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Abstract

We propose a formal method to validate the reliability of a web application, by
modeling interactions among its constituent objects. Modeling exploits the recent
”Multiple Levels of Integrity” mechanism which allows objects with dynamically
changing reliability to cooperate within the application. The novelty of the method
is the ability to describe systems where objects can modify their own integrity
level, and react to such changes in other objects. The model is formalized with
a process algebra, properties are expressed using the ACTL temporal logic, and
can be verified by means of a model checker. Any instance of the above model
inherits both the established properties and the proof techniques. To substantiate
our proposal we consider several case-studies of web applications, showing how to
express specific useful properties, and their validation schemata. Examples range
from on-line travel agencies, inverted Turing test to detect malicious web-bots, to
content cross-validation in peer to peer systems.
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1 Introduction

Formal methods are increasingly being used to validate the design of dis-
tributed systems and have already proved successful in specifying commercial
and safety-critical software and in verifying protocol standards and hardware
design [4,8]. It is increasingly accepted that the adoption of formal methods in
the life cycle development of systems would guarantee higher levels of depend-
ability and greatly increase the understanding of a system by revealing, right
from the earliest phases of the software development, inconsistencies, ambigu-
ities and incompletenesses, which could cause subsequent faults. In particular
model checking techniques [6,7] have emerged as successful formal verifica-
tion techniques. They have been defined to automatically check the truth of
system properties, expressed as temporal logic formulae, on the finite state
model representing the behavior of a system. Model checkers can easily be
used by non–expert users too. For this reason model checking has often been
preferred in industries to other verification tools, and many efficient verifica-
tion environments are currently available, based on model checking algorithms
[5,11,15].

In the last few years distributed applications over the WEB have gained
wider popularity. Several systems have led to an increasing demand of evolu-
tionary paradigms to design and control the development of applications over
the WEB. The main advantages of exploiting the WEB as underlying plat-
form can be summarized as follows. The WEB provides uniform mechanisms
to handle computing problems which involve a large number of heterogeneous
components that are physically distributed and (inter)operate autonomously.
Conceptually, WEB services are stand-alone components that reside over the
nodes of the network. Each WEB service has an interface which is network
accessible through standard network protocols and describes the interaction
capabilities of the service. Applications over the WEB are developed by com-
bining and integrating together WEB services. Web applications show the
same verification problems of classical distributed systems. We may hence
extend techniques and tool used for their verification also in the case of Web
applications.

The formalization framework that we propose in this paper is based on
some results presented in [14], where the formal validation of an interaction
policy between communicating objects was carried out. The policy is the
Multiple Levels of Integrity policy, defined in the context of the design of fault
tolerant systems to enhance systems dependability. The original definition of
the policy simply consists of a set of declarative rules: it can be operationally
realized defining a communication protocol. The protocol which carries out the
integrity policy is formally specified as a collection of interacting processes in
a process algebra. We consider specific interaction patterns, which subsume
the most complex interaction schemata, and check on them temporal logic
formulae expressing the non-violation of integrity rules.
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2 The Multiple Levels of Integrity policy

Integrity policies are defined in the field of fault tolerant systems. The design
of fault tolerant systems usually includes the modeling of faults and failures
or the definition of fault tolerant schemata. At the software architecture level,
a fault tolerant schema usually describes a set of components and their in-
teractions. A component that is part of a fault tolerant system is said to be
critical if its failure can seriously affect the reliability of the overall system.
Fault tolerant schemata, and in particular integrity policies, are defined to
prevent failure propagation from non critical to critical components. An in-
tegrity policy assigns a level of integrity, ranging over a finite set of natural
values, to each system component, and states the communication patterns.
Components that may be critical are assigned a high integrity level.

The Multiple Levels of Integrity policy has been defined within an object–
oriented framework, to provide flexible fault tolerant schemata. Instead of
forbidding data flow from low level to high level objects, this policy permits
some objects to receive low level data, by decreasing their integrity level. The
policy is based on the following concepts:

Integrity levels (il) range from 0, the lowest, to 3, the highest. Data are
assigned the integrity level of the object which produced them.

Single Level Objects (SLO) are objects whose integrity level does not
change during computations. Consequently, an SLO of level n is only allowed
to receive data from objects of level ≥ n.

