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2 Dipartimento di Informatica, Università di Pisa.
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Abstract. We cope with the problem of correctness and optimality for
logic programs analysis by abstract interpretation. We refine the goal-
dependent framework appeared in [7] by fixing a result of correctness and
introducing two specialized operators for forward and backward unifica-
tion. We provide the best correct abstractions of the concrete operators
in the case of set-sharing analysis. We show that the precision of the
overall analysis is strictly improved and that, in some cases, we gain
precision w.r.t. more complex domains involving linearity and freeness
information.

1 Introduction

In the field of static analysis by abstract interpretation [10, 11], the most inter-
esting (and studied) properties for logic programs are arguably groundness and
sharing. Groundness analysis aims at discovering ground variables in the answer
substitutions, while the goal of (set) sharing analysis is to detect sets of variables
which share a common variable. While the results on groundness analysis seem
to converge toward the domain Pos [1, 9] which is commonly recognized as the
optimal domain for detecting groundness property, the same did not happen for
the sharing property. The problem of finding a “good” domain for sharing anal-
ysis is still open. Among the various proposals, we find new domains for more
efficient and/or more precise analyses [2, 15], combinations of domains (e.g. in-
cluding freeness and/or linearity information [14, 21]), and many techniques for
improving the abstract operators used in the analysis [17, 14]. The common start-
ing point of most of these proposals is the domain Sharing by Langen [18, 16],
slightly modified in [7] where all the abstract operators are proved to be cor-
rect and optimal. Actually, the proof of correctness of the abstract unification
operator in [7] has a flaw and we give a counterexample in this paper. When
an abstract operator is not correct w.r.t. the concrete operator, the common so-
lution is to design a new correct (and possibly optimal) abstract operator. But
we think that, in this case, the incorrectness is mainly due to a wrong definition
of the concrete unification operator. In fact, such an operator does not perform
the necessary renamings in order to avoid variable clashes, which is common to
almost any semantics for logic programs. Following this intuition, we propose to



modify the concrete semantics, by using a more “intuitive” concrete unification,
which performs the necessary renamings, and define the corresponding optimal
abstract unification operator.

Once the correctness of the framework has been asserted, we can cope with
the problem of precision. The choice of the authors of using a unique unification
operator for performing both forward and backward unification leads to a signif-
icant loss of precision. The forward unification computes the entry substitution
by unifying the calling substitution with the head of the clauses. The backward
unification computes the success substitution from the calling substitution, the
exit substitution and the head of the clauses. It is immediate to verify that the
forward unification can be computed as a backward unification with an empty
exit substitution. But, at the abstract level, this stratagem leads to a loss of
precision. Therefore we define a specialized operator which is able to exploit
the particular characteristics of the forward unification. We also prove that this
operator is correct and optimal w.r.t. the concrete one.

Furthermore, we propose a different backward concrete unification which
makes use of the matching operation instead of the standard unification. This
choice is not new and has been already suggested in [14, 17]. We show that using
a matching operator leads to a significant augment of precision already at the
concrete level. We design a backward abstract unification operator, correct and
optimal w.r.t. the new concrete operator, which leads to a strictly more precise
analysis. Finally, we compare our results with other techniques for improving
precision and efficiency of sharing analysis.

2 Notations

Given a set A, let ℘(A) be the set of subsets of A and ℘f (A) be the set of
finite subsets of A. Given two posets A and B, we denote by A→B the space
of monotonic functions from A to B ordered pointwise. When an order is not
specified, we assume the least informative order (x ≤ y ⇐⇒ x = y). Given
A,C complete lattices, a Galois Insertion [10] 〈α, γ〉 : C ⇌ A is given by a pair
of maps α : C→A, γ : A→C such that α(c) ≤ a ⇐⇒ c ≤ γ(a) and α is
onto. We say that an abstract operator fα : A→A is correct w.r.t. a concrete
operator f : C→C when α ◦ f ≤A fα ◦α and it is optimal when α ◦ f = fα ◦α.
In this case fα is called the best correct approximation of f .

Let V be a countable set of variables and Term be the set of terms built from
V and a fixed signature. Given a term t, we denote by vars(t) the set of variables
occurring in t and by uvars(t) the subset of vars(t) whose elements only appear
once in t (e.g., uvars(t(x, y) = t(y, z)) = {x, z}). We will abuse the notation
and apply vars and uvars to any syntactic object with the obvious meaning. We
denote by ǫ the empty substitution and by {x1/t1, . . . , xn/tn} a substitution θ
with θ(xi) = ti 6= xi. We denote by vars(θ) the set dom(θ)∪ range(θ) and, given
U ∈ ℘f (V), we denote by θ|U the projection of θ over U , i.e. the only substitution
such that θ|U (x) = θ(x) if x ∈ U and θ|U (x) = x otherwise. Given θ1 and θ2 two
substitutions with disjoint domains, we denote by θ1⊎θ2 the substitution θ such



that the domain dom(θ) = dom(θ1) ∪ dom(θ2) and θ(x) = θi(x) if x ∈ dom(θi),
for i ∈ {1, 2}. The application of a substitution θ to a term t is denoted by tθ or
θ(t). Given two substitutions θ and δ, their composition, denoted by θ◦δ is given
by (θ ◦ δ)(x) = θ(δ(x)). Instantiation induces a preorder on substitutions: θ is
more general than δ, denoted by δ ≤ θ, if there exists σ such that σ ◦ θ = δ. The
set of idempotent substitutions is denoted by Subst , while Ren denotes the set
of all the renamings (i.e. invertible substitutions). Any idempotent substitution
σ is an mgu (most general unifier) of the corresponding set of equations Eq(σ) =
{x = θ(x) | x ∈ dom(σ)}. In the following, we will abuse the notation and denote
by mgu(σ1, . . . , σn), when it exists, the substitution mgu(Eq(σ1)∪ . . .∪Eq(σn)).

