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Abstract

Working within a semantic framework for sequent calculi developed in [2],
we propose a couple of extensions to the concepts of correct answers and cor-
rect resultants which can be applied to the full first order logic. With respect
to previous proposals, this is based on proof theory rather than model theory.
We motivate our choice with several examples and we show how to use correct
answers to reconstruct an abstraction which is widely used in the static anal-
ysis of logic programs, namely groundness. As an example of application, we
present a prototypical top-down static interpreter for properties of groundness
which works for the full intuitionistic first order logic.

Keywords: first order logic, logic programming, correct answers, resul-

tants, abstract interpretation, groundness.

1 Introduction

One of the greatest benefits of logic programming, as presented in [15], is that it is
based upon the notion of executable specifications. The text of a logic program is
endowed with both an operational (algorithmic) interpretation and an independent
mathematical meaning which agree each other in several ways. The problem is
that operational expressiveness (intended as the capability of directing the flow of
execution of a program) tends to obscure the declarative meaning. Research in logic
programming strives to find a good balance between these opposite needs.

Uniform proofs [16] have widely been accepted as one of the main tools for ap-
proaching the problem and to distinguish between logic without a clear computa-
tional flavor and logic programming languages. However, that of uniform proofs
being a concept heavily based on proof theory, researches conducted along this line
have always been quite far from the traditional approach based on fixpoint semantics.
In turn, this latter tradition has brought up several important results concerning
the effective utilization of Horn clauses as a real programming language. Among
the others, problems such as compositionality of semantics [8], modularity [5, 7],
static analysis [12], debugging [9], have been tackled in this setting. Adapting these
results to the new logic languages developed via the proof theoretic approach, such
as λProlog [18] or LinLog [3], would probably require at least two things:

• provide a fixpoint semantics for these new languages;
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• generalize a great number of concepts whose definition is too much tied to the
case of Horn clauses.

In [2], the authors propose a semantic framework which can be useful in such an
effort. The main idea is to recognize proofs in the sequent calculi as the general
counterpart of SLD resolutions for positive logic programs. Thus, the three well-
known semantics (operational, declarative and fixpoint) for Horn clause logic can
be reformulated within this general setting and directly applied to all the logic
languages based on sequent calculi.

Classical abstractions such as correct answers or resultants, used in the semantic
studies of logic programs, and abstractions for static analysis like groundness, can
be retrieved in terms of properties of proofs. Expressed in such a way, rather than
referring to a computational procedure like SLD resolution, they are more easily
extendable to other logic languages.

However, the definition proposed in [2] for correct answers was based on the model
theoretic idea that a correct answer for an existentially quantified formula ∃~x.ϕ is a
substitution θ for the variables in ~x such that ϕθ is true. When we tried to extend
this simple idea from the well known case of Horn clauses to the full first order logic,
we came with a general definition of correct answers which was rather involved and
far less general than expected.

Since most of the work in the field of logic programming are heavily based on
computed answers, which are the computational counterpart of correct answers,
defining a solid foundation for the latter is essential if we want to adapt previous
results to broader fragments of logic.

Here, we tackle the problem of correct answers from a proof theoretic point of
view. We argue that the natural extension of the idea of “correct answer” to the
first order logic is the recording of all the occurrences of quantifier introduction
rules in a proof. In the case of Horn clauses, if we only consider the introductions
of existential quantifiers, this turns out to be equivalent to the standard definition.
We also introduce a corresponding generalization for “correct resultants”. Then,
we consider a common abstraction for the semantics of logic programs, namely
groundness, and we examine its extension to the case of full first order logic. A
prototypical abstract interpreter for this observable has been developed, and we
show some of the results we have obtained. At last, possible future developments
are discussed.

2 Preliminaries

We recall here the basic ideas which lie behind our framework. A more detailed
treatment of these topics can be found in [2].

2.1 Basic Definitions

Logics can be presented in several different ways: we will stick here to a Gentzen-
like proof-theoretic formulation. Given a set S of sequents, consider the untyped
term signature Σ whose constant symbols are the elements of S, provided with an
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overloaded symbol tree which has all the finite arities greater than 0. We call proof
skeleton a term over Σ and we denote by Sch(S) the set TΣ of all the proof skeletons.
Then, we define two functions hyp : Sch(S) → S⋆ and root : Sch(S) → S such that

• hyp(S) = S ,

• hyp(tree(S, T1, . . . , Tn)) = hyp(T1) · · · hyp(Tn) ,

and

• root(S) = S ,

• root(tree(S, T1, . . . , Tn)) = S .

Given a proof skeleton π, hyp(π) is the sequence of hypotheses of π while root(π)
is the root of π. When we want to state that π is a proof skeleton with hyp(π) =
S1, . . . , Sn and root(π) = S, we write

π : S1, . . . , Sn ⊢ S . (2.1)

We also define the height of a proof skeleton π introducing the function height :
Sch(S) → N such that

• height(S) = 0 ,

• height(tree(S, T1, . . . , Tn)) = max{height(T1), . . . , height(Tn)}+ 1 ,

with the obvious assumption that max(∅) = 0.
Note that S, which we also denote by ǫS, and tree(S) are two different proof

skeletons. Actually, it is height(S) = 0 and hyp(S) = S but height(tree(S)) = 1 and
hyp(tree(S)) = λ.

