
Acta Informatica manuscript No.
(will be inserted by the editor)

Descending chains and narrowing on template abstract
domains

Gianluca Amato · Simone Di Nardo Di Maio ·
Maria Chiara Meo · Francesca Scozzari

the date of receipt and acceptance should be inserted later

Abstract A static analysis by abstract interpretation is typically composed of an ascending
phase followed by a descending one. The descending phase is used to improve the precision
of the analysis after that a post-fixpoint has been reached. Termination is often guaran-
teed by using narrowing operators, especially on numerical domains which are generally
endowed with infinite descending chains. Under the hypothesis of dealing with reducible
flow graphs, we provide an abstract semantics which improves the analysis precision and
we show that, for a large class of numerical abstract domains over integer variables (such
as intervals, octagons, template parallelotopes and template polyhedra), infinite descending
chains cannot arise and we can safely omit narrowing. The abstract semantics is a slight
variation of the standard one and can be easily implemented. We also provide an accelera-
tion procedure which ensures termination of the descending phase without narrowing even
with non-reducible graphs. Finally, we propose a new family of weak narrowing operators
for real variables which improve the analysis precision.

Keywords static analysis · abstract interpretation · template domains · narrowing

CR Subject Classification D.2.4 · F.3.2

Mathematics Subject Classification (2000) 68Q60 · 68N30

Gianluca Amato
Università di Chieti–Pescara, Italy
Tel.: +39-085-4537686
Fax: +39-085-4537639
E-mail: gianluca.amato@unich.it

Maria Chiara Meo · Simone Di Nardo Di Maio · Francesca Scozzari
Università di Chieti–Pescara, Italy

2 Gianluca Amato et al.

1 Introduction

Computing a static analysis in the framework of abstract interpretation [11,12] typically
amounts to solving a system of equations

x1 = F1(x1, . . . ,xn)

...

xn = Fn(x1, . . . ,xn)

(1)

describing the program behavior. Each index i ∈ {1, . . . ,n} represents a control point of the
program to be analyzed and each Fi is a monotone, state-transition operator. The unknowns1

x1, . . . ,xn associated to each control point i ∈ {1, . . . ,n} range over an abstract domain V ,
which encodes the property we want to analyze. An element of V is called abstract object
and represents a set of concrete states.

We are interested in finding the (least) solution, over the domain V , of the set of equa-
tions F = (F1, . . . ,Fn) associated to the program to be analyzed. The abstract interpretation
framework ensures that any solution of the set of equations correctly approximates the con-
crete behavior of the program, and the smaller the solution, the more precise is the result of
the analysis. In theory, the least solution of the system can be exactly computed as the limit
of a Kleene iteration, starting from the least element of V n. In practice, such a method can
be unfeasible, since many abstract domains exhibit infinite ascending chains, and thus the
computation may not terminate. Moreover, even for finite abstract domains, it may happen
that the ascending chains are very long, making the approach impractical.

Therefore, the standard method to perform the analysis is to compute an over approxi-
mation of the least solution of the system of equations, using widening and narrowing op-
erators [10,13]. For specific abstract domains or for restricted classes of programs, we may
find in the literature alternatives, such as acceleration operators [17] and strategy/policy it-
eration [9,15,16], but these methods are not generally applicable and their complexity may
be impractical.

A widening, generally denoted by O, is a binary operator over the abstract domain V
such that:

– it is an upper bound on V ;
– when used in equations of the kind xi = xi OFi(x1, . . . ,xn), it precludes the appearance

of infinite ascending chains for xi.

The widening operator compares the value of xi in the previous iteration with its value in the
current iteration and, in some cases, returns an approximated value. Widening is used to en-
sure the termination of the analysis, while introducing a loss in precision. This is realized by
replacing some of the original equations xi = Fi(x1, . . . ,xn) with xi = xi OFi(x1, . . . ,xn). The
replacement may involve all unknowns or, more commonly, only the ones corresponding to
loop heads in the dependency graph of the equation system. Applying widening in this way
ensures the termination of a Kleene iteration, but we only get a post-fixpoint of the function
F = (F1, . . . ,Fn), instead of the least one.

Once we reach a post-fixpoint, we can start a new Kleene iteration, giving origin to a
descending chain which improves the result of the analysis. However, due to infinite de-
scending chains in the abstract domain, the descending iteration might not terminate. The

1 We use the terms variable to denote a variable in the program, and unknown to denote a variable in the
data-flow equations.

Descending chains and narrowing on template abstract domains 3

next example2 shows this phenomenon using the abstract domain IntZ of integer intervals,
defined as:

IntZ = {[l,u]⊆ Z | l ≤ u ∈ Z∪{−∞,∞}}∪{ /0},
where /0 denotes the empty set of concrete states, i.e., an unreachable control point. The
standard widening on intervals [10] is defined as follows:

/0O I = I

I O /0 = I

[l1,u1]O [l2,u2] = [l′,u′]

where

l′ =

{
l1 if l1 ≤ l2
−∞ otherwise

u′ =

{
u1 if u1 ≥ u2

+∞ otherwise

Essentially, it works by preserving stable bounds and removing unstable ones. For instance,
[0,3]O [0,4] = [0,∞]. In this way, infinite ascending chains are precluded.

Example 1 Consider the example program unreachableLoop in Fig. 1(a), and the corre-
sponding flowchart and set of equations in Fig. 1(b) and 1(c). We perform the analysis using
the integer interval domain IntZ with the standard widening. Therefore, we replace the sec-
ond and the tenth equation in Fig.1(c) with

x2 = x2 O (x1∨ x8)

x10 = x10 O (x9∨ x12) .

Note that these two equations correspond to the loop joins. We assume to follow a work-
list based iteration sequence, although the result is analogous with other standard iteration
schemas.

The first time x2 is considered, we have x1 = [0,0] and x2 = x8 = /0. Widening does
not trigger and x2 gets updated to x2 := x1 ∨ x8 = [0,0]. However, the second time x2 is
considered we have x8 = [1,1], hence x1 ∨ x8 = [0,1], which is widened to [0,+∞]. This
eventually leads to x9 := [10,+∞], x10 := [10,+∞] and x12 := [11,+∞] which is a post-
fixpoint and the result of the ascending phase of the analysis.

Starting from the post-fixpoint, we continue to evaluate the semantic equations, without
applying neither widening nor narrowing, thus using the original equations x2 = x1∨x8 and
x10 = x9∨x12. We get a descending sequence, which turns out to be infinite. In fact, the first
time x2 is re-evaluated, we have

x2 := x1∨ x8 = [0,0]∨ [0,8] = [0,8]

which leads to x9 := /0. When we evaluate the equations in the second while loop, we get

x10 := x9∨ x12 = /0∨ [11,+∞] = [11,+∞]

and x12 = [12,+∞]. At the second iteration we get

x10 := x9∨ x12 = /0∨ [12,+∞] = [12,+∞]

and x12 := [13,+∞]. It is immediate to see that, while keeping on iterating, the values com-
puted at the control point x10 are [11,+∞], [12,+∞], [13,+∞], [14,+∞], . . . which is an
infinite descending sequence, whose limit is the empty set. ut

2 To the best of our knowledge, this is the first example in the literature which shows a program analysis
iterating over an infinite descending sequence in an integer numerical domain.

4 Gianluca Amato et al.

i=0
while(i<10) {

i=i+1
if (i>=9)

i=0
}
while(i>=10) {

i=i+1
}

(a) Program

i = 0

i < 10

i = i+1

i≥ 9

i = 0

i≥ 10

i = i+1

1

2

true
3

4

true
5

7

6

8

10

9

true
11

12
false

13

(b) Flowchart

x1 = [0,0]

x2 = x1 ∨ x8

x3 = x2 ∧ [−∞,9]

x4 = x3 +[1,1]

x5 = x4 ∧ [9,∞]

x6 = x5 · [0,0]
x7 = x4 ∧ [−∞,8]

x8 = x6 ∨ x7

x9 = x2 ∧ [10,∞]

x10 = x9 ∨ x12

x11 = x10 ∧ [10,∞]

x12 = x11 +[1,1]

x13 = x10 ∧ [−∞,9]

(c) Equation system.

Fig. 1 The example program unreachableLoop. Note that x5 appears in the right hand side of equation x6
since unreachability must be propagated.