3 Correctness in the Cortesi-Filè Framework

Cortesi and Filè define in [7] an abstract domain for recovering sharing informa-
tion based upon a variant of the domain Sharing by Jacobs and Langen [16] and
give a set of optimal abstract operators. However, the proof has a flaw, namely
the fact that the abstract unification USh is not correct w.r.t. the concrete one
URs . To show why this happens, and since this will be useful in the rest of the
paper, we briefly recall the definitions of the domains and operators from [7].

3.1 Concrete Domain and Operations

The concrete domain is Rsub = (℘(Subst) × ℘f (V)) ∪ {⊤Rs,⊥Rs}, which is a
complete lattice, partially ordered as follows: ⊤Rs is the top element, ⊥Rs is the
bottom element and [Σ1, U1] ⊑Rs [Σ2, U2] if and only if U1 = U2 and Σ1 ⊆ Σ2.
An object [Σ,U ] is a set of substitution Σ where the set of variables of interest
U is explicitly provided. The least upper bound of Rsub is denoted by ⊔Rs and
collects substitutions coming from different computational paths. The concrete
projection πRs : Rsub× ℘f (V)→ Rsub is defined as follows:

πRs(⊤Rs, U2) = ⊤Rs πRs(⊥Rs, U2) = ⊥Rs

πRs([Σ1, U1], U2) = [Σ1, U1 ∩ U2]

It restricts the variables of interest of a set of substitutions. Finally, the concrete
unification is URs : Rsub× Rsub× Subst→ Rsub such that:

URs(⊥Rs, ξ, δ) =URs(ξ,⊥Rs, δ) = ⊥Rs

URs(ξ,⊤Rs, δ) =URs(⊤Rs, ξ, δ) = ⊤Rs if ξ 6= ⊥Rs

URs([Σ1, U1], [Σ2, U2], δ) =[{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

vars(σ1) ∩ vars(σ2) = ∅}, U1 ∪ U2]

Although it is well defined for all the values of the domain, the use of
URs([Σ1, U1], [Σ2, U2], δ) is restricted only to those values such that U1∩U2 = ∅
and vars(δ) ⊆ U1 ∪ U2, since this is the only use in the semantics. Also, the
corresponding abstract operators will be defined under these conditions only. It
is worth noting that the authors use the condition vars(σ1) ∩ vars(σ2) = ∅ in
order to avoid variables clashes between the two chosen substitutions.



3.2 Abstract Domain and Operations

Now we briefly recall the definition of the abstract domain Sharing [16, 7].

Sharing = {[A,U ] | A ⊆ ℘(U), (A 6= ∅ ⇒ ∅ ∈ A), U ∈ ℘f (V)} ∪ {⊤Sh ,⊥Sh} .

Intuitively, an abstract object [A,U ] describes the relations between the variables
in U : if S ∈ A then the variables in S are allowed to share a common variable.
For instance, [{{x, y}, {z}, ∅}, {x, y, z}] represents the substitutions where x and
y may possibly share, while z is independent from both x and y.

The domain is ordered like Rsub, with ⊤Sh and ⊥Sh as the greatest and least
element respectively, and [A1, U1] ⊑Sh [A2, U2] iff A1 = A2 and U1 ⊆ U2. The
abstraction function αSh : Rsub→ Sharing is defined as follows:

αSh(⊥Rs) =⊥Sh αSh(⊤Rs) =⊤Sh

αSh([Σ,U ]) =[{occ(σ, y) ∩ U | y ∈ V, σ ∈ Σ}, U ]

where occ(σ, y) = {z ∈ V | y ∈ vars(σ(z))}. We call sharing group an element of
℘f (V). To ease the notation, often we will write a sharing group as the sequence
of its elements in any order (e.g. xyz represents {x, y, z}) and we omit the empty
set when clear from the context. The abstract operators do behave exactly as
the concrete ones on ⊤Sh and ⊥Sh , while the other cases are the following:

[A1, U1]⊔Sh [A2, U2] =

{

[A1 ∪A2, U2] if U1 = U2

⊤Sh otherwise

πSh([A,U ], V ) =[{B ∩ V | B ∈ A}, V ∩ U ]

USh([A1, U1], [A2, U2], δ) =[uSh(A1 ∪A2, δ), U1 ∪ U2]

uSh(A, ǫ) =A

uSh(A, {x/t} ⊎ θ) =uSh(A \ (rel(A, {x}) ∪ rel(A, vars(t)))

∪ bin(rel(A, {x})∗, rel(A, vars(t))∗), θ).

where uSh : ℘(℘f (V))× Subst → ℘(℘f (V)) is defined by induction, by using the
following auxiliary operators:

– the closure under union (or star union) ·∗ : ℘(℘f (V))→℘(℘f (V))

A∗ =
{

⋃

T | ∅ 6= T ∈ ℘f (A)
}

– the extraction of relevant components rel : ℘(℘f (V))× ℘f (V)→℘(℘f (V)):

rel(A, V ) = {T ∈ A | T ∩ V 6= ∅}

– the binary union bin : ℘(℘f (V))× ℘(℘f (V))→℘(℘f (V)):

bin(A,B) = {T1 ∪ T2 | T1 ∈ A, T2 ∈ B}

In the rest of the paper, we will abuse the notation and write rel(A, o) for
rel(A, vars(o)), where o is any syntactic object.