Now, we fix a set R of proof skeletons of height one. We call inference rules the
elements of R. A proof skeleton π, which is obtained by pasting together the empty
proof skeletons and the inference rules, is called proof. A proof with no hypothesis is
said to be final. A sequent S is provable if there is a final proof rooted at S. Finally,
we call sequent calculus a pair (S,R).

2.2 Semantics

In the following, we assume fixed a sequent calculus (S,R). Given a sequent S, we
denote by SchS the set of all the proof skeletons rooted at S. For each π ∈ SchS of
the form

π : S1, . . . , Sn ⊢ S , (2.2)

we have a corresponding semantic operator π : SchS1
× · · · × SchSn

→ SchS which
works by pasting proof skeletons of the input sequents together with π, to obtain
a new proof skeleton of the output sequent S. If Sch is the set of all the proof
skeletons, π : S1, . . . , Sn ⊢ S ∈ Sch and Xi ⊆ Sch for each i, we define a collecting
variant of the semantic operator π, defined as

π(X1, . . . , Xn) = {π(π1, . . . , πn) | ∀i. πi ∈ Xi ∩ SchSi
} . (2.3)
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We will write π(X) as a short form for π(X, . . . , X) with n identical copies of X as
input arguments.

An intepretation for (S,R) is a subset of Sch. We denote by I the set of all the
interpretations, which is a complete lattice under subset ordering. A model is an
interpretation I such that, for each inference rule r ∈ R, it is

r(I) ⊆ I . (2.4)

Models form a complete lattice under the same ordering of the interpretations.
However, it is not a sublattice, since the join operator and the bottom element
differ. In particular, the bottom element of the lattice of models is what we call
declarative semantics of the sequent calculus and we denote it by D.

D turns out to be the set of final proofs of (S,R). Hence, the declarative se-
mantics precisely captures all the terminating computations. For a valid treatment
of compositionality, we also need information about partial computations [5]. If ǫ
is the set of all the empty proof schemas, we call complete declarative semantics of
(S,R) and we denote it by Dc, the least model greater then ǫ. It is possible to prove
that Dc is actually the set of all the proofs of (S,R).

We have a bottom-up and a top-down construction of the least models using a
couple of operators, similar in spirit to the immediate consequence operator TP and
the unfolding operator UP for logic programs. The bottom-up T operator, mapping
interpretations to interpretations, is defined as follows

T (I) = I ∪
⋃

r∈R

r(I) , (2.5)

while the top-down U operator is

U(I) =
⋃

π∈I

π(R∪ ǫ) . (2.6)

The following properties hold:

T ω(∅) = D , (2.7)

T ω(ǫ) = Dc = Uω(ǫ) . (2.8)

2.3 Abstractions

It is now possible to use the techniques of abstract interpretation [10] to develop a
range of abstract semantics for sequent calculi. We call observable a triple (A, α, γ)
where A (the abstract domain) is an ordered set w.r.t. the relation ⊑ and α : I → A
(the abstraction function) is a monotonic function with γ as right adjoint. Since α
and γ in (A, α, γ) uniquely determine each other [11], we will often refer to an
observable just by the abstraction function.

Given an observable and an operator on interpretations ⊗, we denote by ⊗α

the corresponding optimal abstract operator on A. All the common results of the
theory of abstract interpretation are inherited by our framework. In particular, the
following properties hold:

T ωα (α(∅)) ⊒ α(D) , (2.9)
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T ωα (α(ǫ)) ⊒ α(Dc) , (2.10)

Uω
α (α(ǫ)) ⊒ α(Dc) . (2.11)

This means we can compute an approximation of the abstract semantics α(D) work-
ing entirely within the abstract domain A.

Following the terminology introduced in [8] and [1], when Tα is precise (i.e. when
Tα ◦α = α◦T ) the observable α is said to be denotational. In this case, the “greater
than” sign in the equations (2.9) and (2.10) can be replaced by an equality sign.
When Uα is precise, the observable is operational and the equation (2.11) become
an equality. When α is both operational and denotational, it is called perfect.

3 Correct Answers and Resultants

The concepts of correct answer and computed answer are the cornerstones of the
theory and practice of logic programming. If we want to extend the results we
have for Horn clauses to other logic languages, we need to find an analogous of these
concepts in the new settings. Actually, since we are not discussing any computational
mechanism, we only focus our attention to correct answers.

