈I ⊆ uco(C) be precise
w.r.t. op. Then ρ =

⊔

i∈I ρi is precise w.r.t. op.

Furthermore, although still not proved, we think that if additiveness condition is
relaxed to continuity the above theorem still holds.

2.2 Functional dependencies

If the meet operator is used for attribute independent analysis, the operator of functional
dependencies provides a systematic approach to build new abstract domains, which has
been first exploited in [8] as domain for attribute dependent analyses. In [8] it was
essentially the domain of monotonic functions between two abstract domains. In [15]
this definition was extended by introducing a concrete binary operator which encodes the
data-dependencies between two different abstract interpretations and some applications
to logic programs as been shown.

Let us first recall the definition of functional dependencies operator [15], adapted to
our formalization by means of upper closure operators.

Definition 2.5 (Functional dependencies operator) Let ρ1 and ρ2 be two uco’s over
the complete lattice C and ⊙ be a left-additive binary operator over C. Then, we define

(ρ1 →
⊙ ρ2)(x) =

⊔

{x′ ∈ C | ∀y ∈ ρ1(C).ρ2(x
′ ⊙ y) ⊑ ρ2(x⊙ y)}.

It is possible to show that ρ1 →
⊙ ρ2 is a closure operator over C. If ρ1 = ρ2 = ρ, then

we denote ρ→⊙ ρ by Dep⊙ ρ, and call it autodependencies operator.



We might expect the functional dependencies operator not only to preserve but also
to improve the precision. Neither of these expectations can fully be satisfied. However,
there are some results in both directions.

First of all, it is interesting to know which is the accuracy of ρ1 →
⊙ ρ2 w.r.t. the

accuracy of ρ1 and ρ2.

Theorem 2.6 If ⊙ is left-precise over ρ2, then ρ1 →
⊙ ρ2 ⊒ ρ2.

Theorem 2.7 If there exists y ∈ ρ1(C) such that x ⊙ y = x for all x ∈ C, then ρ1 →
⊙

ρ2 ⊑ ρ2.

Hence ρ1 →
⊙ ρ2 can be both more or less accurate of ρ2. The following theorem gives

a strict lower bound on the accuracy of functional dependencies.

Theorem 2.8

ρ1 →
⊙ ρ2 ⊒

⊔

{ρ′ ⊑ ρ2 | ρ
′ ⊙ is left-precise in ρ′ }

Finally, we can give some conditions under which ⊙ is precise over ρ1 →
⊙ ρ2.

Theorem 2.9 Let ρ′ = Dep⊙ ρ with ρ ∈ uco(C). Let ⊙ be a left-additive and right-
precise operator on ρ and ρ′ ⊒ ρ. Then ⊙ is left-precise on ρ′.

Theorem 2.10 Let ρ′ = Dep⊙ ρ with ρ ∈ uco(C). Let op be an n-ary additive operator
over C. If for each y1, z1, . . . , yn, zn ∈ C,

(

∀x ∈ ρ(C). ρ(y1 ⊙ x) ⊑ ρ(z1 ⊙ x) ∧ · · · ∧ ρ(yn ⊙ x) ⊑ ρ(zn ⊙ x)
)

=⇒
(

∀x ∈ ρ(C). ρ(op(y1, . . . , yn)⊙ x) ⊑ ρ(op(z1, . . . , zn)⊙ x)
)

then ρ′ is precise w.r.t. op.

Corollary 2.11 Let ρ′ = Dep⊙ ρ, with ⊙ associative and right-precise on ρ. Then ⊙ is
precise on ρ′.

As one can easily note, the properties which hold in the case of functional dependencies
are much less general than in case of the meet and join operators, and require a lot of
additional hypotheses. Nevertheless, this is often enough to derive in a systematic way
abstract domains which are precise w.r.t. a given operator op, as we will see in the logic
programming setting.

3 A semantic framework for logic programs

In order to discuss abstraction in logic programming we need to choose a concrete domain
and the related operational and denotational semantics. In this paper we will use the
semantic framework introduced in [3] and developed in [4] and [5]. Here we recall only
the main definitions and results.