3.3 Problems in Correctness

In an object [Σ,U ] ∈ Rsub, all the variables which do appear in Σ and not in
U are thought as they were existentially quantified. This means that it does not
matter what these variables really are, but only their relationships with other
variables in the same substitution. The same idea also applies to ex-equations
[19] and the domain ESubst in [16]. However, this intuition does not apply to the
concrete operator for unification URs , since it does not perform any renaming.
Actually, URs only checks that σ1 and σ2 do not have variables in common,
without considering their sets of variables of reference U1 and U2; namely it
checks that vars(σ1)∩vars(σ2) = ∅. This unification can lead to counterintuitive
results.

Example 1. Consider the following concrete unification:

URs([{{x/y}}, {x}], [{ǫ}, {y}], ǫ) = [{{x/y}}, {x, y}] . (1)

Being vars(ǫ) = ∅, the concrete unification operator allows us to unify {x/y}
with ǫ without renaming the variable y, which is not a variable of interest in the
first element but it is treated as if it was, and this also causes the incorrectness
of USh . If we consider Eq. (1) and compute the result on the abstract side by
using the abstract unification operator USh we have:

USh( αSh([{{x/y}}, {x}]), αSh([{ǫ}, {y}]), ǫ)
= USh( [{x}, {x}], [{y}, {y}], ǫ) = [{x, y}, {x, y}] .

(2)

This is not a correct approximation of the concrete result, since:

αSh([{{x/y}}, {x, y}]) = [{xy}, {x, y}] 6⊑Sh [{x, y}, {x, y}] . (3)

This counterexample proves that the abstract unification operator USh proposed
in [7] is not correct w.r.t. the concrete one URs . This problem can be solved
by introducing a stronger check on variable clashes, namely by replacing the
condition vars(σ1) ∩ vars(σ2) = ∅ with (vars(σ1) ∪ U1) ∩ (vars(σ2) ∪ U2) = ∅ in
the definition of URs , thus obtaining the following operator.

URs([Σ1, U1], [Σ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

(vars(σ1) ∪ U1) ∩ (vars(σ2) ∪ U2) = ∅}, U1 ∪ U2] , (4)

In the rest of the paper, we will refer to URs as given by the above definition.
Moreover, when we design domains and operators for developing static analyses,
we need to be sure that the concrete operators are powerful enough to allow the
definition of the semantics of the programming language we are interested in. In
the case of logic programming, this semantics will be some sensible abstraction of
the SLD-derivations [6], such as computed answers. We think that the operators
πRs,⊔Rs and URs do not allow for the definition of such a semantics without
using some additional operator which performs renamings. Actually, in [9] the au-
thors recognize that “in a typical semantic construction, renaming is performed”



and in [8] they define a more complex unification with renamings. However, the
corresponding abstract operators are given only for groundness analysis. We re-
call the definition of the concrete operator. Let Atoms be the syntactic categories
for atoms. The concrete unification U′

Rs
: Rsub× Rsub×Atoms×Atoms→ Rsub

defined in [8] is the following:

U′
Rs([Σ1, U1], [Σ2, U2], A1, A2) =

= URs([ρ1(Σ1), ρ1(U1)], [ρ2(Σ2), U2],mgu(ρ1(A1) = A2))
(5)

where (ρ1, ρ2) = Apart(U2) provided vars(A1) ⊆ U1 and vars(A2) ⊆ U2, ⊥Rs

otherwise. We still need to define Apart . Given U2 ∈ ℘f (V), take a partition
{V1, V2} of V such that V1 and V2 are infinite and U2 ⊆ V2. Then Apart(U2) =
(ρ1, ρ2) where ρ1 : V →V1 and ρ2 : V →V2 are bijections such that, for each
x ∈ U2, ρ2(x) = x. We apply such bijections to syntactic objects as if they were
substitutions. Intuitively, the maps ρ1 and ρ2 are used to rename the variables
in Σ1 and Σ2 in such a way that ρ1(Σ1) and ρ2(Σ2) are renamed apart each
others, and variables in U2 are not renamed.

The definition of U′
Rs

allows us to define the abstract unification U′
Sh

cor-
responding to U′

Rs
by performing the necessary renamings, as suggested by the

concrete operator.

U′
Sh([S1, U1], [S2, U2], A1, A2)

= USh([ρ1(S1), ρ1(U1)], [S2, U2],mgu(ρ1(A1) = A2)) (6)

where (ρ1, ρ2) = Apart(U2) provided vars(A1) ⊆ U1 and vars(A2) ⊆ U2, ⊥Sh

otherwise. Note that we do not need to apply ρ2 to S2 since vars(S2) ⊆ U2

and we now ρ2|U2
is the identity. It is easy to show that U′

Sh
is the best correct

operator induced by the concrete unification U′
Rs
, as shown by the next theorem.