For the sake of clarity, we will assume to work in the domain of first order classical
and intuitionistic logic. Therefore, we have a term signature Σ, a predicate signature
Π and an infinite set V of variables. Terms and formulas are defined as usual,
sequents are made of two sequences of formulas, separated by the symbol ։, and
inference rules are those obtained as instances of the schemas in Figure 1. When
we want to denote a particular inference rule, we index the name of the schema in
figure with the formulas occurring in the instance. For example, ∧Lλ,ϕ,ϕ′,ψ,∆ is

ϕ, ϕ′
։ ψ,∆

ϕ ∧ ϕ′
։ ψ,∆

. (3.1)

Intuitionistic logic differs from classical one by allowing at most one formula in the
right hand side of the sequents. The common abbreviation ∃x1, . . . , xn.ϕ stands for
∃x1. · · · ∃xn.ϕ. We also write ~∃ϕ and ~∀ϕ for the existential and universal closure
of ϕ. A Horn sequent is a sequent of the form Γ ։

~∃ϕ where Γ is a sequence of
universal closures of definite clauses, and ϕ is a definite goal.

3.1 Correct Answers as Proof-Theoretical Properties

Given a Horn sequent S = Γ ։ ∃~x.ϕ, according to the standard definition, a correct
answer for the goal ∃~x.ϕ in the program Γ is a substitution θ for ~x such that Γ ։ ϕθ
is provable. In the following, we refer to θ as a correct answer for the sequent S.
According to this definition, the concept of correct answer seems strictly related to
model theory. It is essentially an assignment for the variables in ~x such that ϕ in
valid in every Herbrand model of Γ.

However, if π is an intuitionistic proof for S, a correct answer for ∃~x.ϕ can be
extracted from π by examining the instances in π of the ∃R schema.
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Γ1, B,C,Γ2 ։ ∆

Γ1, C,B,Γ2 ։ ∆
interchangeL

Γ ։ ∆1, B,C,∆2

Γ ։ ∆1, C,B,∆2

interchangeR

Γ, B,B ։ ∆

Γ, B ։ ∆
contractionL

Γ ։ B,B,∆

Γ ։ B,∆
contractionR

Γ, B ։ B,∆
id where B = ⊥ or B is an atomic formula

Γ ։ ⊥

Γ ։ ∆
⊥R

Γ ։ B,∆

Γ ։ B ∨ C,∆
∨R1

Γ ։ B,∆

Γ ։ C ∨B,∆
∨R2

Γ, B ։ D,∆ Γ, C ։ D,∆

Γ, B ∨ C ։ D,∆
∨ L

Γ, B1, B2 ։ C,∆

Γ, B1 ∧B2 ։ C,∆
∧ L

Γ ։ B,∆ Γ ։ C,∆

Γ ։ B ∧ C,∆
∧R

Γ ։ B,∆ Γ, C ։ ∆

Γ, B ⊃ C ։ ∆
⊃ L

Γ, B ։ C,∆

Γ ։ B ⊃ C,∆
⊃ R

Γ, B[x/t] ։ ∆

Γ, ∀x.B ։ ∆
∀L

Γ ։ B[x/a],∆

Γ ։ ∀x.B,∆
∀R where a is a fresh variable

Γ, B[x/a] ։ ∆

Γ, ∃x.B ։ ∆
∃L where a is a fresh variable

Γ ։ B[x/t],∆

Γ ։ ∃x.B,∆
∃R

Figure 1: Inference rules for classical logic

Example 3.1 If S is the sequent p(0), ∀x.p(x) ։ ∃y.p(y), then y/t is a correct
answer for each term t. If π is the proof

id
∀x.p(x), p(0) ։ p(0)

∃R
∀x.p(x), p(0) ։ ∃y.p(y)

(3.2)

the ∃R rule gives origin to the correct answer y/0.

When we use hereditary Harrop formulas, we can keep the same definition of
correct answers we have for Horn clauses. However, the amount of information
we obtain in this way is rather limited. For example, the sequent ∀x.p(x, x) ։

∀y.∃z.p(y, z), only has a trivial empty correct answer, since the right hand side of
the sequent is not an existentially quantified formula. On the contrary, let us give
a look to a proof of the same sequent:

id
p(a, a) ։ p(a, a)

∃R
p(a, a) ։ ∃z.p(a, z)

∀R
∀x.p(x, x) ։ ∃z.p(a, z)

∀L
∀x.p(x, x) ։ ∀y.∃z.p(y, z)

(3.3)

If we keep track of the occurrences of both the ∃R and ∀R inference rules, we
obtain a substitution {y/a, z/a}. This makes explicit that for each y we have a
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z such that p(y, z) is true, and that y and z do coincide. Moreover, if we apply
the substitution {y/a, z/a} to the right hand side, discarding all the quantifiers, we
obtain the sequent ∀x.p(x, x) ։ p(a, a) which is trivially provable.

If we further extend the language to handle the full first order logic, we have to
treat with sequents like ∃x.p(s(x)) ։ ∃y.p(y). Here, again, the standard “model-
theoretic” definition of correct answers gives us no interesting information, since
there are no correct answers according to that definition. Actually, the sequent
∃x.p(s(x)) ։ p(t) is not provable for any term t. Let us consider the following
proof:

id
p(s(a)) ։ p(s(a))

∃R
p(s(a)) ։ ∃y.p(y)

∃L
∃x.p(s(x)) ։ ∃y.p(y)

(3.4)

If we keep track of all the instances of a quantifier introduction rule, we obtain a
substitution {x/a, y/s(a)}. Here, the role of a is that of a witness. The existential
quantifier on the left hand side produces a new object a such that p(s(a)) holds.
The binding {y/s(a)} makes clear that the object y such that p(y) holds is s(a),
where a is the same produced by the other existential quantifier. Again, if we apply
the substitution discarding the quantifiers, we obtain the sequent p(s(a)) ։ p(s(a))
which is provable.