It is worth noting that, in the previous example, the existence of an infinite descending
sequence depends on the fact that the second while loop is unreachable, although the initial
ascending phase of the analysis computes a non-empty over approximation. This leads to a
descending sequence whose limit is the empty set. This situation is not peculiar of our ex-
ample. On the contrary, we will show that this is the only way infinite descending sequences
may arise in the integer interval domain.

To avoid the appearance of infinite descending chains, we may stop the descending
iteration at an arbitrary step, still obtaining a post-fixpoint, or we may use a narrowing
operator. Narrowing, generally denoted by M, is a binary operator on a abstract domain V
such that:

– a1 Ma2 is only defined when a2 ≤ a1;
– it holds that a2 ≤ a1 Ma2 ≤ a1;

Descending chains and narrowing on template abstract domains 5

– when used in equations of the kind xi = xi MFi(x1, . . . ,xn), it precludes the appearance
of infinite descending chains for xi.

The standard narrowing for intervals [10], for example, is defined as:

I M /0 = /0

[l1,u1]M [l2,u2] = [l′,u′]

where

l′ =

{
l2 if l1 =−∞

l1 otherwise
u′ =

{
u2 if u1 =+∞

u1 otherwise

Essentially, it works by refining only unbounded extremes. For instance, [0,∞]M [0,10] =
[0,10] but [0,10]M [0,9] = [0,10]. Let us reconsider Example 1 and show what happens
when we use narrowing in the descending phase.

Example 2 Consider the same program, flowchart and equations of Example 1, together
with the result of the analysis after the ascending phase. We now replace the equations for
x2 and x10 with x2 = x2M(x1∨x8) and x10 = x10M(x9∨x12) and start a descending iteration.

When the second equation is first re-evaluated, the current value for x2 is [0,+∞], hence
the standard narrowing allows to change +∞ into 8, and we have x2 := [0,8] as for the
case without narrowing. However, when x10 is evaluated for the first time in the decreasing
sequence, we have x10 := [10,+∞]M [11,+∞] = [10,+∞]: the standard narrowing precludes
further improvements on the second loop. The descending sequence terminates at the cost
of a big loss of precision, since we are not able to detect anymore that control points 10–12
are unreachable. ut

In the rest of the paper we will show that, under certain conditions, narrowing may
be omitted even in domains with infinite descending chains. We start by proving it for the
domain of integer intervals and for structured programs. We progressively relax these as-
sumptions and show that it holds in the more general case of integer template abstract do-
mains [20] and non-structured programs. More generally, we show that this property holds
for any domain which satisfies a newly defined bottom chain condition. In order to ensure
termination, we need to introduce a new join operator (for structured programs) and a spe-
cial acceleration procedure (in the general case). This is the first example of acceleration
operator for descending chains. On template abstract domains with real bounds we cannot
avoid using narrowing. However, inspired by the results on integers, we provide a family of
narrowing operators which are more precise than the standard ones.

The question whether narrowing can be omitted naturally arises since its very first defi-
nition. Actually, in many practical cases, the descending chain without narrowing terminates
in a few steps. We believe that our result answers this question and, in addition, sheds some
light on the behaviour of solvers on descending chains.

Plan of the paper. In Section 2 we recall some basic notions on equation systems. In Sec-
tion 3 we deal with the case of integer intervals and structured programs. In Section 4 we
generalize the results to any domain which satisfies the bottom chain condition and in Sec-
tion 5 we prove that this condition is satisfied by all the template domains with integer
bounds. Section 6 shows that, even if convergerce is ensured, the length of the descending
chain may be arbitrarily long. We generalize these results to non-structured programs in
Section 7, while in Section 8 we deal with the case of abstract domains with real bounds.
Finally, Section 9 concludes with some final remark and related work.

6 Gianluca Amato et al.

Sections 3, 5, 6 and 8 are based on results appeared in [2] in preliminary form and
without proofs. The generalizations to domains satisfying the bottom chain condition and
to non-structured programs in Sections 4 and 7 are entirely new. Moreover, the whole pre-
sentation has been formalized in a more general setting using flow graphs and proofs are
provided for all the results.

2 Equation systems, flowcharts and dependencies

In this paper we consider the general problem of solving equation systems whose unknowns
take values in a bounded join-semilattice (V,⊥,∨). Given a set X of unknowns, an assign-
ment is a map ρ : X → V . An equation system is a map F : (X → V)→ (X → V) from
assignments to assignments. We will only consider equation systems with a finite number
of unknowns. A post-fixpoint for F is an assignment ρ such that F(ρ)≤ ρ , where ≤ is the
standard pointwise extension of the ordering on V to assignments. In the setting of static
analysis, solving an equation system means to find out a post-fixpoint for it. In many cases,
an assignment which is bigger than a post-fixpoint also suffices. Determining a fixpoint (or
even the least fixpoint) of the equation system is just an additional bonus.

In the previous section, we have derived an equation system from the flowchart of a
program, by associating an unknown to each edge. Equation systems which arise in this
way have a particular form: for each unknown x, the corresponding equation is either of the
form x = x1∨·· ·∨ xn or of the form x = E where x1, . . . ,xn are other unknowns and E is an
expression with at most one unknown.

In our theoretical treatment we will work with equation systems which are more general
than those which arise from flowcharts, since each right hand side is of the form x = E1 ∨
·· · ∨En and each Ei is an expression which contains at most one unknown. We will derive
these equation systems from graphs we will call semantic flow graphs, which are similar to
flowcharts but more abstract since not tied to the syntax of a particular language.

Definition 1 (Flow Graph) A flow graph is a tuple G = (N,E, ι) where N is the set of
nodes, E ⊆ N×N is the set of edges and ι ∈ N is the root node and has no incoming edges.

A path in the graph G = (N,E, ι) is a sequence π = n0 . . .nk with k ≥ 0 such that
(ni−1,ni) ∈ E for each i ∈ {1, . . . ,k}. We say that π starts from n0 and ends in nk.

We say that the node n dominates the node m if each path from ι to m passes trough
n. If n 6= m we say that n strictly dominates m. A back-edge is any edge (m,n) such that n
dominates m.

A semantic flow graph (over the poset V) is a flow graph with a distinguished value
(the initial value for the root node) and whose edges are labeled with monotone functions
(the state-transition functions). The labels and the distinguished value contain the semantic
information that in a flowchart is conveyed by the shape and label of nodes.

Definition 2 (Semantic Flow Graph) A semantic flow graph over the poset V is a tuple
G = (N,E, ι ,{ fe}e∈E ,vι) where (N,E, ι) is a flow graph, each fe : V → V is a monotone
function and vι ∈V .

Definition 3 (Equation system derived from a semantic flow graph) From any seman-
tic flow graph G = (N,E, ι ,{ fe}e∈E ,vι) over the bounded join-semilattice V , we derive an
equation system FG such that the unknowns of FG are the nodes of the graph and

FG (ρ)(n) =

{
vι if n = ι∨

(m,n)∈E f(m,n)(ρ(m))) otherwise.

Descending chains and narrowing on template abstract domains 7

1

2

3

4

5

6

7

8

9

10

11

12

13

i = 0

i < 10

i = i+1

i≥ 9

i = 0

i < 9

i≥ 10

i≥ 10

i = i+1

i < 10

Fig. 2 The semantic flow graph for the equation system in Figure 1(c)

The equation system F is called strict if each fe is strict, i.e. fe(⊥) =⊥. When we say that
F is derived from the semantic flow graph G , we mean that F = FG .

Usually, solvers of equations systems keep a current assignment ρ which is updated by
selecting some unknown to be recomputed according to their corresponding equations. This
is formalized by the following definition.

Definition 4 (Update of an assignment) Fixed a semantic flow graph G , for each assign-
ment ρ and X ⊆ N, the assignment

ρ
X (n) =

{
FG (ρ)(n) if n ∈ X ,
ρ(n) otherwise,

is called the update of ρ for X .

The following facts are well known and easy to check. However, since we use them exten-
sively in the rest of the paper, we prefer to state them clearly.

Proposition 1 (Properties of FG) For any semantic flow graph G , the equation system FG

is monotone on assignments. Moreover, the function which maps an assignment ρ to its
update ρX is monotone, too. Finally, if ρ is a post-fixpoint, then ρX is a post-fixpoint.