3.1 Basic framework

In this framework we are able to reason about compositional properties of SLD deriva-
tions and their abstractions (observables) in the case of definite logic programs. An



operational and a denotational semantics are defined, both of them expressed in terms
of basic semantic operators on the concrete domain, which represents SLD trees up to
renaming of mgu’s and clauses.

The denotational semantics is characterized by a different semantic function for every
syntactical category in the language:

Q : QUERY −→ D,

G : GOAL −→ (I→ D),

A : ATOM −→ (I→ D),

P : PROG −→ (I→ I),

C : CLAUSE −→ (I→ I),

where D is the set of collections and I is the set of interpretations. A collection is the flat
representation of a family of SLD trees. Every SLD tree is represented by the set of all
the SLD derivations, modulo renaming of mgu’s and clauses, obtained following a path
from the root to another node. An interpretation is a collection for only pure atomic
goals modulo variance. QUERY is the syntactical category corresponding to statements
of the form “G in P” where G is a goal and P is a program.

These are the definitions of the semantic functions:

QJG in P K = GJGKlfpPJP K (3.1)

GJ✷KI = Id |✷ (3.2)

GJA,GKI = AJAKI × GJGKI (3.3)

AJAKI = A · I (3.4)

PJ∅KI = Id |I (3.5)

PJ{c} ∪ P KI =
[

CJcKI + PJP KI
]

≡
(3.6)

CJp(t)← BKI =
[

tree(p(t)← B)✶GJBKI
]

≡
(3.7)

The informal meaning of the semantic operators is the following. The · operator “solves”
an atomic goal A in an interpretation I, × computes the and-conjunction of two in-
terpretations and ✶ computes the interpretations obtained by replacement. Finally,

∑

computes the non-deterministic union of a class of interpretations. Note that when the
class is finite, we use the infix notation +. Moreover, tree(c) is a tree representation of
the clause c and Id is the family of all the SLD trees of depth equals to zero. We can
also define the fix-point denotation of a program P as

FJP K = lfpPJP K = PJP K ↑ ω (3.8)

Operational semantic is build, using the same semantic operators, from the transition

system T = (D,
P
7−→), with the following transition rule

D ∈ D, D 6= D✶µ(tree(P ))

D
P
7−→ D✶µ(tree(P ))

(3.9)

where

µ(D) =
∑

{(A ·D|I)× Id}A∈Atoms (3.10)

is a kind of sequential unfolding operator. Using T we can define the behavior (operational



semantic) of goals as

BJG in P K =
∑

{

D | Id |G
P
7−→∗ D

}

(3.11)

and the top-down denotation of a program P as

OJP K =
[

∑

{

BJp(x) in P K
}

p∈Π

]

≡

(3.12)

As the intuition suggests the transition system T defines the usual notion of SLD deriva-
tion, so that

BJG in P K = {[d]der
≈
| d = G

θ
−→
P

∗
B}

where
der

≈ is equality up to renaming of mgu’s and clauses. Finally, we define the equiva-
lence ≈ between two programs P1 and P2 as the equivalence of the behaviors of the two
programs, i.e.

P1 ≈ P2 ⇔ ∀G ∈ Goals,BJG in P1K = BJG in P2K (3.13)

In this framework, operational and denotational semantics enjoy several interesting
properties, which are stated below

• Operational behavior is compositional

BJA in P K = A · OJP K,
BJ(G1,G2) in P K = BJG1 in P K× BJG2 in P K

• Operational semantic is correct and minimal

P1 ≈ P2 ⇐⇒ OJP1K = OJP2K

• Operational semantic is OR-compositional

OJP1 ∪ P2K = OJP1K ⊎ OJP2K

where ⊎ is an appropriate semantic operator

• Operational and denotational semantics are equal

OJP K = FJP K
QJG in P K = BJG in P K

3.2 Abstraction framework

We will use uco’s over collections to model observables, taking care of the fact that we
want to abstract only one SLD tree at the time and not an entire family of SLD trees.
For this reason, we call observable an uco over D such that:

• ρ(∅) = ∅,

• ρ|WFSG is an uco over WFSG for all G ∈ Goals,



• D ≡ D′ ⇒ ρ(D) ≡ ρ(D′)

where WFSG is the set of all SLD trees for the goal G and ≡ is equality of SLD trees up
to renaming of initial goals. Often we will define an observable ρ by an auxiliary operator

ρ∗ :
⋃

G

WFSG →
⋃

G

WFSG

which abstracts SLD trees. From ρ∗ we can define ρ as follows:

ρ(D) =
⋃

G

ρ∗(D ∩ ⊤WFSG)

By means of standard abstract interpretation techniques we can derive the abstract
semantics, replacing semantic operators seen above with their optimal abstract counter-
part. We can define two major classes of observables, according to precision w.r.t. the
semantic operators. The first class is that of perfect observables, for which

ρ(A ·D) = ρ(A · ρ(D)) (3.14)

ρ(D1 ×D2) = ρ(ρ(D1)× ρ(D2)) (3.15)

ρ(D1 ✶D2) = ρ(ρ(D1)✶ ρ(D2)) (3.16)

Abstract semantics for perfect observables enjoy all the properties we have already
seen in the concrete case. Moreover, abstract semantics are precise.

ρ(BJG in P K) = BρJG in P K = ρ(QJG in P K) = QρJG in P K
ρ(OJP K) = OρJP K = ρ(FJP K) = FρJP K

We can relax axiom (3.16) by requiring the precision of ✶ only on the second argument:

ρ(D1✶D2) = ρ(D1 ✶ ρ(D2)) (3.17)

In this case we speak of denotational observables. We can still obtain a precise denota-
tional semantics using the abstract optimal counterpart of C as abstract semantic function
for clauses. We have as a result:

ρ(QJG in P K) = QρJG in P K
ρ(FJP K) = FρJP K

and the following relations between operational and denotational semantics:

FρJP K ⊑ OρJP K
QρJG in P K ⊑ BρJG in P K

3.3 Operational observables

We can improve the semantic framework by adding a new abstraction class, that of
operational observables. They can be obtained from perfect observables by relaxing the
precision condition of axiom (3.16) as in denotational observables, but requiring the
precision on the left rather than on the right argument.



Definition 3.1 Let ρ ∈ uco(D) be an observable. Then ρ is an operational observable if

ρ(A ·D) = ρ(A · ρ(D))

ρ(D1 ×D2) = ρ(ρ(D1)× ρ(D2))

ρ(D1 ✶D2) = ρ(ρ(D1)✶D2) (3.18)

The definition of operational observables is symmetric w.r.t. that of the denotational
ones, and the same is true for the properties they enjoy. Hence, it is not surprising the
following

Theorem 3.2 If ρ is a denotational and operational observable, then it is a perfect ob-
servable.

The relaxed properties of operational observables allow us to define an abstract oper-
ational semantic, characterized by the following slight variation of the original transition
rule:

X ∈ ρ(D), X 6= X ✶̃ µ(tree(P ))

X
P
7−→ρ X ✶̃ µ(tree(P ))

,

where ✶̃: ρ(D) × D → ρ(D) is defined as X ✶̃ D = ρ(X ✶D). The trick is to use the ✶

operator in such a way that its second argument is always taken before abstracting.
The operational semantic of operational observables enjoys all the properties that

the denotational semantic has in the case of denotational observables, namely the com-
positionality properties shown by Theorem 3.3 and the precision properties of Theorem
3.4.

Theorem 3.3 Let ρ be an operational observable, A be an atom, G,G1G2 be goals and
P be a program. Then

1. BρJA in P K = A ·̃ OρJP K

2. BρJG1,G2 in P K = BρJG1 in P K ×̃ BρJG2 in P K

Theorem 3.4 Let ρ be an operational observable, G ∈ Goals and P ∈ Progs. Then

1. ρ(BJG in P K) = BρJG in P K

2. ρ(OJP K) = OρJP K

The following corollary states the correctness and full abstraction of the operational
semantic.