3.2 Formalization

We now try to make precise the above informal discussion. Given a first order
language (Σ,Π, V ), a candidate answer is a function θ : V → Pf (TΣ(V )) such that
{v | θ(v) 6= ∅} is finite. We denote with Ans the set of candidate answers.

For each proof skeleton π, we have a corresponding candidate answer θπ or
answer(π), defined as follows:

θπ(x) =



















∅ if π = idΓ,B,∆

{a} if π = ∃LΓ,B,∆,x,a(π
′) or π = ∀RΓ,B,∆,x,a(π

′)

{t} if π = ∃RΓ,B,∆,x,t(π
′) or π = ∀LΓ,B,∆,x,t(π

′)
⋃

j=1...n θπj(x) if π = r(π1, . . . , πn)

(3.5)

If π is a proof, then θπ is called the partial correct answer for π. If π is a final proof
of the sequent S, then θ is a correct answer for the sequent S. The set of correct
answers for the sequent S will be denoted by CAns(S), which is defined as

CAns(S) = {θπ | π ∈ D ∩ SchS} . (3.6)

We write CAnsc(S) or CAnsi(S) when we want to make clear if we are working in
the realm of classical or intuitionistic logic.

Example 3.2 Let us consider the sequent S = ∀x.(p(x) ⊃ p(s(x))), p(0) ։ ∃y.p(y).
In classical logic, θ is a correct answer for S if and only if

• θ(x) ∈ Pf (Term),
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• θ(y) ∈ Pf (Term) and there exists si(0) ∈ θ(y) such that sj(0) ∈ θ(x) for every
j ∈ {0, . . . , i− 1}.

In intuitionistic logic, the form of the correct answers is simpler. In particular, θ is
a correct answer for S if and only if

• θ(x) ∈ Pf (Term),

• θ(y) = {si(0)} for some i ∈ N such that sj(0) ∈ θ(x) for every j ∈ {0, . . . , i−1}.

The difference is due to the fact we cannot apply the contraction rule on the conse-
quent.

Note that a correct answer for the sequent S is meaningful only if there are no two
different bindings for the same variable. However, explicitly requiring this condition
would have made the definitions more complex. Therefore, we have preferred this
presentation. In the following, we will call pure every sequent which satisfies the
above condition on bound variables.

Our definition of correct answers essentially collects all the occurrences of intro-
duction rules for quantifiers in a proof. A problem is that most of the answers we
obtain are trivial. For example, if x is a variable which is bound from a negative
universal quantifier and θ is a correct answer, then θ[x/L] is a correct answer, too,
for each L = θ(x) ∪ T where T is a set of terms renamed apart from θ.

As a result, we are particularly interested to minimal correct answers, according
to the obvious point-wise ordering. Proofs corresponding to minimal answers are a
sort of “non-redundant” proofs, where quantifiers are introduced only when they are
really needed. In formulas, we denote by mAnsc(S) (mAnsi(S)) the set of minimal
correct answer for the sequent S w.r.t. classical (intuitionistic) logic.

Example 3.3 In the previous example, both classic and intuitionistic logic have
the same set of minimal correct answers, i.e. those θ such that

• θ(y) = {si(0)} for some i ∈ N,

• θ(x) = {sj(0) | j ∈ {0, . . . , i− 1}}.

Note that we have a lot of information from these. We know that p(si(0)) is true for
every i ∈ N. Moreover, we know that, in order to prove p(si(0)), we need to apply a
∀L introduction rule for the first binding with different terms, namely all the sj(0)
for j from 0 to i− 1.

In general, if mAnsc(S) 6= mAnsi(S), it means that there is a proof of S which is
“intrinsically” classical. We do not make precise this statement, since it requires fur-
ther investigations. However, from an intuitive point of view, consider the following
proof π of the sequent p(a) ∨ p(b) ։ ∃x.p(x) :

id
p(a) ։ p(a), p(b)

id
p(b) ։ p(a), p(b)

∨L
p(a) ∨ p(b) ։ p(a), p(b)

∃R 2 times
p(a) ∨ p(b) ։ ∃x.p(x), ∃x.p(x)

contractionR
p(a) ∨ p(b) ։ ∃x.p(x)

(3.7)
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If we move the ∃R rules upward, before the ∨L rule, we can easily obtain an intu-
itionistic proof π′ such that θπ′ ≤ θπ = {x/{a, b}}. However, consider the following
proof π

id
p(a), p(b) ։ p(b),⊥

∃R
p(a), p(b) ։ ∃x.p(x),⊥

∃L
p(a), ∃y.p(y) ։ ∃x.p(x),⊥

⊃ R
p(a) ։ ∃y.p(y) ⊃ ⊥, ∃x.p(x)

∨R (2 times)
p(a) ։ ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥), ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥)

contractionR
p(a) ։ ∃x.p(x) ∨ (∃y.p(y) ⊃ ⊥)

(3.8)

Although the root sequent is intuitionistically provable, we are not able to write an
intuitionistic proof π′ such that θπ′ ≤ θπ = {x/b, y/b}. This is because the use of
the contraction rule in π is essential to the effort of moving ∃y.p(y) on the left side
while keeping ∃x.p(x) on the right side.