Example 3 The equation system in Figure 1(c) is derived from the semantic flow graph
in Figure 2. In this semantic flow graph, the functions labeling the edges are depicted by
boolean expression and assignments in order to ease the comparison with the flowchart. ut

Semantic flow graphs and flowcharts are related. Essentially, one may be obtained from
the other by changing edges in nodes and vice-versa. In this paper, we prefer semantic

8 Gianluca Amato et al.

flow graphs since they are used by many libraries for solving fixpoint equations such as
Fixpoint3 and ScalaFix4.

3 Descending chains on intervals of integers

In this section we informally analyze how termination of the descending phase may be
ensured, in the absence of narrowing, with the domain of integer intervals. In Section 4 we
will formalize our reasoning and prove correctness results in a more general setting. Note
that what is generally called interval domain in the literature is an extension of the domain
we are considering here, and it would be better called box domain since its elements are
boxes in Rn. However, the box domain is a particular case of a template abstract domain,
and will be dealt with in Section 5.

Example 1 shows an analysis which leads to an infinite descending chain of intervals. In
particular, the chain is [11,+∞], [12,+∞], [13,+∞], . . . and its limit is the empty set. It turns
out that the only infinite descending chains of intervals are of the kind

[n0,+∞], [n1,+∞], [n2,+∞], . . .

or
[−∞,−n0], [−∞,−n1], [−∞,−n2], . . .

where {ni}i∈N is an infinite ascending chain of integers. The limit of all these chains is the
empty set.

Proposition 2 Let {Ii}i∈N be an infinite descending chain of integer intervals. Then
∧

i∈N Ii =
/0.

Proof If {Ii}i∈N in an infinite descending chain of intervals and Ii = [li,ui], then either li
or −ui is an infinite ascending chain of integers. Therefore, either li → +∞ or ui → −∞.
Without loss of generality, assume we are in the first case. Then, for each x ∈ R, there is
j ∈ N such that l j > x, hence x /∈

∧
i∈N Ii. We have

∧
i∈N Ii = /0. ut

In the rest of this section, we work with equation systems which have been generated by
structured programs, i.e., programs whose control flow constructs are while, for and repeat
loops, if-then(-else), break and continue. Intuitively, this means that every loop has a single
well defined entry point.

Assume loop is the entry point of a loop and its corresponding equation is xloop = xin∨
xback, where in is the edge in the flow graph which comes from outside the loop and back
the back-edge. Since in a reducible graph the entry point of a loop dominates all the nodes
inside the loop, if control point in is unreachable (i.e., xin = /0 in the interval domain) the
same holds for control point loop.

Therefore, we may change the abstract semantics of the program by replacing each
equation corresponding to a loop join xloop = xin∨ xback with xloop = xin∨⊥ xback, where ∨⊥
is a left-strict variant of the join operator defined as:

I1∨⊥ I2 =

{
/0 if I1 = /0
I1∨ I2 otherwise

(2)

3 http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/fixpoint/
4 https://github.com/jandom-devel/ScalaFix

Descending chains and narrowing on template abstract domains 9

The new set of equations is correct (only for structured programs) and more precise.
Moreover, during the descending phase of the analysis, narrowing is not required to achieve
termination. Actually, assume that an infinite descending chain arises during the descending
phase. Let loop be one of the outermost loop heads whose variable xloop infinitely decreases.
In the presence of left-strict joins, this leads to a contradiction. The equation of xloop is
xloop = xin ∨⊥ xback. The value of xin is definitively constant. Once it reaches its definitive
value x̄in, we may have only two cases:

– if x̄in = /0, then the first time xloop is re-evaluated we have xloop := /0 and xloop cannot
descend anymore, contradicting our hypothesis;

– if x̄in 6= /0, then xloop ≥ x̄in always, and therefore it cannot descend infinitely, due to
Proposition 2.

The above considerations hold not only for integer intervals, but for any numerical abstract
domain with a distinguished value ⊥ denoting unreachability.

Moreover, they can be easily lifted to n-ary loop join nodes. For example, if a loop join
node has equation

xloop = xin1 ∨·· ·∨ xinu ∨ xback1 ∨·· ·∨ xbackv ,

where all the edges ini come from outside the loop and all the back j’s are back-edges, we
may use left-strict join in this way:

xloop = (xin1 ∨·· ·∨ xinu)∨⊥ (xback1 ∨·· ·∨ xbackv) .

The next section is devoted to formalize the above reasoning in a formal, more general
setting, and to prove the correctness of the approach.

4 The general case

In the general case, we deal with an equation system F derived from a flow graph G . The
first step is to define a new equation system F⊥ which uses a left-strict variant of ∨ and
which is still correct.

Definition 5 If F is a strict equation system derived from G , we define the new equation
system F⊥ as follows:

F⊥(ρ)(n) =

{
vι if n = ι∨

e=(m,n)∈E\BackE fe(ρ(m))∨⊥
∨

e=(m,n)∈BackE fe(ρ(m)) otherwise,

where ∨⊥ is a variant of ∨ which is strict on the left argument and BackE is the set of all
back-edges of G .

The following theorem shows that if we have a correct solution for F⊥ (namely, an
assignment which is greater than a post-fixpoint), that is also a correct solution for F . The
opposite also holds. This means we can use F⊥ everywhere, instead of F .

Theorem 1 If F is a strict equation system derived from G and ρ is a post-fixpoint of F⊥,
there is a ρ ′ ≤ ρ which is a post-fixpoint of F. On the contrary, if ρ is a post-fixpoint of F,
it is also a post-fixpoint of F⊥.

10 Gianluca Amato et al.

Proof Assume ρ is a post-fixpoint of F⊥. Consider the set X of nodes which have no con-
tributions from incoming non-backedge nodes, i.e.,

X =

n ∈ N \{ι}

∣∣∣∣∣∣ ∨
e=(m,n)∈E\BackE

fe(ρ(m)) =⊥

 .

Note that if n /∈ X then F⊥(ρ)(n) = F(ρ)(n). Let us define the new assignment ρ⊥ as
follows:

ρ
⊥(n) =

{
⊥ if there is m ∈ X such that m dominates n;
ρ(n) otherwise

We need to prove that ρ⊥ is a post-fixpoint of F , i.e. ρ⊥(n) ≥ F(ρ⊥)(n) for all nodes n.
There are several cases:

– if n is not dominated by any node in X , then ρ⊥(n) = ρ(n) ≥ F⊥(ρ)(n) = F(ρ)(n) ≥
F(ρ⊥)(n).

– if n ∈ X , then ρ⊥(n) =⊥. We have

F(ρ⊥)(n) =
∨

e=(m,n)∈E\BackE
fe(ρ

⊥(m))∨
∨

e=(m,n)∈BackE
fe(ρ

⊥(m)) .

Since n ∈ X , then
∨

e=(m,n)∈E\BackE fe(ρ
⊥(m)) ≤

∨
e=(m,n)∈E\BackE fe(ρ(m)) = ⊥. If

(m,n)∈BackE, then n dominates m, hence ρ⊥(m) =⊥. As a consequence, F(ρ⊥)(n) =
⊥.

– if n /∈ X is dominated by a node m ∈ X then ρ⊥(n) = ⊥. For any edge (l,n), since m
strictly dominates n, then m dominates l and therefore F(ρ⊥)(n) =⊥.

For the second part of the theorem, let ρ be a post-fixpoint of F . Then ρ is a post-fixpoint
of F⊥, since F⊥(ρ)≤ F(ρ). ut

The next definition generalizes and formalizes the property already seen on integer intervals,
that all the infinitely descending chains converge to the bottom of the abstract domain.

Definition 6 (Bottom chain condition) We say that a poset V satisfies the bottom chain
condition (⊥CC) when, for each infinitely descending chain v1 > v2 > · · · > vi > · · · , the
greatest lower bound

∧
i vi exists and is equal to the least element ⊥ of V .

From Proposition 2 it turns out that the integer interval domain satisfies the ⊥CC. We
will show in Section 5 that any template domain satisfies the ⊥CC.

Definition 7 (Chaotic iteration sequence) Given an assignment ρ for the equation sys-
tem F derived from G , a chaotic iteration sequence is a sequence of assignments ρ =
ρ0,ρ1, . . . ,ρi, . . . such that:

1. each ρi+1 is obtained from ρi by selecting a set Xi ⊆ N and defining ρi+1 = ρ
Xi
i ;

2. fairness: for each i ∈ N and n ∈ N, if F(ρi)(n) 6= ρi(n), then there exists j ≥ i such that
n ∈ X j.