Multiple Level Objects (MLO) are the core of the policy: their integrity
level can be dynamically modified, since they are allowed to receive low level
data. To this purpose, an MLO is assigned three values:

maxil which represents the maximum integrity level that the MLO can have.
It is also called the intrinsic level of the MLO, since it is assigned during
the design of the application. It is a static value.

minil which represents the minimum value the integrity level of the MLO can
reach while interacting with other objects. It is set at invocation time, on
the bases of the invocation level. No memory of it is kept after the answer
to the invocation is returned: minil is local to an invocation.

il which is the current integrity level. It is set at invocation time to a value
ranging between maxil and minil and decreases if lower level data are re-
ceived during the computation to serve the invocation. Also il is local to
each invocation.

The policy requires a new MLO instance to be created every time the MLO
is invoked. As a consequence, an MLO cannot be used to implement a com-
ponent which has to store some data. This means that an MLO, from a
functional point of view, is a stateless object: only SLOs can store data. In
Fig. 1, we provide an example of the evolution of an MLO in response to an
invocation: when an MLO with maxil = 3 receives a read request of level 1, it
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Fig. 1. Behaviour of an MLO: dotted arrows follow the MLO’s evolution, thick
arrows bind requests to the corresponding answers.

sets its minil: no answer with integrity level smaller than 1 can be returned.
The value of il equals maxil: a read request does not corrupt the integrity
level of the MLO. Suppose the MLO needs to delegate part of the answer con-
struction, sending another read request to a third object. The level assigned
to the request equals minil: an answer to this request is accepted if greater
or equal to minil. Since the integrity level of the answer is 2, the MLO can
accept it but il is decreased to level 2. Finally, an answer to the first request
is provided, whose level equals the current il, and the MLO restores its initial
state.

Validation Objects (VO) are used to extract reliable data from low
level objects and to provide information at a fixed level of integrity. In real
systems, it is sometimes necessary to get data from unreliable sources, such as
sensors, and use them in critical tasks. However, this use could either lower
the level of the entire system or violate the integrity policy. Validation Objects
represent a safe way to upgrade the integrity level of these data. An example
of Validation Object is the one that uses a redundant number of data sources,
and filters them with appropriate algorithms. For instance, a voting policy
can be used. These policies are well known in the literature, in particular in
the distributed fault tolerant community. Among them, we recall the solutions
to the Byzantine Generals problem [16], where an agreement among multiple
nodes is sought in the presence of faults. To validate a voting algorithm we
can apply the results presented in [2].

A set of rules is given, describing all the possible communication patterns
among pairs of objects, depending on the respective integrity levels. We list
them in Table 1: we call A and B the invoking and the invoked objects,
respectively. The first part of the table considers invocation conditions. The
invocation is refused if the specified condition is not satisfied. If it is accepted,
the invoked object (if an MLO) might have to change its integrity level, as
shown in the second part of the table, where invocation effects are considered.
In the case of read or read–write invocation, an answer is returned at the end of
the method execution. If the invoking object was an MLO, then the returned
data may decrease its integrity level as follows: il(A) := min(il(A), il(B)).

The communication model is based on the notion of method invocation.
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Conditions A&B SLOs A SLO, B MLO A MLO, B SLO A&B MLOs

A reads B il(A)≤ il(B) il(A)≤maxil(B) minil(A)≤ il(B) minil(A)≤maxil(B)

A writes B il(B)≤ il(A) always il(B)≤ il(A) always

A r-w B il(A)= il(B) il(A)≤maxil(B) minil(A)≤ il(B)≤ il(A) minil(A)≤maxil(B)

Effect A SLO, B MLO A&B MLOs

A reads B
minil(B) := il(A);

il(B) := maxil(B)

minil(B) := minil(A);

il(B) := maxil(B)

A writes B il(B) := min(il(A), maxil(B)) il(B) := min(il(A), maxil(B))

A r-w B minil(B), il(B) := il(A)
minil(B) := minil(A);

il(B) := min(il(A), maxil(B))

Table 1
Conditions to be satisfied for a method invocation to be accepted, and the effect

on the level of objects after acceptance.

Method invocations are assigned an integrity level too. In particular, read,
write and read–write requests are considered as abstractions of any method,
with respect to the effect on the state of objects. The level of a write request
corresponds to the level of the data which are written, the level of a read
request corresponds to the minimum acceptable level of the data to be read.
Read–write requests are assigned two integrity levels, one for read and one for
write.