If we compare the “standard” correct answers for Horn clauses with our minimal
correct answers, we still have a more general definition. However, if we restrict our
answers to the existential quantifiers, we obtain the same results.

Theorem 3.4 If S = Γ ։ ∃x1. · · · ∃xn.ϕ is a pure Horn sequent, then η is a
“standard” correct answer for S iff there is a minimal correct answer θ such that
θ(xi) = xiη for each i ∈ {1, . . . , n}.

Note that we have not specified if the minimal correct answer should be considered
w.r.t. intuitionistic or classical logic. Actually, if S is a pure Horn sequent, it is
mAnsi(S) = mAnsc(S).

3.3 Resultants

Another typical abstraction of SLD-derivations is those of resultants [13]. A resul-
tant for a goal G in a program P is a pair made of a partial computed answer for
G and a new goal G’ which still needs to be refuted. We present an observable for
proof skeletons which is inspired by this “standard” idea of resultant, although the
relation here is more shallow than for correct answers.

Until now we have considered sequents as sequences of formulas. However, clas-
sical and intuitionistic logics are often presented by defining a sequent as a set of
formulas. We use the term set sequent to refer to this alternative definition and we
denote by SetS the collection of all the set sequents. If S ∈ S, we write S̄ for the
corresponding element in SetS.

We call resultant a pair (θ, S) where θ ∈ Ans and S is a finite multi-set of set
sequents. We denote by Res the set of all the resultants. For each proof skeleton
π : S1, . . . , Sn ⊢ S, we define a corresponding res(π) as

res(π) = (θπ, TS̄1, . . . , S̄nU) , (3.9)
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where T U denote a multi-set. If π is a proof for the sequent S, then res(π) is a correct
resultant for S. The set of correct resultants for S will be denoted by CRes(S), which
is defined as

CRes(S) = {res(π) | π ∈ Dc ∩ SchS} . (3.10)

We write CResc(S) or CResi(S) when we want to specify if we are working in the
realm of classical or intuitionistic logic. We define an order relation between two
resultants, according to the following equation

(θ, S) ≤ (θ′, S′) iff θ ≤ θ′ and S ⊆ S
′ . (3.11)

Again, we talk of minimal correct resultants for the elements of CRes(S) which are
minimal w.r.t. ≤. We denote the corresponding sets as mResc(S) and mResi(S).

Example 3.5 Let us consider the sequent S = p(0) ։ ∃x.p(x). The set mResc(S)
contains all the pairs (θ, S) such that

• θ = {x/0} and S = ∅, or

• θ = {x/t} for t 6= 0 and S = Tp(0) ։ p(t)U, or

• θ = {x/t} for t 6= 0 and S = Tp(0) ։ ⊥U.

The same happens for mResi(S).

It is trivial to prove that the following correspondences hold between correct
answers and correct resultants:

CAns(S) = {θ | (θ, ∅) ∈ CRes(S)} , (3.12)

mAns(S) = {θ | (θ, ∅) ∈ mRes(S)} . (3.13)

4 Observables

Now that we have defined what a correct answer is, we would like to find a bottom-up
and a top-down construction for CAns and mAns. Following the abstract framework
in [2], we define the observable of candidate answers as a tuple 〈[S → P(Ans)], αc, γc〉
where [S → P(Ans)] is the set of functions from sequents to sets of candidate answers
and

αc(I)(S) = {θπ | π : · ⊢ S ∈ I} . (4.1)

It is trivial to show that αc(D)(S) is exactly the set CAns(S) of all the correct
answers for the sequent S. The optimal abstract operator corresponding to T is
Tαc

. Assuming A in the image of αc, it is

Tαc
(A)(S) = A(S) ∪

⋃

{rαc
(A) | r ∈ R, root(r) = S} , (4.2)

where, for each r : S1 . . . Sn ⊢ S ∈ R,

rαc
(A) = {rαc

(θ1, . . . , θn) | ∀i ∈ {1, . . . , n}, θi ∈ A(Si)} , (4.3)
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and

rαc
(θ1, . . . , θn) =











θ1 ∪ [x/t] if r is an introduction rule for a quantifier
which replaces the variable x with t,

θ1 ∪ · · · ∪ θn otherwise.

(4.4)
Here we write θ1 ∪ θ2 for the candidate answer θ such that θ(x) = θ1(x) ∪ θ2(x) for
each x ∈ V and [x/t] for the candidate answer θ such that θ(x) = {t} and θ(y) = ∅
for y 6= x.

Theorem 4.1 The observable αc of candidate answers is denotational.