Theorem 1. U′
Sh

(respectively USh) is correct and optimal w.r.t. U′
Rs

(respec-
tively URs).

This result fixes the correctness problem in the framework of [7]. The fol-
lowing sections will be devoted to examine several improvements concerning the
precision of the resulting semantics.

4 Forward and Backward Unification

A semantics using πRs,⊔Rs and U′
Rs

has been defined in [8]. In the following,
we briefly recall the relevant definitions and show some possible improvements
for the analysis which arise from specializing the unification operator in two
different contexts.

Let Atoms, Clauses, Body and Progs be the syntactic categories for atoms,
clauses, bodies and programs respectively. The semantics is parametric with
respect to a complete lattice X , where a denotation is an element in the set of
monotonic maps:

Den = Atoms→X →X . (7)



We have the following semantic functions:

P : Progs→Den

C : Clauses→Den→Den

B : Body→Den→X →X

PJP K = lfpλd.

(

⊔

cl∈P

CJclKd

)

CJH ← BKdAx = πX (UX (x′, x,H,A), x)

where x′ = BJBKd(πX (UX (x, idJH ← BK, A,H), idJH ← BK))

BJλKdx = x

BJA : BKdx = BJBKd(dAx)

whose definitions are given by means of the following operators:

UX : X × X × Atoms× Atoms→X

πX : X × X →X

idX : Clauses→X

The instantiation of X to Rsub is obtained by defining:

UX = U′
Rs

πX ([Σ1, U1], [Σ2, U2]) = πRs([Σ1, U1], U2)

idX (cl) = [{ǫ}, vars(cl)]

while for X = Sharing we replace U′
Rs

and πRs with U′
Sh

and πSh and we define
idX (cl) = αSh([{ǫ}, vars(cl)]) = [{{x} | x ∈ vars(cl)}, vars(cl)].

It is routine to check that all the semantic functions are continuous, the least
fixpoint in the definition of P does exist and the abstract semantics over Sharing
is correct w.r.t. the concrete one over Rsub, assuming the standard lifting [10]
of the Galois connection 〈αSh , γSh〉 to 〈α′

Sh , γ
′
Sh〉 : Atoms→ Rsub→ Rsub ⇌

Atoms→ Sharing→ Sharing.

4.1 Forward Unification

The concrete unification U′
Rs

is used in two different contexts:

– as a forward unification to compute the collecting entry substitution
πRs(U

′
Rs
(x, idJH ← BK, A,H), idJH ← BK) from the collecting call sub-

stitution x;
– as a backward unification to compute the collecting answer substitution

πRs(U
′
Rs
(x′, x,H,A), x) from the collecting exit substitution x′.

Although U′
Sh

is optimal w.r.t. U′
Rs
, this is not the case for a specialized version

of U′
Rs
, as used in in the forward unification, where the second argument is

always of the form [{ǫ}, vars(H ← B)]. Therefore, a specialized version of U′
Sh

could improve the precision of the analysis.



Example 2. Assume, without loss of generality, that (ρ1, ρ2) = Apart(U2) and
ρ1 restricted to {x, y, z} is the identity. Then, we have that:

U′
Sh([{xy, yz}, {x, y, z}], idShJp(u, v, w)←K, p(x, y, z), p(u, v, w)) =

[{xyuv, yzvw, xyzuvw}, {x, y, z, u, v, w}] . (8)

If we compute the projection on the variables {u, v, w} we obtain the entry
substitution [{uv, vw, uvw}, {u, v, w}]. However, we know that u, v, w are free in
idRsJp(u, v, w)←K. Following [14], we can avoid to compute the star unions when
considering the binding y/v in uSh , obtaining the smaller result [{xyuv, yzvw},
{x, y, z, u, v, w}]. If we now compute the projection on the variables {u, v, w}
we obtain the entry substitution [{uv, vw}, {u, v, w}], with an obvious gain of
precision.

Example 3. Let us consider the following unification.

U′
Sh([{xy, xz}, {x, y, z}], idShJp(t(u, v), h, k)←K, p(x, y, z), p(t(u, v), h, k)) =

[bin({xyh, xzk, xyzhk}, {u, v, uv}), {x, y, z, h, k, u}] . (9)

Since the term t(u, v) is linear and independent from x, following [14] we can
avoid to compute the star union over {xy, xz}, obtaining the abstract object
[bin({xyh, xzk}, {u, v, uv}), {x, y, z, h, k, u}]. If we project on {h, k, u, v} we ob-
tain bin({h, k}, {u, v, uv}) against bin({h, k, hk}, {u, v, uv}). With the new im-
provement, we are able to prove the independence of h from k.

These examples show that, when computing forward abstract unification as a
specialized version of the abstract unification, there is a loss of precision. In fact,
such a forward abstract unification operator is not optimal. We now show that
it is possible to design an optimal operator for forward unification which is able
to exploit the information of linearity and freeness coming from the fact that
the second argument is always of the form [{ǫ}, vars(H ← B)]. Note that we are
not proposing to embed freeness and linearity information inside the domain,
but only to use all the information coming from the syntax of clauses.