3 Formal Validation Methodology

The Multiple Levels of Integrity policy has been validated according to the
following steps. We follow the same methodology to validate the case studies.

– Formal specification of the mechanism using the CCS process algebra [17].
Process algebras are based on a simple syntax and are provided with a
rigorous semantics defined in terms of Labeled Transition Systems (LTSs).
Process algebras are well suited to describing interaction policies, since
a policy definition abstracts from the functionalities of the objects, and
the relevant events to be specified are the object invocations (the actions)
which may change the object integrity level (the state). In Table 2 we
present the subset of the CCS operators used in the following.

– Use of the ACTL temporal logic [10] to describe the desired properties.
ACTL is a branching-time temporal logic whose interpretation domains
are LTSs. It is the action based version of CTL [13] and is well suited to
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a : P Action prefix Action a is performed, and then process P is exe-
cuted. Action a is in Actτ

P + Q Nondeterministic choice Alternative choice between the behaviour of pro-
cess P and that of process Q

P ‖ Q Parallel composition Interleaved executions of processes P and Q. The
two processes synchronize on complementary in-
put and output actions (i.e. actions with the same
name but a different suffix)

P \ a Action restriction The action a can only be performed within a syn-
chronization

P = P ′ Process definition It includes recursion

Table 2
A fragment of CCS syntax

express the properties of a system in terms of the actions it performs. We
use a fragment of ACTL, given by the following grammar, where φ denotes
a state property:

φ ::= true
∣∣ φ & φ′

∣∣ [µ]φ
∣∣ AG φ

∣∣ A[φ{µ}U{µ′}φ′

In the above rules µ is an action formula defined by:

µ ::= true
∣∣ a

∣∣ µ ∨ µ
∣∣ ∼µ for a ∈ Act

We provide here an informal description of the semantics of ACTL oper-
ators. The formal semantics is given in [10]. Any state satisfies true. A
state satisfies φ & φ′ if and only if it satisfies both φ and φ′. A state
satisfies [a]φ if for all next states reachable with a, φ is true. The meaning
of AG φ is that φ is true now and always in the future.

A state P satisfies A[φ{µ}U{µ′}φ′] if and only if in each path exiting
from P , µ′ will eventually be executed. It is also required that φ′ holds
after µ′, and all the intermediate states satisfy φ; finally, before µ′ only
µ or τ actions can be executed. A useful formula is A[φ{true}U{µ′}φ′]
where the first action formula is true: this means that any action can be
executed before µ′.

– Generation of the (finite state) model. To this end, we use the tools of
the JACK (Just Another Concurrency Kit) verification environment [3],
which is based on the use of process algebras, LTSs, and temporal logic
formalisms, and supports many phases of the systems development process.

– Model checking of the ACTL formulae against the model, using the model
checker for ACTL available in JACK, FMC.
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3.1 Validation of the Multiple Levels of Integrity policy

The Multiple Levels of Integrity policy has to guarantee that the interaction
among different components does not affect the overall confidence of the appli-
cation, i.e., that a non–critical component does not corrupt a critical one. In
particular, data of a low integrity level cannot flow to a higher integrity level
(unless through a Validation Object). This condition should hold for isolated
objects and in any schema of interaction among objects. In [14], the following
properties have been validated:

(i) An object with intrinsic level i cannot provide answers of level j > i.

(ii) An object with intrinsic level i does not accept read requests of level
j > i.

(iii) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and, to serve the request, it invokes with a read request a third object
of intrinsic level maxil smaller than j, then it cannot answer the initial
request. Indeed, its level is decreased to the maxil value of the third
object because of the new data received.

(iv) If an MLO with intrinsic level i receives a read request of level j ≤ i,
and then a write request of level k < j, then it can still answer the
read request. In other words, its level is not decreased by the concurrent
invocation.