We also have an observable for resultants which gives origin to complete bottom-
up and top-down semantics. It is defined as the tuple 〈[SetS → P(Res)], αr, γr〉 with
the abstraction function

αr(I)(S̄) = {res(π) | π ∈ I, root(π) = S ′, S̄ = S̄ ′} . (4.5)

The definition of the optimal bottom-up fixpoint operator is straightforward.
With respect to the top-down fixpoint operator, assuming A in the image of αr, we
have

Uαc
(A)(S̄) =

⋃

δ∈A(S̄)

, δ(R∪ ǫ) (4.6)

where, if δ = (θ, TS̄1, . . . , S̄nU),

δ(X) = {δ(Tπ1, . . . , πnU) | ∀i ∈ {1 . . . n}, πi ∈ X ∩ SchS′

i
and S̄ ′

i = S̄i} , (4.7)

and

δ(Tπ1, . . . , πnU) =
(

θ ∪ [x1/t1] ∪ · · · ∪ [xm/tm], Thyp(π1), · · · , hyp(πn)U
)

, (4.8)

where, for each pair (xi, ti), there is an introduction rule for quantifiers among
{π1, . . . , πn} which replaces the variable xi with ti.

Theorem 4.2 The observable αr of correct resultants is perfect.

Since αr is a perfect observable, we could build a top-down interpreter which com-
putes correct resultants. However, the efficient implementation of such an interpreter
is a very difficult task which is the realm of automatic deduction. Here, we are more
interested in computing abstractions of correct resultants, which can be used for
static analysis of logic languages.

4.1 Groundness

If θ is a candidate answer for the sequent S, we say that θ is grounding for the
variable x when θ(x) only contains variables which occur free in S. Let us define
by GAns the set of functions V → P({g, ng}), which we call groundness answers.
Given a candidate answer θ for the sequent S, we define a corresponding groundness
answer β = groundS(θ) such that
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• g ∈ β(x) iff there exists t ∈ θ(x) such that vars(θ) ⊆ FV(S),

• ng ∈ β(x) iff there exists t ∈ θ(x) such that vars(θ) 6⊆ FV(S),

where FV(S) is the set of free variables in S. Then, we can define a Galois connection
〈αg, [S ։ P(Ans)], [S ։ P(GAns)], γg〉 where

αg(A)(S) = {groundS(θ) | θ ∈ A(S)} . (4.9)

Then, by composing αg with αc, we obtain an observable 〈P(GAns), αg ◦ αc, γc ◦ γg〉
for groundness answers. If β ∈ αg(CAns(S)), then β is a correct groundness answer.
Moreover, if β ∈ αg(mAns(S)), then β is minimal according to the obvious point-
wise ordering.

Example 4.3 Let us give some examples of sequents and their corresponding cor-
rect minimal groundness answers for intuitionistic logic.

sequent groundness answers

∀y.p(y) ։ ∃x.p(x) {x/g, y/g} {x/ng, y/ng}
∀y.(p(a, y) ∧ p(y, b)) ։ ∃x.p(x, x) {x/g, y/g}
p(a) ∨ r(b) ։ ∃x.(p(x) ∨ r(x)) {x/g}

⊥ ։ ∃x.p(x) {}
∀y.p(y, y) ։ ∀x1.∃x2.p(x1, x2) {y/g, x1/g, x2/g}, {y/ng, x1/ng, x2/ng}
∀x1. ∃x2. p(x1, x2) ։ ∃y.p(y, y) —

∃y.p(y) ։ ∃x.p(x) {x/ng, y/ng}
p(t(a)) ։ ∃x.p(r(x)) —

p(a) ∨ ∃x.r(x) ⊢ ∃y.(p(y) ∨ r(y)) {x/ng, y/{g, ng}}

Note that if θ is a correct answer for S and x is a bound variable which only
appears in a negative existential quantifier, then θ is not grounding for x. The same
happens for positive universal bindings.

We may ask ourselves which is the correspondence between our observable and
standard domains for analysis of groundness such as POS [4]. It is possible to prove
the following

Theorem 4.4 Let P be a definite program and G a definite goal. We work in the
realm of intuitionistic logic. Assume S = Γ ։ ∃x1, . . . , xn. G is the corresponding
pure Horn sequent. Consider x1, . . . , xn as propositional symbols and define the
formula

Θ =
∨

β∈GAns(S)

{∧ix
β(xi)
i } , (4.10)

where x
{g}
i = xi and x

{ng}
i = ¬xi. Then Θ is a positive formula.

Moreover, if X is the set of correct answers of G in P, let ℵ = αPOS(X). Then ℵ
and Θ are equivalent formulas.
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We can also build an abstraction for groundness analysis starting from resultants.
Given a formula ϕ, we denote by αv(ϕ) an abstract formula obtained from ϕ by
replacing each term with the set of free variables occurring in them. Let us call by
GS the set of abstract set sequents obtained from abstract formulas. A groundness
resultant is a pair (β, ν) such that β ∈ GAns and ν is a multi-set of elements of GS.
We write as GRes the set of groundness resultants. Then, we can define a Galois
connection 〈αrg, [SetS → P(Res)], [GS → P(GRes)], γrg〉, where

αrg(A)(S) = {(groundS(θ),{αv(S̄1), . . . , αv(S̄n))} |

(θ, {S̄1, . . . , S̄n}) ∈ A(S̄), S = αv(S̄)} .
(4.11)

We can compose αrg with αr to obtain a new observable which is well suited for
a top-down analysis of correct groundness resultants. Following this idea, we have
developed a prototypical abstract interpreter for intuitionistic logic. It is written in
PROLOG and can be found at the URL http://www.di.unipi.it/~amato/papers/.
Actually, it computes minimal correct groundness answers, since this often reduces
the huge amount of abstract sequents which are computed otherwise.