4.2 The Refined Forward Unification

Our first step is to change the definition of the semantic function for clauses by
introducing a new operator for forward unification Uf

X : X × Clauses×Atoms×
Atoms→ X , in the following way:

CJH ← BKdAx = πX (UX (x′, x,H,A), x)

where x′ = BJBKd(πX (Uf
X (x,H ← B,A,H), idJH ← BK))

(10)

For the concrete semantics, we simply instantiate Uf
X with U′f

Rs
defined as:

U′f
Rs([Σ,U ], cl , A1, A2) = U′

Rs([Σ,U ], idRsJclK, A1, A2) , (11)

so that nothing changes. However when we move to the abstract domain
Sharing, directly abstracting U′f

Rs
gives more precise results than abstracting

U′
Rs

in U′
Sh

and composing it with idSh .



Reasoning according to this rule, we could think that a better approximation
could be reached by abstracting πRs(U

′f
Rs
(x,H ← B,A,H), idJH ← BK) as

a whole. However, since πRs is complete [7], this does not happen. Studying
the direct abstraction of this composition would still be useful to find a direct
implementation which is more efficient than computing U′f

Rs
(x,H ← B,A,H)

and projecting later, but we do not consider this problem here.
Following the approach of [16, 7], we first define an operator Uf

Sh
which does

not perform renamings.

Definition 1. We define the forward abstract unification without renamings
Uf

Sh
: Sharing× ℘f (V)× Subst→ Sharing as:

Uf
Sh
([S1, U1], U2, θ) = [uf

Sh
(S1 ∪ {{x} | x ∈ U2}, U2, θ), U1 ∪ U2]

where uf
Sh

: ℘(℘f (V))× ℘f (V)→ ℘(℘f (V)) is defined as:

uf
Sh
(S,U, ǫ) = S

uf
Sh
(S,U, {x/t} ⊎ δ) = uf

Sh
((S \ (rel(S, t) ∪ rel(S, x)))∪

bin(rel(S, x), rel(S, t)), U \ {x}, δ)

if x ∈ U

uf
Sh
(S,U, {x/t} ⊎ δ) = uf

Sh
((S \ (rel(S, t) ∪ rel(S, x)))∪

bin(rel(S, x), rel(S, Y )∗)∪

bin(rel(S, x)∗, rel(S,Z)∗)∪

bin(bin(rel(S, x)∗, rel(S,Z)∗), rel(S, Y )∗),

U \ vars({x/t}), δ)

if x /∈ U , Y = uvars(t) ∩ U , Z = vars(t) \ Y .

The domain is restricted to the case U1 ∩ U2 = ∅ and vars(θ) ⊆ U1 ∪ U2.

The idea is simply to carry on, in the second argument of uSh , the set of vari-
ables which are definitively free and to apply the optimizations for the abstract
unification with linear terms and free variables [14]. Actually, while the case for
x ∈ U is standard, the case for x /∈ U exploits some optimizations which are not
found in the literature. When Z = ∅, we obtain:

(S \ (rel(S, t) ∪ rel(S, x))) ∪ bin(rel(S, x), rel(S, Y )∗) ,

which is the standard result when the term t is linear and independent from x.
However, when Z 6= ∅, the standard optimizations do not apply, since t cannot be
proved to be linear and independent from x, and we should obtain the following
standard result:

(S \ (rel(S, t) ∪ rel(S, x))) ∪ bin(rel(S, x)∗, rel(S, t)∗) .

However, we are able to avoid some star unions by distinguishing the variables
in t which are “linear and independent” (the set Y ) from the others (the set Z),
and observing that two sharing groups in rel(S, x) may be merged together only



under the effect of the unification with some variable in Z. We will come back
later to this topic.

We can now define the forward abstract unification with renamings U′f
Sh

:

Sharing× Clauses× Atoms× Atoms→ Sharing by exploiting the operator Uf
Sh

previously defined. We only need to introduce the necessary renamings, as done
for the concrete case:

U′f
Sh([S1, U1], cl , A1, A2) = Uf

Sh
([ρ1(S1), ρ1(U1)], vars(cl),mgu(ρ1(A1) = A2))

(12)
with (ρ1, ρ2) = Apart(vars(cl)) provided that vars(A1) ⊆ U1 and vars(A2) ⊆

vars(cl), ⊥Sh otherwise. Using U′f
Sh

instead of U′
Sh

gives the improvements in
precision we have discussed in the Examples 2 and 3. Moreover, it is not possible
to do better then U′f

Sh
if we want to remain correct over all the conditions, as

the following theorem proves.

Theorem 2. U′f
Sh

is correct and optimal w.r.t. U′f
Rs
.

The proof of this theorem is very similar to the proof of the analogous theorem
for USh and URs which can be found in [7].

SinceUf
Sh

generates less sharing groups thenUSh and since checking whether
a variable is in U is easy, we can expect an improvement in the efficiency of the
analysis by replacingUSh withUf

Sh
in the computation of the entry substitution.