Corollary 3.5 Let ρ be an operational observable and P1, P2 be programs. Then

P1 ≈ρ P2 ⇔ OρJP1K = OρJP2K

The denotational semantic is still correct, being derived using abstract interpretation.
However it is in general less accurate than the operational one, as stated below.

Corollary 3.6 Let ρ be an operational observable, P be a program and G be a goal.
Then



1. OρJP K ⊑ FρJP K,

2. BρJG in P K ⊑ QρJG in P K.

We conclude by showing one example of operational observable. Roughly speaking,
an observable is operational when it keeps some information which cannot be computed
in a bottom-up way. For example,

ρ(S) = gwf{d ∈ Derivs
/
der

≈
| ∃d′ ∈ S such that d ∝ d′}

with

d ∝ d′ ⇐⇒ d = G0 → . . .→ Gm, d′ = G
′

0 → . . .→ G
′

k,

there exist p and G s.t. G′

0 = G0 ≤ (p(x),G),

with x renamed apart from d and d′,

result(d) ≡ result(d′),
(

G 6= ✷ or #{i | first(Gi) ≤ p(x)} = #{i | first(G′

i) ≤ p(x)}
)

,

where gwf(X) is the least SLD tree containing the SLD derivations in X and #X is the
cardinality of the set X. The observable ρ is a concretization of computed resultants.
When the initial goal is atomic, it counts how many times the same predicate of this goal
is called in the derivation.

4 The lattice of observables

We know that the set of abstractions is a complete lattice. However, in the logic pro-
gramming case, observables are a subset of all the abstractions. Hence we have to prove
they are still a lattice.

Theorem 4.1 For each i ∈ I, let ρi be an observable. Then
⊔

i∈I ρi and
d

i∈I ρi are
observables.

From theorems 2.4 and 2.1 we immediately derive our first result concerning the lattice
of observables.

Theorem 4.2 The sets of denotational, operational and perfect observables are complete
lattices.

Now, if we compose different observables by means of the meet and join operators find-
ing their most abstract common concretizations or most concrete common abstractions,
we know that the result will be in the same class in which we took the operands.

However our understanding of the lattice of observables is still far from being satis-
factory. In particular, two questions arise.

1. are the denotational, operational and perfect classes able to characterize all the
observables which enjoy the related properties?

2. which are the infimum and supremum of our classes of observables?

The first question has a negative answer. There are examples of observables which are
not perfect (and neither denotational nor operational) and still enjoy all the properties
of perfect observables. Consider, for example



ρ(D) = D +
{

t(x)
ǫ
−→n t(x) | t(x)

ǫ
−→ t(x) ∈ D

}

,

which looks like the trivial observable ρ(D) = D with some added useless derivations,
which are obviously generated from both the operational and the denotational semantics.
It can be shown that none of our semantic operators is precise on it. Nevertheless its
compositional and accuracy properties are those of perfect observables.

As far as the second question is concerned, we note that ρ⊤ = ⊤D and ρ⊥ = Id
are perfect observables (and therefore also denotational and operational). Hence they
are the infimum and supremum we looked for. However we are not really interested in
these trivial observables. Hence we look for infimum and supremum in the set of all the
observables but ρ⊤ and ρ⊥. If we consider perfect observables, the intuition says that the
infimum should be an observable similar to ground resultants. Unfortunately, this is not
the case. The problem seems to be related to the existence of perfect observables which
have nothing to do with known semantics for logic programs. Consider, for instance, the
observable of Example 4.3.

Example 4.3 Given the predicate symbol t, define

ρ(D) = D✶

{

d ∈ Derivs
/
der

≈
| ∃θ,G such that first(d) = (t(x)θ,G)

}

The idea of this observable is that there exists one predicate, t, which causes the loss
of every subsequent information on the computation. We can prove that ρ is perfect.
However it is not comparable with the ground resultant observable, that we thought
strictly related to all the observables in that class.