Example 4.5 By applying our analyzer to the sequents in the Example 4.3 we
obtain precisely the same set of correct groundness answers, with the following
exceptions:

sequent groundness answers

p(t(a)) ։ ∃x.p(r(x)) {x/ng}
∀x1. ∃x2. p(x1, x2) ։ ∃y.p(y, y) {y/ng, x1/ng, x2/ng}

The previous example shows two different situations in which we loose precision.
The first one is due to the fact that we abstract a term with the set of its free
variables, discarding information about the functors. The second situations arises
from the fact that the abstract domain is not enough powerful to keep track of the
side condition for the ∃L and the ∀R introduction rules. To overcome this problem,
we would need to improve the representation of abstract terms, by introducing a
sort of labelling similar to what [17] does for hereditary Harrop formulas.

5 Conclusions and Future Works

In this paper we have presented a new definition for correct answers and correct
resultants which can be applied to the full first order logic (both classical and intu-
itionistic). Moreover, we have shown that a well known abstraction of logic program
semantics, namely groundness, can be easily reintroduced inside our framework.
This definitions are so general that they can be reused with only slight changes for
every logic system with standard quantifier rules, such as linear logic or modal logic.
We think that, w.r.t. [2], our new definitions of correct answers and groundness
answers give us more intuitive and accurate results and a much cleaner theory.

From the point of view of the implementation of abstract domains, several things
can be improved in the framework. For example, while a top-down analyzer can
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often be implemented straightforwardly, like our interpreter for groundness, the same
definitely does not hold for bottom-up analyzers. Since for a bottom-up analysis we
have to build the entire abstract semantics of a sequent calculus, we need a way to
isolate a finite number of “representative sequents” from which the semantics of all
the others can easily be inferred: it is essentially a problem of compositionality.

We are actually studying this problem and we think that extending the notion
of a sequent calculus with the introduction of some rules for the decomposition of
sequents will add to the theoretical framework the power needed to easily derive
compositional T operators.

We also need a way to reduce nondeterminism in abstract interpreters. This is a
problem which has been tackled thoroughly in the field of automatic deduction. A
standard solution is to use unification to reduce nondeterminism in the introductions
of quantifiers [6, 19]. We would like to treat unification in our framework, and we
want to do this without any major modification. We are working in the direction
of defining an abstraction of proof skeletons using extra-logical variables such that
the corresponding optimal abstract operators automatically computes the semantics
trough unification.
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A Proofs

Lemma A.1 If the pure sequent S = Γ ։ ∃x.ϕ has a correct answer θ such that
θ(x) = ∅, then Γ ։ ⊥ is provable.
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Proof. If π is a final proof of S and θπ(x) = θ(x) = ∅, then there are no occurrences
of ∃R inference rules, with ∃x.ϕ as the principal formula, in π. However, looking at
the form of inference rules in Figure 1, it is evident that we need a way to discard
the existential quantifier from the right hand side of the sequent and the only way,
other than an ∃R rule, is a ⊥R rule.

Then, for each path in π from the root to the leaves, either ∃x.ϕ is never the
principal formula of an introduction rule, or a ⊥R inference rule is applied. We can
obtain a new proof π′ of Γ ։ ⊥ just replacing every occurrence of ∃x.ϕ with ⊥, and
deleting the ⊥R rules which are now useless.

Proof of theorem 3.4. Assume η is a standard correct answer for S. It means
that S ′ = Γ ։ ϕη is provable. Let π′ be a proof of S ′. If we apply a series of ∃R
rules to π′, we obtain a proof π for S. It is trivial that θπ(xi) = {xiη} for each
i ∈ {1, . . . , n}. Now, consider the set of all the correct answers θ′ for S such that
θ′ ≤ θπ. If θ

′(xi) 6= θπ(xi), then θ
′(xi) = ∅, since θ(xi) is a singleton. By the previous

lemma, however, this would mean that Γ is inconsistent, and this is not possible for
Horn clauses. Then, if we take θ to be a minimal θ′, we prove half of the theorem.

Now, assume θ is a minimal correct answer for S. We want to prove that, if we
define η(xi) = θ(xi) for i ∈ {1, . . . , n}, then Γ ։ ϕη is provable. If π is a proof
such that θ = θπ, we can think of permuting the inference rules to obtain a new
proof π′ with θπ′ = θ and all the ∃R rules applied just after the root. Since in
Horn clauses we do not have positive universal quantifiers or negative existential
quantifiers, in π there are no occurrences of ∀R or ∃L rules. As a result, in π there
are no eigenvariables. Therefore, rules in classical logic can be permuted freely to
obtain π′. If we work in intuitionistic logics, not all the permutations are allowed,
but Kleene in [14] shows that the only rules ∃R does not permute with are ∨L and
∃L. Neither of this can never be applied if Γ is made of Horn clauses, hence π′ can
be found in intuitionistic logic, too. If we drop the ∃R rules from π′, we remain with
a proof of Γ ։ ϕη and the theorem is proved.