If computing Y and Z at each step of uf
Sh

seems difficult, it is always possible
to precompute these values before the actual analysis begins, since they depend
from the syntax of the program only. Moreover, in the definition of uf

Sh
, when

x ∈ U we can replace rel(S, x) with {{x}}, since θ is an idempotent substitution
and x /∈ U1. Finally, from the result of optimality, it immediately follows that
U′f

Sh
yields the same result, regardless of the choice of the mgu, and the result

of the algorithm for computing uf
Sh

is independent from the ordering of the
bindings. We have said before that this operator introduces new optimizations
which, up to our knowledge, are not used even in more complex domains for
sharing analysis which include linearity and freeness information. We give here
one example which shows their effects.

Example 4. Let us consider the following unification.

U′
Sh([{xw, xz, yw, yz}, {x, y, w, z}], idShJp(f(u, h), f(u, k), s, t)←K,

p(x, y, w, z), p(f(u, h), f(u, k), s, t)) . (13)

By applying the optimizations suggested from the unification algorithm in pres-
ence of linearity and freeness information [14], we may start from the abstract
object S = {xw, xz, yw, yz, s, t, u, h} and process the bindings one at a time,
keeping in mind that s, t, u and h are initially free. This means that in the bind-
ing x/f(u, h), the term f(u, h) is linear, and therefore we can avoid to compute
the star union in rel(S, x), thus obtaining:

{s, t, yw, yz} ∪ bin({xw, xz}, {u, h, uh}) =

{s, t, yw, yz, xwu, xwh, xzu, xzh, xwuh, xzuh} .



However, after this unification, the variable u can be bound to a non-linear
term. Therefore, when we consider the binding y/f(u, k), according to [14], we
are forced to compute all the star unions, obtaining:

{s, t} ∪ bin({yw, yz}∗, ({k} ∪ bin({xw, xz}, {u, uh}))∗) ∪ {xwh, xzh} .

Finally, in the bindings w/t and z/s we may omit all the star unions since t and
s are free, and we get the final result:

bin({yws, yzt}∗, ({k} ∪ bin({xws, xzt}, {u, uh}))∗) ∪ {xwsh, xzth} .

When we project over {u, h, k, s, t}, we obtain the sharing group stk. However,
when we consider the second binding, we know that k is free and independent
from y, and this is enough to apply a new optimization. In fact, k can share with
more than one sharing group related to y only if k shares with u. If we compute
the abstract unification with our algorithm we obtain:

{ywsk, yztk} ∪ bin({yws, yzt}∗,bin({xws, xzt}, {u, uh})∗)

∪ bin(bin({yws, yzt}∗,bin({xws, xzt}, {u, uh})∗), {k}) ∪ {xwsh, xzth} (14)

and when we project over {u, h, k, s, t}, the sharing group stk does not appear.
The result does not change by permuting the order of the bindings. If we consider
the binding y/f(u, k) before x/f(u, h), with the standard operators we get:

bin({xws, xzt}∗, ({h} ∪ bin({yws, yzt}, {u, uk}))∗) ∪ {ywsk, yztk}

and, when we project over {u, h, k, s, t}, we obtain the sharing group sth, which
does not appear in our result.

4.3 Matching and Backward Unification

In this section we study some optimizations for the computation of the exit
substitution. When we compute URs(x

′, x, δ), we essentially unify all pairs σ′

and σ, elements of x′ and x, with δ. However, we could consider only the pairs
in which σ′ is an instance of mgu(σ, δ) w.r.t. the variable of interest of x′. If this
does not hold, then σ′ cannot be a success substitution corresponding to the
calling substitution σ, and therefore we are unifying two objects which pertain
to different computational paths, with an obvious loss of precision, already at
the concrete level. This problem has been pointed out in [19, Section 5.5].

Formally speaking, we write θ �V σ to denote that θ is an instance of σ
w.r.t. the set of variables V , and we define:

θ �V σ ⇐⇒ ∃η.θ ≤ (η ◦ σ)|V .

Equivalently, it holds θ �V σ ⇐⇒ ∃η.∀v ∈ V.θ(v) = η(σ(v)). Intuitively,
if θ �V σ it means that some existential variables have been instantiated in
σ to obtain θ. For example {x/a} �{x} {x/y} since we may take η = {y/a}



and ({y/a} ◦ {x/y})|{x} = {x/a, y/a}|{x} = {x/a}. Note that {x/a} 6≤ {x/y}
according to the standard instantiation ordering.

Following this idea, we define a new operator for concrete backward unifica-
tion given as follows.

Ub
Rs([Σ1, U1], [Σ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Σ1, σ2 ∈ Σ2,

(vars(σ1) ∪ U1) ∩ (vars(σ2) ∪ U2) = ∅, σ2 �U2
mgu(σ1, δ)}, U1 ∪ U2] .

We also define the version with renamings U′b
Rs as it has been done for U′

Rs
.

U′b
Rs([Σ1, U1], [Σ2, U2], A1, A2) =

= Ub
Rs([ρ1(Σ1), ρ1(U1)], [ρ2(Σ2), U2],mgu(ρ1(A1) = A2))

(15)

where (ρ1, ρ2) = Apart(U2), and we instantiate UX with U′b
Rs in the semantic

definition of Eq. (10).
The idea of using a refined operator for computing the exit substitution is

not new. Both [14], working in the operational framework of [4], and [17] in a
denotational framework similar to ours, propose an abstract operator which is
correct w.r.t. Ub

Rs
. Also [21] use a refined algorithm for backward unification,

although it is not presented in algebraic form. However, none of these operators is
optimal (see Example 5). We now want to define the optimal abstract operator

U′b
Sh corresponding to U′b

Rs. This is accomplished by composing the forward

unification operator Uf
Sh

with a new auxiliary operator matchSh .