Descending chains and narrowing on template abstract domains 11

According to our definition, all the chaotic iteration sequences are infinite. Nonetheless,
any solver for equation systems immediately stops when it recognizes that the sequence
stabilizes, i.e., has reached a fixpoint. In this case, abusing terminology, we call it a finite
sequence.

The next theorem shows what is one of the main results of this paper, namely that ev-
ery chaotic iteration sequence on a domain which satisfies ⊥CC for an equation system
generated by a reducible graph eventually stabilizes. For the definition of reducible graph,
depth-first ordering, forward, retreating and cross edge we refer to [1].

Theorem 2 Assume that V satisfies the ⊥CC, F is an equation system derived from G and
ρ is a post-fixpoint of F⊥. If G is reducible, every chaotic iteration sequence for F⊥ starting
from ρ eventually stabilizes.

Proof Let ρ = ρ0,ρ1, . . . ,ρi, . . . be a chaotic iteration sequence. Assume the sequence does
not stabilize, i.e., there is a node n such that the chain {ρi(n) | i∈N} is infinitely descending.
Consider a depth-first ordering of G and assume without loss of generality that n is the first
node in the ordering which does not stabilize. We recall that, for each i,

F⊥(ρi)(n) =
∨

e=(m,n)∈E\BackE
fe(ρi(m))∨⊥

∨
e=(m,n)∈BackE

fe(ρi(m))

If (m,n) ∈ E \BackE, it is not a back-edge. Since G is reducible, it is not a retreating edge
either, therefore m comes before n in the depth-first ordering. This means that, for a big
enough i, the first half of the formula for F⊥(ρi)(n) stabilizes to a value v. Assume the
stable value is reached at iteration j. Since {ρi(n)}i does not stabilize and V satisfies ⊥CC,
it should be that

∧
i∈N ρi(n) =⊥≥ v, hence v =⊥. This immediately implies that, when the

node n is selected at an iteration l ≥ j, we have ρl(n) =⊥, and therefore {ρi(n)}i stabilizes
against the original hypothesis. ut

The special case of static analysis of structured programs on the abstract domain of
integer intervals immediately follows from the above theorem.

Corollary 1 Assume we have a strict equation system F generated by a structured program
whose loop head nodes are of the form xloop = xin∨ xback.

– If the abstract domain has a distinguished value⊥ denoting unreachability, replacing ∨
with ∨⊥ in all the loop heads, the new set of equations is still correct.

– When using the abstract domain of integer intervals, every chaotic iteration sequence
in the new set of equations starting from a post-fixpoint leads to a finite descending
sequence.

Proof The first point immediately derives from Theorem 1. Since the program is structured,
it follows that the flow graph is reducible. By Proposition 2, the abstract domain of integer
intervals satisfies Definition 6, thus we can apply Theorem 2, from which the thesis.

Note that a descending sequence without narrowing always leads to a fixpoint of the
equation system, instead of a post-fixpoint.

12 Gianluca Amato et al.

5 Template abstract domains

Template abstract domains are numerical domains where each abstract object is described
by a finite set of linear constraints on the program variables, and the homogeneous coeffi-
cients of these constraints are fixed in advance, before starting the analysis. Most important
template abstract domains are the domain of intervals (also called box domain) [10], oc-
tagons [19], template parallelotopes [3] and template polyhedra [20]. Non-template abstract
domains are, among others, polyhedra [14], parallelotopes [4] and two-variables for linear
inequality [21].

A template abstract domain (with integer bounds) TemplateA
Z is defined by an m× n

real matrix A, called the constraint matrix. An element of TemplateA
Z is a subset of Rn

of the form {x ∈ Rn | l ≤ Ax ≤ u}, where l ∈ R̄n and and u ∈ R̄n are, respectively, the
lower and upper bounds. In the following, one such object will be denoted by [l,u]. Order-
ing is given by subset, /0 is the bottom element and the least upper bound [l,u]∨ [l′,u′] =
[min(l, l′),max(u,u′)] where min and max are defined component-wise. Note that, differ-
ently from IntZ, an element of TemplateA

Z is a subset of Rn and not of Zn: only the bounds
are required to be integer. Also, the constraint matrix A may contain any real number.

A box is an abstract object where A is the identity matrix. Octagons are those objects
where the coefficient matrix A allows constraints of the form ±x± y ≤ c. Parallelotopes,
instead, are those objects whose matrix A is invertible.

Under the hypothesis of Theorem 1, it is possible to extend Corollary 1 to all the template
abstract domains. In fact, given a narrowing operator on intervals, we can immediately define
a corresponding component-wise narrowing operator on any template abstract domain. We
first show that template abstract domains with integer bounds enjoy a property similar to
Proposition 2.

Proposition 3 Let {Ii}i∈N be an infinite descending chain of objects Ii ∈ TemplateA
Z. Then∧

i∈N Ii = /0.

Proof If {[li,ui]}i∈N is an infinite descending chain in TemplateA
Z, then there exists j such

that either {li
j}i or {−ui

j}i is an infinite ascending chain of integers. Therefore, either li
j →

+∞ or ui
j →−∞. Without loss of generality, assume we are in the first case. Then, for each

x ∈ R, there is k ∈ N such that li
k > x, hence x /∈

∧
i∈N[lij,ui

j]. Therefore
∧

i∈N[li,ui] = /0. ut

Exploiting the above proposition and Theorem 1, we can prove a result analogous to
Corollary 1 which, in presence of a left-strict join, allows us to avoid narrowing, still guar-
anteeing termination.

Corollary 2 Assume we have a strict equation system F generated by a structured program
whose loop head nodes are of the form xloop = xin ∨ xback. When using TemplateA

Z, if we
replace ∨ with ∨⊥ in all the loop heads, every chaotic iteration strategy in the new set of
equations starting from a post-fixpoint leads to a finite descending sequence.

Proof The proof is analogous to that one of Corollary 1.

6 Finite, arbitrarily long descending chains

The use of F⊥ allows us to get rid of narrowing. As a consequence, however, we may
find programs whose descending chain is finite but arbitrarily long. We now show this phe-
nomenon.

Descending chains and narrowing on template abstract domains 13

Consider the example program unracheableLoop2 in Fig. 3(a), and the corresponding
flow graph and set of equations in Fig. 3(b) and 3(c). We first perform the analysis using
the integer interval domain IntZ with the standard widening and narrowing and then we
recompute the analysis without narrowing.

In the ascending phase we use widening on the join loops: x2 = x2 O (x1 ∨⊥ x4) and
x6 = x6 O (x5∨⊥ x8). The post-fixpoint is:

x1 = [0,0] x4 = [1,11] x7 = [−∞,100]

x2 = [0,∞] x5 = [11,∞] x8 = [−∞,99]

x3 = [0,10] x6 = [−∞,∞] x9 = [101,∞]

Now we start the descending phase with the standard narrowing, using the equations x2 =
x2 M (x1∨⊥ x4) and x6 = x6 M (x5∨⊥ x8). When we first apply narrowing in the second equa-
tion, we get:

x2 = x2 M (x1∨⊥ x4) = [0,∞]M [0,11] = [0,11]

and therefore x5 = [11,11]. We now apply narrowing in the sixth equation:

x6 = x6 M (x5∨⊥ x8) = [−∞,∞]M [−∞,99] = [−∞,99]

and therefore we have x7 = [−∞,99], x8 = [−∞,98] and x9 = /0, which is the fixpoint.
We now recompute the descending phase without narrowing, using the equations

x2 = x1∨⊥ x4

x6 = x5∨⊥ x8 .

The first while loop behaves as before with x5 = [11,11]. Now we enter the second while
loop. The first iteration is the same as before, when using narrowing, and we get:

x6 = [−∞,99] x8 = [−∞,98]

x7 = [−∞,99] x9 = /0

But now we are able to continue the descending phase, which is:

2ns descending iteration 3rd d. i. 4th d. i. . . . last d. i.
x6 [−∞,98] [−∞,97] [−∞,96] . . . [−∞,11]
x7 [−∞,98] [−∞,97] [−∞,96] . . . [−∞,11]
x8 [−∞,97] [−∞,96] [−∞,95] . . . [−∞,10]

Note that, by continuing the descending phase till the fixpoint, we are able to detect that the
guard in the second while loop is over-dimensioned, since the variable i never reaches the
value 100.