Proof of Theorem 4.1. We need to prove that

Tαc
(αc(I)) ⊆ αc(T (I)) , (A.1)

since the opposite disequality is trivial.
Assume θ ∈ Ans and θ ∈ Tαc

(αc(I))(S). We have two cases: θ ∈ αc(I)(S) or θ ∈
rαc

(αc(I)) for some r : S1, . . . , Sn ⊢ S ∈ R. If θ ∈ αc(I)(S), then θ ∈ αc(T (I))(S)
follows trivially. Otherwise, it is θ = rαc

(θ1, . . . , θn), with θi ∈ αc(I)(Si) for each
i ∈ {1, . . . , n}.

If r is an introduction rule for a quantifier, which replaces the variable x with the
term t, then θ = θ1 ∪ [x/t]. Since θ1 ∈ αc(I)(S1), there exists a final proof skeleton
in I with θ1 = θπ. By applying the rule r to π, we obtain a new final proof skeleton
π′ : · ⊢ S such that θ = θπ′ . Since π′ ∈ T (I), it is θ ∈ αc(T (I))(S).

If r is not and introduction rule for a quantifier, then θ = θ1 ∪ . . . ∪ θn. For each
θi, there exists a proof πi : · · · ⊢ Si in I. By applying the rule r to π, we can reason
as in the previous case, and we prove the theorem.
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Proof of Theorem 4.2. We need to prove that αr is both operational and de-
notational. We only prove it is operational, since the other proof proceeds as for
Theorem 4.1. Actually, we only need to check the disequality

Uαr
(α(I)) ⊆ αr(U(I)) , (A.2)

since the opposite one is trivial.
If δ = (θ, TS̄1, . . . , S̄nU) ∈ Uαr

(αr(I))(S), there exists δ′ = (θ′, TS̄ ′
1, . . . , S̄

′
mU) in

αr(I)(S) such that δ = δ′(Tr1, . . . , rmU), where ri ∈ R∪ǫ for each i ∈ {1, . . . ,m}. By
the definition of αr, there is a proof π′ : Z ′

1, . . . , Z
′
l ⊢ Z in I with Z,Z ′

i ∈ S, Z̄ = S̄,
TZ̄ ′

1, . . . , Z̄
′
lU = TS̄ ′

1, . . . , S̄
′
mU and θπ′ = θ′. We can apply π′ to appropriate r′1, . . . , r

′
n

such that Tr̄1, . . . , r̄nU = Tr̄′1, . . . , r̄
′
nU to obtain a proof π : Z1, . . . , Zr ⊢ Z ∈ U(I)

with TZ̄1, . . . , Z̄rU = TS̄1, . . . , S̄mU and θπ = θ. This proves the theorem.

Proof of Theorem 4.4. First of all, since Horn clauses are always consistent, it
follows from Lemma A.1 that, if β is a correct groundness answer for S, then θ(xi) 6=
∅. Moreover, since we work in intuitionistic logic, each ∃R inference rule can be
applied only once for each variable, hence β(xi) is a singleton for each xi. Therefore,
xβi (xi) is well defined.

Now, consider an ordering ⊑ on {g, ng} such that g ⊑ ng with the corresponding
lifting to groundness answers. If S = Γ ։ ∃x1, . . . , xn. G is a pure Horn sequent
and β is a correct groundness answer, we call existential groundness answer the
restriction of β to {x1, . . . , xn}. We denote by EAns(S) the set of all the existential
groundness answer for the sequent S. If β ∈ EAns(S), then β′ ∈ EAns(S) for each
β′ ⊑ β. Therefore, consider the formula Θ. If S is a provable, there is an existential
groundness answer β and, by the previous property, the answer β′ ⊑ β such that
β′(xi) = {g} for each i is an element of EAns. Hence Θ is positive.

We still need to prove that Θ and ℵ are equivalent. Given an assignment ν of
truth values to x1, . . . , xn, Θ is true iff there is an existential answer β such that
β(xi) = {g} if ν(xi) = true, β(xi) = {ng} otherwise. In turn, this means that there
exists a correct answer θ such that vars(θ(xi)) 6⊆ FV(S) for each i with ν(xi) = false.
Since FV(S) = ∅, it means that there is a correct answer θ such that θ(xi) is not
ground for each xi ∈ ν−1(false).

By the definition of αPOS, we have that ℵ is true under the assignment ν iff for
each correct answers θ, θ(xi) is ground if ν(xi) = true. But this is equivalent to state
that there exists a correct answer θ such that ν(xi) = false implies θ(xi) not ground.
Actually, this is the same statement which holds for Θ, then we have proved the
required equivalence.