Definition 2. Given [S1, U1], [S2, U2] ∈ Sharing with U2 ⊆ U1, we define

matchSh([S1, U1], [S2, U2]) = [S′
1 ∪ {X ∈ (S′′

1 )
∗ | X ∩ U2 ∈ S2} , U1]

where S′
1 = {B ∈ S1 | B ∩ U2 = ∅} and S′′

1 = S1 \ S
′
1, and

Ub
Sh([S1, U1], [S2, U2], δ) = matchSh(U

f
Sh
([S1, U1], U2, δ), [S2, U2]) .

The idea is to collect only the sharing groups whose projection over U2 belongs
to S2. As before, U′b

Sh is obtained from Ub
Sh

by introducing the necessary re-
namings.

Example 5. Let U1 = {x, y, z}, U2 = {u, v, w}, δ = {x/u, y/v, z/w}, Σ1 =
{{y/t(x, z, z)}, {y/t(x, x, z)}}, Σ2 = {{v/t(u,w,w)}, {v/t(u, u, w)}}. If we com-
pute [Σ,U1 ∪ U2] = U′

Rs
([Σ1, U1], [Σ2, U2], δ), assuming (ρ1, ρ2) = Apart(U2)

such that ρ1|U1
= ǫ, we obtain θ = {y/t(x, x, x), z/x, u/x, v/t(x, x, x), w/x} ∈ Σ.

Given [S1, U1] = αSh([Σ1, U1]), [S2, U2] = αSh([Σ2, U2]), S1 = {xy, yz} and
S2 = {uv, vw}, we obtain [S,U1∪U2] = U′

Sh
([S1, U1], [S2, U2], δ) and xyzuvw ∈ S.

However, note that θ is obtained by unifying σ1 = {y/t(x, z, z)} with σ2 =
{v/t(u, u, w)}, and that σ2(v) = t(u, u, w) is not an instance of (mgu(σ1, δ))(v) =
t(x, z, z). Therefore, σ1 and σ2 do pertain to different computational paths. If

we compute [Σ′, U1 ∪ U2] = U′b
Rs([Σ1, U1], [Σ2, U2], δ) we obtain:

Σ′ = {{y/t(x, z, z), u/x, v/t(x, z, z), w/z}, {y/t(x, x, z), u/x, v/t(x, x, z), w/z}}



which does not contain θ. In the abstract domain, we have:

U′b
Sh([S1, U1], [S2, U2], p(x, y, z), p(u, v, w)) = [{xyuv, yzvw}, U1 ∪ U2] .

After the unification we know that x and z are independent. On the contrary, the
operators defined in [17] and [14] cannot establish this property. The algorithm
in [21] computes the same result in this particular example, but since their
matching is partially performed by first projecting the sharing information on
the term positions of the calling atom and of the clause head, this does not hold
in general. For example, the algorithm in [21] states that x and z may possibly
share when the unification is performed between the calling atom p(t(x, y, z))
and the head p(t(u, v, w)), where t is a function symbol and p a unary predicate.

We can prove that we have defined the best correct abstraction of the backward
concrete unification.

Theorem 3. Ub
Sh

(respectively U′b
Sh) is correct and optimal w.r.t. Ub

Rs
(respec-

tively U′b
Rs).

It is worth noting that, in order to obtain the optimality result, it is necessary
to use the matching matchSh as given in Def. 2 and the forward unification Uf

Sh

as given in Def. 1. The combination of these two operators allows us to prove
the optimality of U′b

Sh . It is now easy to give an example of a program which
can be analyzed with a better precision w.r.t. the original framework in [7].

Example 6. Consider the trivial program with just one clause p(u,v,w) ← and
the goal p(x, y, z) with calling substitution {xy, yz}. Using our abstract oper-
ators, we obtain the entry substitution {uv, vw} and the success substitution
{xy, yz} (see Ex. 2 and 5), thus proving that x and z are independent. If we

replace either U′b
Sh or U′f

Sh
with U′

Sh
, then the success substitution will con-

tain the sharing group xyz. In fact, as shown in Ex. 2, the entry substitution
in the latter case would be [{uv, vw, uvw}, {u, v, w}]. If we compute the success
substitution we obtain:

πSh(U
′
Sh([{uv, vw, uvw}, {u, v, w}], [{xy, yz}, {x, y, z}], p(u, v, w), p(x, y, z)),

{x, y, z}) = [{xy, yz, xyz}, {x, y, z}]

which contains the sharing group xyz.

Note that the improvement in the previous example is obtained with a pro-
gram in head normal form. Usually, when programs are in head normal form,
the forward and backward unification may be replaced by renamings, which are
complete and do not cause any loss in precision. However, there is the need of an
unification operator for the explicit constraints which appear in the body of the
clauses. In general, the analyses we obtain in our framework are more precise
than those which can be obtained by using the standard domain Sharing by
translating the same program in head normal form.