14 Gianluca Amato et al.

i=0
while(i<=10) {

i=i+1
}
while(i<=100) {

i=i−1
}

(a) Program

1

2

3

4

5

6

7

8

9

i = 0

i≤ 10

i = i+1

i > 10

i≤ 100

i = i−1

i > 100

(b) Flow graph

x1 = [0,0]

x2 = x1 ∨⊥ x4

x3 = x2 ∧ [−∞,10]

x4 = x3 +[1,1]

x5 = x2 ∧ [11,∞]

x6 = x5 ∨⊥ x8

x7 = x6 ∧ [−∞,100]

x8 = x7− [1,1]

x9 = x6 ∧ [101,∞]

(c) Equation system

Fig. 3 The example program unracheableLoop2.

7 Non-reducible graphs

We first show that Theorem 2 does not hold when the flow graph is not reducible. Consider
the program in Figure 4(a), where “?” denotes a non-deterministic boolean expression. The
first while loop is the same which appears in the program unreachableLoop. The second
while loop is unreachable but has two entry points. The subgraph composed of the nodes
from 9 to 14 is not reducible, hence in the right hand side for x12 and x14 we cannot replace
∨ with ∨⊥. After the end of the ascending chain with the standard widening, we have x10 =
x11 = x12 = x14 = [10,+∞] and x13 = [11,+∞]. During the descending chain, if we do not
use narrowing, x9,x10 and x11 become /0. However, for x12,x13 and x14 an infinite descending
chain begins, whose limit is the empty set.

Note that it would be possible to break the descending chain by recognizing that the node
9 dominates all the lower subgraph. Since x9 = /0, all the unknowns for the subgraph domi-
nated by 9 may be set to /0. We may turn this idea into a new procedure for the descending
chain which ensures termination also for non-reducible graphs. However, something slightly
more complex is required for the general case.

First of all, we need to extend the concept of dominance between nodes to the case of
dominance between edges and nodes.

Definition 8 (Edge dominance) Given a flow graph G = (N,E, ι), we say that a set of
edges X ⊆ E dominates the node n if each path from ι to n passes trough at least one of the
edges in X .

Example 4 In the flow graph of Figure 4(b), edges (9,10) and (9,11) dominate nodes 12,
13 and 14. ut

The following lemma formalizes the fact that we can set some unknown to ⊥ in an
assignment, preserving the property of being a post-fixpoint, and thus improving the un-
reachability information.

Descending chains and narrowing on template abstract domains 15

i = 0
while (i < 10) {

i = i + 1
if (i >= 9)

i = 0
}
if (?) goto label
while (true) {

i = i + 1
label :
}

(a) Program

1

2

3

4

5

6

7

8

9

10

12

13

11

14

i = 0

i < 10

i = i+1

i≥ 9

i = 0

i < 9

i≥ 10

? ?

i = i+1

(b) Flow graph

x1 = [0,0]

x2 = x1 ∨ x8

x3 = x2 ∧ [−∞,9]

x4 = x3 +[1,1]

x5 = x4 ∧ [9,∞]

x6 = [0,0] · x5

x7 = x4 ∧ [−∞,8]

x8 = x6 ∨ x7

x9 = x2 ∧ [10,∞]

x10 = x9

x11 = x9

x12 = x10 ∨ x14

x13 = x12 +[1,1]

x14 = x13 ∨ x11

(c) Equation system

Fig. 4 The example program nonReducible.

Lemma 1 If F is a strict equation system derived from G and ρ is a post-fixpoint of F, let
X ⊆ E be a set of edges such that, for each (m,n) ∈ X, f(m,n)(ρ(m)) = ⊥. Then, consider
the assignment

ρ
⊥(n) =

{
⊥ if X dominates n
ρ(n) otherwise

We have that ρ⊥ is a post-fixpoint of F.

Proof We prove that ρ⊥(n)≥ F(ρ⊥)(n) for each n ∈ N. We distinguish several cases:

– X does not dominate n. By monotonicity of F , it is immediate that ρ⊥(n) = ρ(n) ≥
F(ρ)(n)≥ F(ρ⊥)(n).

– X dominates n. By definition ρ⊥(n) = ⊥ and F(ρ⊥)(n) =
∨

e=(m,n)∈E fe(ρ
⊥(m)). For

each e = (m,n) ∈ E, either e ∈ X , hence fe(ρ
⊥(m)) ≤ fe(ρ(m)) = ⊥, by hypothesis,

or X dominates m, hence ρ⊥(m) = ⊥. In both cases fe(ρ
⊥(m)) = ⊥, and therefore

F(ρ⊥)(n) =⊥. ut

We can augment a chaotic iteration sequences with new steps which apply Lemma 1 to
the current assignment.

Definition 9 (Chaotic iteration sequence with bottom acceleration) Given an assignment
ρ for the equation system F derived from G , a chaotic iteration sequence with bottom ac-
celeration is a sequence of assignments ρ = ρ0,ρ

⊥
0 ,ρ1,ρ

⊥
1 , . . . ,ρi,ρ

⊥
i , . . . such that

1. ρi+1 = ρX
i for some X ⊆ N;

2. ρ⊥i is obtained from ρi by Lemma 1 by choosing X = {(m,n)∈ E | f(m,n)(ρ(m))) =⊥}.

16 Gianluca Amato et al.

i = 1
if (i>=2) {

if (i>=3) {
L1: i=i+1

goto L2
}

}
else if (i<=0) {
L2: i=i+1

goto L1
}

(a) Program

1

2 3

4 5

i≥ 2 i < 2

i≥ 3 i≤ 0

i = i+1

i = i+1

(b) Flow graph

x1 = [1,1]

x2 = x1 ∧ [2,∞]

x3 = x1 ∧ [−∞,1]

x4 = (x2 ∧ [3,∞])∨ (x5 +[1,1])

x5 = (x3 ∧ [−∞,0])∨ (x4 +[1,1])

(c) Equation system

Fig. 5 The example program nonReducible2.

Theorem 3 Assume that V satisfies the ⊥CC, F is a strict equation system derived from
G and ρ is a post-fixpoint of F, any chaotic iteration sequence with bottom acceleration
starting from ρ is ultimately stationary.

Proof First of all, note that each iteration sequence with bottom acceleration starting from ρ

is a descending chain, since at each step we preserve the property of being in a post-fixpoint
of F . Assume the sequence ρ = ρ0,ρ

⊥
0 ,ρ1,ρ

⊥
1 , . . . ,ρi,ρ

⊥
i , . . . is not ultimately stationary,

i.e., there is a node n such that the chain {ρi(n) | i ∈ N} is infinitely descending. Consider a
depth-first ordering of G and assume without loss of generality that n is the first node in the
ordering which does not stabilize.

Since V satisfies the ⊥CC we have ρi(n)→⊥ and therefore ρi(m)→⊥ for each edge
(m,n) ∈ E. If m comes before n in the depth-first ordering, then the sequence {ρi(m)}i∈N
should be ultimately stationary. This means that, if X is the set of all forward or cross edges
pointing to n, there exists an index j such that f(m,n)(ρ j(m)) =⊥ for each (m,n) ∈ X . Note
that X dominates n, therefore ρ⊥j (n) =⊥, against the original hypothesis. ut

Example 5 Consider the program in Figure 4(a). During the descending chain, as soon as
x2 becomes [0,9] the acceleration step sets to ⊥ all unknowns from x9 to x14. ut

Although in this example we could just track node dominance and realize that unknowns
from x10 to x14 may be set to⊥ once x9 reaches⊥, this is not true in general, as the following
example shows.

Example 6 Consider the equation system in Figure 5(c) over the domain of integer intervals.
Consider the assignment ρ = {x1 7→ [1,1],x2 7→ /0,x3 7→ [1,1],x4 7→ [0,+∞],x5 7→ [0,+∞]},
which is a post-fixpoint. If we start a descending chain from ρ , x4 and x5 assume all the
values of the form [i,+∞] for i≥ 0. Note that neither 2 nor 3 dominate either 4 or 5. However
the set of edges {(2,4),(3,5)} dominates both 4 and 5. Therefore, a bottom accelerated
descending chain immediately converges. ut

The use of bottom acceleration is more effective than using the new equation system
F⊥, since it works for both reducible and non-reducible graphs. However, it is more difficult
to implement, since it require changes to the solver algorithm, while F⊥ may be generally
implemented by just changing the equation system that we feed to the solver. Moreover,
checking for dominance might slow down the computation in the vast majority of cases when
there is no unreachable code, while using F⊥ has no adverse performance implications.