We can partially solve the above problem by considering only those observables which
are concretizations of the observable ρh, defined as follows.

ρ∗h(S) =











∅ if S = ∅

{G −→∗
B | B 6= ✷} if S 6= ∅ doesn’t contain refutaions

⊤WFSG otherwise

ρh is the observable corresponding to the least Herbrand model semantic. Therefore,
the above constraint is the same as considering only the collecting semantics, according
to [14]. Now that all the “strange” abstractions are cut off, we can prove the following
theorem.

Theorem 4.4 The most abstract of all the denotational observables which are concretiza-
tion of ρh is the observable of ground computed answers ρg, defined as follow

ρ∗g(S) =
{

d =G
θ
−→∗

B | B = ✷⇒
(

∀G′ ≤ Gθ, G
′ ground⇒

∃d′ = G
θ′
−→∗

✷ ∈ S such that G′ ≤ Gθ′
)}

(4.1)

4.1 Functional dependencies

While the meet and join operators are strictly related to the lattice of observables, they
are not really useful in deriving new abstract domains, if we exclude the trivial case of
attribute independent analysis. This is better accomplished by other operators, such as
functional dependencies, disjunctive completion and so on.



In the rest of the paper we will study the functional dependencies operator in the
setting of logic programming. The first thing to prove, as in the meet and join case,
is that the application of the operator really brings to abstractions which are indeed
observables.

Theorem 4.5 Let ρ1 and ρ2 be observables, ⊙ be a left-additive binary operator over D,
such that

1. if S ∈WFSG, then S ⊙X ∈WFSG, for all X ∈ ρ1(D),

2. D1 ⊙D2 = ∅ if and only if D1 = ∅.

3. S ≡ S ′ implies S ⊙X ≡ S ′ ⊙X, for each X ∈ ρ1(D).

Then ρ1 →
⊙ ρ2 is an observable.

A really interesting case is that of autodependencies w.r.t. the operator ✶, which fully
satisfies all the properties of the above theorem. We can prove the following theorem.

Theorem 4.6 If ρ is an observable, then Dep✶ ρ is an observable too, and enjoys the
following properties:

1. Dep✶ ρ is a refinement of ρ,

2. if ρ is operational, then Dep✶ ρ = ρ,

3. if ρ is denotational, then Dep✶ ρ is the most abstract among all the observables
which are concretization of ρ and for which ✶ is left-precise. Moreover, ✶ is also
right-precise on Dep✶ ρ.

For example, in [15] has been shown, although in a different setting, that functional
autodependencies with respect to ✶ of the computed answers observable is the observable
of computed resultants. Moreover, follows from Theorem 4.6 and from the properties of
the observable ρg that Dep✶ ρg is the most abstract perfect observable among all the
observables that are concretizations of the least Herbrand’s model.

5 Conclusions and Future Works

This paper was originated by an attempt to better understand the structure of the lattice
of observables in logic programs. Because this is strongly related to the precision of the
semantic operators, we have first analyzed the problem in a general abstract interpretation
setting, when possible, and then applied the results to the case of logic programs.

This line of research can be further pursued by studying other operators on observables
or by studying how the precision of each semantic operator affects the properties of
observables. What we expect is that ·, × and ✶ are related to compositionality w.r.t
procedure call, goal-composition and program union.

However, it is probably more interesting to take into account the classes of observ-
ables which are used for static analyses. In this case we want to find a set of operators
on observables by which systematically derive new abstract domains, enjoying desired
properties of precision and/or compositionality. For example, starting with the basic ab-
stract domain for groundness, which simply states whether a variable is ground or not, we
could automatically build more complex observables, like Def or Pos. Moreover, if these



operators were constructive, we could be able to develop a static analysis software in
which abstract domains are specified giving the basic domain of interest and the desired
properties. All the remaining tasks, such as deciding how to compose the basic abstract
domains to satisfy the request of the user or performing the effective analysis, would be
a matter of the software.
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