Example 7. Consider again Ex. 6 and the program p(u,f(s),w) ← which is
not in head normal form. Using our abstract operators, we obtain the success
substitution {xy, yz}, as in Ex. 6. If we normalize the program, we obtain the
clause p(u,v,w) ← v=f(s). The entry substitution obtained from {xy, yz} by
simply renaming the variables x, y, z in u, v, w and introducing the new variable
s is {uv, vw, s}. By using the standard operator for unification, when applying
the binding v/f(s) we obtain {uvs, vws, uvws}, and thus the success substitu-
tion will contain the sharing group xyz, so resulting in a loss of precision. It
is worth noting that it would still be possible to use our improved forward ab-
stract unification in a normalized program by enlarging the set of variables of
interest only when new variables are effectively met, instead of adding all the
variables which appear in the body of a clause once for all when the entry sub-
stitution is computed. In the example we are considering, the variable s can
be introduced when unifying the abstract object {uv, vw} with v/f(s). Since

Uf
Sh
([{uv, vw}, {u, v, w}], {s}, {v/f(s)}) = [{uvs, vws}, {u, v, w, s}], we still ob-

tain as success substitution {xy, yz}, thus proving that x and z are independent.

5 Related Works

We consider here other improvements to the standard analyses based on Sharing

and their relationships with our proposal.
Forward/Backward Unification and PSD. Although the usual goal of

sharing analyses is to discover the pairs of variables which may possibly share,
Sharing is a domain that keeps track of set-sharing information. In [2] the
authors propose a new domain, called PSD, which is the complete shell [13] of
pair sharing w.r.t. Sharing. They recognize that, in an abstract object [S,U ],
some sharing groups in S may be redundant as far as pair sharing is concerned.
Although our forward unification is more precise than the standard unification,
it could be the case that they have the same precision in PSD. This would mean
that Uf

Sh
([S1, U1], U2, δ) and USh([S1, U1], [{{x} | x ∈ U2}, U2], δ) only differ

for redundant sharing groups. However, this is not the case, and Examples 2, 3
and 4 give improvements which are still significant in PSD. The same holds for
backward unification in Example 5. It would be interesting to examine in details
the behavior of our unification operators in the domain PSD, since it is not clear
whether it is still complete w.r.t. pair-sharing when our specialized operators are
used.

Domains with Freeness and Linearity. Although the use of freeness and
linearity information has been pursued in several papers (e.g. [20, 14]), optimal
operators for these domains have never been developed. Actually, the standard
mgu in SFL [21, 14, 3], when unifying with a binding {x/t} where neither x nor

t are linear, does compute all the star unions. In uf
Sh
, however, we apply an

optimization which is able to avoid some sharing groups (see e.g. Example 4).
This optimization could be integrated in a domain which explicitly contains
freeness and linearity information. Actually [3] includes some optimizations for
the standard abstract unification of SFL which are similar to ours, in the case



of a binding {x/t} with x linear. In addition, [22, 15] propose to remove the
check for independence between x and t. We think it should be possible to
devise an optimal abstract unification for an enhanced domain including linearity
information, by combining these improvements with our results.

Another Optimality Proof. In [5] the authors provide an alternative ap-
proach to the analysis of sharing by using set logic programs and ACI1 uni-
fication. They define abstract operators which are proved to be correct and
optimal, and examine the relationship between set substitutions and Sharing,
proving that they are essentially isomorphic. However, they do not extend this
correspondence to the abstract operators, so that a proof of optimality of U′

Sh

w.r.t. U′
Rs

starting from their results should be feasible but it is not immedi-
ate. Moreover, since they provide a goal-independent analysis, they do not have
different operators for forward and backward unification.

6 Conclusions

We think that this paper makes three major contributions.

– We provide a result of correctness and optimality for the abstract unification
in Sharing, which corrects the one presented in [7].

– We propose a refined framework with specialized operators for forward and
backward unification. We provide the corresponding abstract operators for
sharing analysis which are proved to be correct and optimal. The obtained
analysis is shown to be strictly more precise than the original one.

– Our definition of Uf
Sh

sheds new light on the abstract unification in the
presence of freeness and linearity information, suggesting new optimizations
which can also be used in more powerful domains such as SFL.

Our idea of specialized operators for forward and backward unification is orthog-
onal to most of other proposals for improving precision and/or efficiency of the
analysis. To the best of our knowledge, this is the first work which optimizes the
abstract forward unification for sharing analysis by using a specialized opera-
tor. In [19] the concrete unify operator is essentially our Uf

Rs
, but the abstract

operator is given only for groundness analysis, where specializing the forward
unification gives no gain in precision. In other works about goal-dependent anal-
ysis, such as [20, 14], the algorithm used for computing the entry substitution is
simply the standard unification. This is also the first work where a specialized
backward unification operator is proved to be optimal, although matching has
been used in several papers [14, 17, 21] to improve backward unification. To the
best of our knowledge, all the abstract operators proposed so far for Sharing

were not optimal. Matching, however, does not remove some imprecisions of
goal-dependent versus goal-independent analysis which have been pointed out
in [12]. As a future work, we think that our results could be easily generalized for
designing optimal unification operators for a domain including linearity informa-
tion. Moreover, the problem of efficiently implementing the backward unification
could be addressed.
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