Descending chains and narrowing on template abstract domains 17

i=0
while(true) {

if (i>10) {
i=0

}
i=(i+2)/2

}

(a) Program

1

2

3

4

5

6

7

i = 0

i > 10

i = 0

i≤ 10

i = (i+2)/2

(b) Flow graph

x1 = [0,0]

x2 = x1 ∨⊥ x7

x3 = x2 ∧ [10,+∞]

x4 = x3 · [0,0]
x5 = x2 ∧ [−∞,10]

x6 = x4 ∨ x5

x7 = (x6 +[2,2])/2

(c) Equation system

Fig. 6 The example program realLoop.

8 Narrowing on reals

The left-strict join we have introduced for integer domains may also be used with abstract
domains over real variables. This improves the precision of the analysis, but does not ensure
that the descending phase terminates. This depends on the fact that, once we admit real vari-
ables, we can have infinite descending chains whose limit is not the empty set. Nonetheless,
in this case the left-strict join may be exploited to define a narrowing more precise than the
standard one.

The next example shows that on the standard interval domain IntR for real variables, the
descending phase of the analysis may lead to an infinite descending chain whose limit is not
the empty set. We recall that

IntR = {[l,u]⊆ R | l ≤ u ∈ R∪{−∞,∞}}∪{ /0}.

Example 7 Consider the example program realLoop in Fig. 6(a), and the corresponding
flow graph and equations in Fig. 6(b) and 6(c). The ascending phase using left-strict join
and standard widening, i.e., x2 = x2 O (x1∨⊥ x7), reaches a post-fixpoint in two iterations.

1st ascending iteration 2nd ascending iteration
x1 [0,0] [0,0]
x2 [0,0] [0,0] O [0,1] = [0,+∞]
x3 /0 [10,+∞]
x4 /0 [0,0]
x5 [0,0] [0,10]
x6 [0,0] [0,10]
x7 [1,1] [1,6]

18 Gianluca Amato et al.

We now start from the post-fixpoint a descending iteration without applying narrowing,
using the original equation x2 = x1∨⊥ x7.

1st descending iteration 2nd descending iteration
x1 [0,0] [0,0]
x2 [0,0]∨⊥ [1,6] = [0,6] [0,0]∨⊥ [1,4] = [0,4]
x3 /0 /0
x4 /0 /0
x5 [0,6] [0,4]
x6 [0,6] [0,4]
x7 [1,4] [1,3]

At the next iterations, we obtain:

x2 = [0,3] x7 =

[
1,

5
2

]
x2 =

[
0,

5
2

]
x7 =

[
1,

9
4

]
and so on, without terminating. The fixpoint, which is x2 = [0,2] and x7 = [1,2], is not the
empty set. ut

Taking advantage of the result in Proposition 2, we can define a new notion of weak
narrowing. A weak narrowing is very similar to the standard narrowing, the only difference
being that a descending chain built with weak narrowing might either stabilize or converge
to ⊥.

Definition 10 (Weak narrowing) A weak narrowing over the pointed poset (V,⊥) is a
binary operator M : V ×V →V such that:

– v1 M v2 is only defined when v2 ≤ v1;
– v2 ≤ v1 M v2 ≤ v1;
– given any decreasing chain {vi}i∈N, the sequence {v′i}i∈N defined as v′0 = v0 and v′i+1 =

v′i M vi+1 is either ultimately stationary or converges towards ⊥.

The following holds for weak narrowing.

Theorem 4 Let F be an equation system derived from a reducible semantic flow graph G
and ρ a post-fixpoint of F⊥. Let F⊥M the equation system derived from F⊥ by applying the
weak narrowing M to each loop head. Every chaotic iteration sequence for F⊥M starting from
ρ eventually stabilizes.

Proof It is similar to the proof of Theorem 2. However, when node n is chosen, which is the
least non-stabilizing node in a depth-first ordering of G , two cases arise:

– if there are no back-edges pointing to n, then

F⊥M (ρi)(n) =
∨

e=(m,n)∈E\BackE
fe(ρi(m))

and {ρi(n)}i stabilizes since all the nodes which come before n in the depth-first ordering
do stabilize;

Descending chains and narrowing on template abstract domains 19

– if there are back-edges pointing to n, i.e., n is a loop head, then

F⊥M (ρi)(n) = ρi(n)M

 ∨
e=(m,n)∈E\BackE

fe(ρi(m))∨⊥
∨

e=(m,n)∈BackE
fe(ρi(m))


Weak narrowing ensures that if the chain {ρi(n)}i is infinitely descending, then

∧
i ρi(n)=

⊥. With the same reasoning in Theorem 2, we know that this case never occurs. ut

Exploiting Proposition 2, we can define a weak narrowing on intervals of reals which re-
fines successive descending iterations at the nearest integer, since we cannot have an infinite
descending chain whose bounds are all integers.

Definition 11 (Weak narrowing on reals) We define a weak narrowing operator M1 on
IntR as follows:

I M1 /0 = /0

[l1,u1]M
1 [l2,u2] = [l′,u′]

where

l′ =

{
l2 if l1 =−∞

max(l1,bl2c) otherwise

u′ =

{
u2 if u1 =+∞

min(u1,du2e) otherwise

Note that this operator may be immediately extended componentwise to template do-
mains. The same also holds for the other weak narrowings we will introduce later in this
section. We define them and prove they are weak narrowings only for intervals, for the sake
of conciseness.

The new weak narrowing M1 refines infinite bounds to finite values, as the standard
narrowing, and refines finite bounds only to new integer values. Since infinite descending
sequences on integer template domains are precluded by the use of left-strict joins, any
descending sequence terminates.

Theorem 5 The operator M1 is a weak narrowing.

Proof We need to show that for any [l2,u2] ≤ [l1,u1], it holds that [l2,u2] ≤ [l1,u1]M1

[l2,u2]≤ [l1,u1] and any infinite descending chain of narrowing eventually stabilizes or con-
verges to /0.

Let [l′,u′] = [l1,u1]M1 [l2,u2]. By Definition 11, we need to prove that u2 ≤ u′ ≤ u1 and
l1 ≤ l′ ≤ l2. If u1 =+∞ then u′ = u2 and u2 ≤ u′ ≤ u1. Otherwise, since u2 ≤ u1 by definition
of narrowing operator, it follows that u2 = min(u1,u2)≤min(u1,du2e) = u′ ≤ u1. The proof
for the lower bound is symmetric.

Given any chain {[li,ui]i∈N}, where [li+1,ui+1]≤ [li,ui] for any i ∈ N, we need to prove
that the sequence:

[l′0,u
′
0] = [l0,u0]

[l′i+1,u
′
i+1] = [l′i ,u

′
i]M

1 [li+1,ui+1]

20 Gianluca Amato et al.

eventually stabilizes or converges towards /0.
First assume that u0 6= +∞. Thus for any i ∈ N we have that ui 6= +∞, From Definition

11, it follows that, for any i ∈N, u′i+1 = min(u′i,dui+1e), from which it immediately follows
that either u′i+1 = u0 or u′i+1 ∈ N. Thus, either the sequence is constant (and is equal to u0)
or there exists k ∈ N such that u′k ∈ N. In the first case, there is nothing to prove, since the
sequence stabilizes to u0. In the second case, the narrowing sequence starting from u′k is a
sequence of integers, thus it converges towards −∞ and

∧
i [l
′
i ,u
′
i] = /0.

Now we assume that u0 = +∞. In this case, either the narrowing sequence is stable to
+∞, or there exists k ∈ N such that uk 6= +∞: we fall in the same case as u0 6= +∞, just
shifted by k.

The proof for lower bounds is symmetric. The extension to template domains is imme-
diate. ut

In the next example we compare the standard narrowing with the new weak narrowing
on reals M1.

Example 8 We compute the descending chain of Example 7 using the standard narrowing
on intervals. We start from the post-fixpoint and use the equation x2 = x2 M (x1 ∨⊥ x7). At
the first descending iteration we get

x2 = [0,+∞]M ([0,0]∨⊥ [1,6]) = [0,+∞]M [0,6] = [0,6] .

Note that we get exactly the same value as in the first descending iteration without narrow-
ing. Therefore, we compute for the other unknowns exactly the same values, in particular
x7 = [1,4]. It is immediate to see that this is a fixpoint for the computation using the standard
narrowing, since no more unbounded values appear. In fact, we have that

x2 = x2 M (x1∨⊥ x7) = [0,6]M [0,4] = [0,6] .

We now recompute the descending chain of Example 7 using the weak narrowing on
reals M1 in Def. 11. The first descending iteration is the same as for the standard narrowing,
and we get x2 = [0,6] and x7 = [1,4]. In the second descending iteration we have

x2 = x2 M
1 (x1∨⊥ x7) = [0,6]M1 [0,4] = [0,4]

and x7 = [1,3]. In the third descending iteration we have

x2 = [0,4]M1 [0,3] = [0,3]

and x7 = [1, 5
2]. This is the fixpoint, since

x2 = [0,3]M1
[

0,
5
2

]
= [0,3] .

In this case, we get a result strictly more precise than with the standard narrowing. ut

It is worth noting that M1 could be easily generalized by rounding numbers at the multi-
ple of any strictly positive constant value δ ∈ R.

Descending chains and narrowing on template abstract domains 21

Definition 12 (δ -narrowing) Let δ ∈ R such that δ > 0. We define a new weak narrowing
on intervals of reals:

I Mδ /0 = /0

[l1,u1]M
δ [l2,u2] = [l′,u′]

where

l′ =

{
l2 if l1 =−∞

max(l1,δbl2/δc) otherwise

u′ =

{
u2 if u1 =+∞

min(u1,δdu2/δe) otherwise

The above weak narrowing produces a descending chain whose elements differ for a multi-
ple of δ , which is fixed in advance. It generalizes M1 given in Definition 11. In fact, Def. 12
boils down to Def. 11 when δ = 1.

Proposition 4 Let {[li,ui]}i∈N be an infinite descending chain of real intervals. Assume that
there exists δ > 0 ∈ R and k ∈ N such that, for any i≥ k, it holds that:

– either ui = ui+1 or ui−ui+1 ≥ δ ;
– either li = li+1 or li+1− li ≥ δ .

Then
∧

i∈N[li,ui] = /0.

Proof We show the result when k = 0. The other case immediately follows by consider-
ing the sequence {[li,ui]}i≥k∈N. If {[li,ui]}i∈N is an infinite descending chain of real inter-
vals, then either {li}i∈N or {−ui}i∈N is an infinite ascending chain of reals. Without loss
of generality, assume we are in the first case. By hypothesis, it holds that either li = li+1 or
li+1− li ≥ δ for a fixed δ > 0. Since the chain is infinitely descending, li+1− li ≥ δ infinitely
many times, hence li → +∞. Then, for each x ∈ R, there is j ∈ N such that l j > x, hence
x /∈

∧
i∈N[li,ui]. We have

∧
i∈N[li,ui] = /0. ut

Theorem 6 The operator Mδ is a weak narrowing.

Proof We need to show that for any [l2,u2] ≤ [l1,u1], it holds that [l2,u2] ≤ [l1,u1]Mδ

[l2,u2] ≤ [l1,u1] and any infinite descending chain of narrowing either stabilizes or con-
verges to /0.

Let [l′,u′] = [l1,u1]Mδ [l2,u2]. By Definition 13, it is immediate to see that either l′ = l1,
or l′ = l2, or l′ = δbl2/δc. Note that, for any δ ∈R, we have that l2 ≥ δbl2/δc. Since l1 ≤ l2,
it follows that l1 ≤max(l1,δbl2/δc)≤ l2. In all cases, l1 ≤ l′ ≤ l2. The symmetric reasoning
holds for upper bounds.

Given any chain {[li,ui]i∈N}, where [li+1,ui+1]≤ [li,ui] for any i ∈ N, we need to prove
that the sequence:

[l′0,u
′
0] = [l0,u0]

[l′i+1,u
′
i+1] = [l′i ,u

′
i]M

δ [li+1,ui+1]

either stabilizes or converges to /0.
First assume that u0 is a multiple of δ . From Definition 12, it follows that, for any i ∈N,

u′i+1 = min(u′i,δdui+1/δe) is a multiple of δ . Therefore, either u′i+1 = u′i or u′i− u′i+1 ≥ δ .

22 Gianluca Amato et al.

The same eventually happens also when u0 is not a multiple of δ , with the possible exception
of the case when u′i = u0 for each i ∈ N. Similar considerations apply to the lower bounds.
As a consequence, either {[li,ui]}i stabilizes, or it satisfies Proposition 4 and its limit is /0.

ut

The next example applies the new weak narrowing Mδ to the program realLoop.

Example 9 We compute the descending chain for the example program realLoop in Fig. 6(a)
using δ -narrowing with δ = 1

100 . We get the following values for x2:

[0,6], [0,4], [0,3],
[

0,
5
2

]
,

[
0,

9
4

]
,

[
0,

213
100

]
,

[
0,

207
100

]
,

[
0,

204
100

]
,

[
0,

202
100

]
,

[
0,

201
100

]
where the last one is the fixpoint. ut

As an alternative, instead of rounding bounds to a multiple of δ , we may refine bounds
with the new value only if the difference w.r.t. the previous value is greater than a given δ .
We call this δ*-narrowing.

Definition 13 (δ*-narrowing) Let δ ∈R such that δ > 0. We define a new weak narrowing
on intervals of reals:

I Mδ∗ /0 = /0

[l1,u1]M
δ∗ [l2,u2] = [l′,u′]

where

l′ =

{
l2 if l1 =−∞ or l2− l1 ≥ δ

l1 otherwise

u′ =

{
u2 if u1 =+∞ or u1−u2 ≥ δ

u1 otherwise

The above weak narrowing keeps iterating while the difference between two successive
iterations is greater than δ .

Theorem 7 The operator Mδ∗ is a weak narrowing.

Proof We need to show that for any [l2,u2] ≤ [l1,u1], it holds that [l2,u2] ≤ [l1,u1]Mδ∗

[l2,u2]≤ [l1,u1] and any infinite descending chain of narrowing either stabilizes or converge
towards /0.

Let [l′,u′] = [l1,u1]Mδ∗ [l2,u2]. By Definition 13, it is immediate to see that either l′ =
l1 or l′ = l2, and symmetrically for the upper bounds, from which we have that [l2,u2] ≤
[l′,u′]≤ [l1,u1]

Given any chain {[li,ui]i∈N}, where [li+1,ui+1]≤ [li,ui] for any i ∈ N, we need to prove
that the sequence:

[l′0,u
′
0] = [l0,u0]

[l′i+1,u
′
i+1] = [l′i ,u

′
i]M

δ∗ [li+1,ui+1]

either stabilizes or converge towards /0. The proof proceed as for Theorem 6. ut

The next example shows the weak narrowing Mδ∗ in the program realLoop.

Descending chains and narrowing on template abstract domains 23

Example 10 We compute the descending chain for the example program realLoop in Fig. 6(a)
using δ*-narrowing with δ = 1

100 . We get the following values for x2:

[0,6], [0,4], [0,3],
[

0,
5
2

]
,

[
0,

9
4

]
,

[
0,

17
8

]
,

[
0,

33
16

]
,

[
0,

65
32

]
,

[
0,

129
64

]
where the last one is the fixpoint. ut

9 Conclusion and related work

We believe that the main contribution of this paper is a deeper theoretical understanding of
termination issues during descending iterations within the framework of static analysis by
abstract interpretation. In details, we have:

– defined a left-strict join operators for loop heads, which improves precision by preserv-
ing unreachability;

– proved that, when using the new join operator on a domain satisfying the bottom chain
condition (such as any template abstract domain with integer bounds), the descending
phase of the analysis terminates even without using a narrowing operator, provided the
equation system comes from a reducible flow graph;

– defined an acceleration operation for descending iterations which immediately propa-
gates unreachability; this is the first instance of an accelerator operator for the descend-
ing phase of the analysis;

– proved that, when using acceleration on an abstract domain satisfying the bottom chain
condition, narrowing is not needed even for non-reducible graphs;

– provided several improved (more precise) weak narrowings for template domains with
real bounds, to be used with the new join operator;

– shown, for the first time, examples of programs over integers and reals where the de-
scending phase of the analysis is either infinite or arbitrarily long.

Both the new join and the improved weak narrowings may be easily implemented in
existent analyzers with little effort, since they only require a single check in the abstract join
in order to make it left-strict.

The new join operator may be used systematically with structured programs, since it
improves both precision and speed at the same time. The same cannot be said for the new
weak narrowings over reals or for the idea of avoiding narrowing at all with integer domains.
In this case, we may get better precision, as shown in Example 7, but at the expense of a
greater computational cost, since the analysis of the loops might be repeated several times.
The good point is that we increase the computational cost only when we improve precision
w.r.t. the standard narrowing.

The cost of the repeated computations in loops might be probably reduced by delaying
analysis of the inner loops until outer loops are stabilized, so that a long descending sequence
in a loop does not force to repeatedly analyze the inner loops. However the impact of the
new weak narrowings on the precision and performance of the analysis on realistic test cases
will be the topic of a future work.

Only a few papers in the literature deal with narrowing and the descending phase of
the analysis. In [5,7,6] the authors propose to combine widening and narrowing during the
analysis, resulting in multiple intertwined ascending and descending phases. In [5] the alter-
nation between ascending and descending phases is driven by a hierarchical ordering [8] of
the equation system, while in [7,6] the alternation is driven by a choice of priorities for the

24 Gianluca Amato et al.

unknowns. Both these approaches, when paired with favourable ordering or priorities, are
able to completely analyze the upper part (the first loop) of the program unreachableLoop
in Fig. 1(a) before starting the analysis of the lower part. In this case, the infinite descend-
ing chain does not arise even with the standard join operator. However, it is not clear if a
favourable ordering of equations or priorities exist for any program. This seems unlikely,
especially for programs with complex nested loops or non reducible equation systems.

Moreover, [5] also proposes to restart (part of) the analysis when the abstract value as-
sociated to the exit node of a loop is refined during the descending phase. Our left-strict
join operator may be viewed as a variant of the restarting policy in [5], where restart is trig-
gered only when unreachability is detected. For instance, in the example program unreach-
ableLoop in Fig. 1(a), the restarting policy triggers a full analysis (widening and narrowing
phases) of the second loop with an initial assignment which maps every unknown of the
second loop to bottom. However, while in the previous work restarting is a feature of the
equation solver, here it is realized directly at the semantic level.

In [18] the authors try to recover precision by restarting the analysis after that a post-
fixpoint has been reached. An heuristic chooses a set of predecessors for each join node.
The analysis is then restarted from an initial value which is equal to the result of the previ-
ous analysis for the chosen nodes, and bottom for all the others. For the example program
unreachableLoop in Fig. 1(a) this does not help since, at the end of the first analysis, x9 is
bottom anyway.

Mostly, our work is orthogonal to the ones cited above: the new operators we have
defined may be used within these frameworks to get more precise results.

The idea of avoiding narrowing in the descending phase is used in many papers, with
the proviso of bounding the number of descending iterations to ensure termination. In this
paper we show that, under certain conditions and ignoring performance issues, we do not
need to bound the number of iterations.

While acceleration in the ascending phase (for numerical domains) has been introduced
already in [17], the new acceleration operator is, up to our knowledge, the only example of
acceleration to be used during the descending phase of the analysis.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools, second edn.
Addison Wesley (2006)

2. Amato, G., Di Maio, S.D.N., Meo, M.C., Scozzari, F.: Narrowing operators on template abstract do-
mains. In: N. Bjøner, F. de Boer (eds.) FM 2015: Formal Methods, 20th International Symposium, Oslo,
Norway, June 24-26, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9109, pp. 57–72.
Springer, Berlin Heidelberg (2015). DOI 10.1007/978-3-319-19249-9_5

3. Amato, G., Parton, M., Scozzari, F.: Discovering invariants via simple component analysis. Journal of
Symbolic Computation 47(12), 1533–1560 (2012). DOI 10.1016/j.jsc.2011.12.052

4. Amato, G., Scozzari, F.: The abstract domain of parallelotopes. In: J. Midtgaard, M. Might (eds.) Pro-
ceedings of the Fourth International Workshop on Numerical and Symbolic Abstract Domains, NSAD
2012, Electronic Notes in Theoretical Computer Science, vol. 287, pp. 17–28. Elsevier (2012). DOI
10.1016/j.entcs.2012.09.003

5. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: F. Logozzo, M. Fähndrich (eds.) Static
Analysis. 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013, Proceedings,
Lecture Notes in Computer Science, vol. 7935, pp. 25–42. Springer, Berlin Heidelberg (2013). DOI
10.1007/978-3-642-38856-9_4

6. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining widening and narrow-
ing. Science of Computer Programming 120, 1–24 (2016). DOI 10.1016/j.scico.2015.12.005

Descending chains and narrowing on template abstract domains 25

7. Apinis, K., Seidl, H., Vojdani, V.: How to combine widening and narrowing for non-monotonic sys-
tems of equations. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, pp. 377–386. ACM, New York, NY, USA (2013). DOI
10.1145/2491956.2462190

8. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: D. Bjørner, M. Broy, I.V. Pot-
tosin (eds.) Formal Methods in Programming and Their Applications, International Conference Academ-
gorodok, Novosibirsk, Russia June 28 – July 2, 1993 Proceedings, Lecture Notes in Computer Science,
vol. 735, pp. 128–141. Springer, Berlin Heidelberg (1993). DOI 10.1007/BFb0039704

9. Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy iteration algorithm for computing
fixed points in static analysis of programs. In: K. Etessami, S.K. Rajamani (eds.) Computer Aided Veri-
fication, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005. Proceed-
ings, Lecture Notes in Computer Science, vol. 3576, pp. 462–475. Springer, Berlin Heidelberg (2005).
DOI 10.1007/11513988_46

10. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings of the
Second International Symposium on Programming, pp. 106–130. Dunod, Paris, France (1976)

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: POPL ’77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pp. 238–252. ACM Press, New York,
NY, USA (1977). DOI 10.1145/512950.512973

12. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL ’79: Proceedings
of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 269–282.
ACM Press, New York, NY, USA (1979). DOI 10.1145/567752.567778

13. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to ab-
stract interpretation. In: M. Bruynooghe, M. Wirsing (eds.) Programming Language Implementation and
Logic Programming, 4th International Symposium, PLILP ’92 Leuven, Belgium, August 26–28, 1992,
Proceedings, Lecture Notes in Computer Science, vol. 631, pp. 269–295. Springer, Berlin Heidelberg
(1992). DOI 10.1007/3-540-55844-6_101. Invited paper

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In:
POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pp. 84–97. ACM Press, New York, NY, USA (1978). DOI 10.1145/512760.512770

15. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in succinctly represented
control flow graphs. Logical Methods in Computer Science 8(3) (2012). DOI 10.2168/LMCS-8(3:
29)2012

16. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iteration. ACM Trans-
actions on Programming Languages and Systems 33(3), 1–48 (2011). DOI 10.1145/1961204.1961207

17. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analysis. In: K. Yi
(ed.) Static Analysis, 13th International Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006.
Proceedings, Lecture Notes in Computer Science, vol. 4134, pp. 144–160. Springer, Berlin Heidelberg
(2006). DOI 10.1007/11823230_10

18. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: A. Miné, D. Schmidt (eds.) Static
Analysis, 19th International Symposium, SAS 2012, Deauville, France, September 11-13, 2012. Pro-
ceedings, Lecture Notes in Computer Science, vol. 7460, pp. 198–213. Springer, Berlin Heidelberg
(2012). DOI 10.1007/978-3-642-33125-1_15

19. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), 31–100 (2006).
DOI 10.1007/s10990-006-8609-1

20. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical
programming. In: R. Cousot (ed.) Verification, Model Checking, and Abstract Interpretation, 6th Inter-
national Conference, VMCAI 2005, Paris, France, January 17-19, 2005. Proceedings, Lecture Notes in
Computer Science, vol. 3385, pp. 25–41. Springer, Berlin Heidelberg (2005). DOI 10.1007/b105073

21. Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an abstract domain. In:
M. Leuschel (ed.) Logic Based Program Synthesis and Transformation 12th International Workshop,
LOPSTR 2002, Madrid, Spain, September 17–20, 2002. Revised Selected Papers, Lecture Notes in
Computer Science, vol. 2664, pp. 71–89. Springer, Berlin Heidelberg (2003). DOI doi://10.1007/
3-540-45013-0_7