4 A concept of interface

The model proposed in [14] assumes that all the components of a system and
their relationships are known. This assumption cannot be satisfied in the case
of web site specification, since in most cases we only analyze a piece of the
system, while of the remaining components we only know the interface toward
the components of interest. We therefore need to define a formal concept of
interface for a component of a system expressed in the CCS process algebra.
This is accomplished using the restriction operator together with a dummy
process which simulates the rest of the world. To be more precise, let P be
a process over the set of actions ActP . We could image to have a process W
describing the rest of the world, thus we would like to verify the overall system
P ‖ W . Of course, this is not possible, since we cannot specify all the possible
components. Actually, since we are not interested in other communications
than those among our process P and the rest of the world, we can restrict
ourselves to study the process (P ‖ W ) \ (ActW r ActP ), where ActW is
the set of actions of W . But this is equivalent to considering the process
P ‖ (W \ (ActW r ActP )). Our idea is to consider, instead of the process
W \ (ActW r ActP ) its interface toward P . To this aim, we need to introduce
the notion of dummy process, that we use to separate the proper interface of

7
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W we are interested in. Let DW,P be the dummy process

DW,P = a1 : DW,P + a2 : DW,P + . . . + an : DW,P (1)

where {a1, . . . , an} = ActW \ ActP . We define the interface of W w.r.t. P
the process WP = (W ||DW,P ) \ (ActW r ActP ). Actually, for our purpose,
any process trace-equivalent to WP would suffice, that is any process which
exhibits the same behaviour w.r.t. P when we observe only the traces of the
system. In the following, we call interface any of such processes. Thus, given
any interface I of W w.r.t. P , we simply consider the system P ||I.

For example, given P =?request :!ask google :?read google :!reply we
do not want to observe the interaction of the Google web site with the rest
of the world, then we may choose ?ask google and !read google as the only
actions we are interested in, and which should be described in the interface of
Google.

Our aim is to verify ACTL formulas on processes defined by CCS agents.
Since we adopt the above concept of interface, we are particularly interested
in those formulas such that, once proved for P ‖ I, where I is any interface of
W w.r.t. P , they also hold for P ||W . It is well–known that every formula in
ACTL which does not contain any existential path quantifier E and negation
∼, enjoys the above property, since we can observe only the traces of the
system. This motivates our choice of the ACTL fragment, as presented in
Section 3.

5 Case Study: the Travel Agency

Our first case study concerns the modeling and analyzing of the architecture
of the subset of the Web, which is of interest for a user willing to organize a
travel by booking flights and hotels. The user interacts with an on–line travel
agency. The travel agency, in turn, accesses the web sites of air companies,
tour operators, single hotels as well as other travel agencies specialized in hotel
booking, and so on. Here, we consider a simplified scenario, with two reliable
sites, namely those of the travel agency and the air company Alitalia 4 , and a
fairly reliable hotel booking site.

We model Alitalia and the travel agency as MLOs with maxil 3, called
ALITALIA3 and TA3, respectively, and the hotel booking site as HOTELSEEK,
an MLO with maxil 2. All these sites are supposed to interact and receive
data from many distinguished other components. We want them to perform
their job even if the received data have a lower integrity level. At the same
time, we recall that MLOs cannot store data: we can imagine that these
components interact with some private SLOs, where to store the information

4 Disclaimer: The company names and the integrity level we use, are freely introduced for
the purposes of the example, and have no correspondence with the reliability of the actual
sites, when they exists.
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Fig. 2. The travel agency architecture.

of any finalized reservation. To exemplify this, we specify the SLOs of the
travel agency, and call them disks. Since the travel agency is an MLO of
level 3, it may be at any level when accessing its disks with a write request.
We hence introduce 4 disks, one for each integrity level. They are specified
parametrically by the process DISKx. We also need a disk manager, specified
as an MLO of level 3, in order to choose the right DISKx according to the
integrity level.

The architecture of the resulting system is described in Figure 2. The full
specification is given below, by instantiating the process defined in [14]. A
disk can receive a read request when the travel agency needs to access previous
reservations. read requestx is a read request action of level x. In general,
this means that the invocation was issued either by an SLO with x as il or by
an MLO with x as minil. A disk can receive a write request too, when the
travel agency needs to store a new reservation. Only requests at level x are
served. A write request at a different level will be served by another disk.

DISK_MANAGER(3) =
?read_data(y). !read_disk(y).!answer_data(y).DISK_MANAGER(3) +
?write_data(y).!write_disk(y).DISK_MANAGER(3)

DISK_0 = ?read_disk(0).DISK_0 +
?write_disk(0).DISK_0

DISK_1 = ?read_disk(1).DISK_1 +
?write_disk(1).DISK_1

DISK_2 = ?read_disk(2).DISK_2 +
?write_disk(2).DISK_2

DISK_3 = ?read_disk(3).DISK_3 +
?write_disk(3).DISK_3

9
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The agent HOTELSEEK accepts read–write hotel reservation requests, and
write–only confirmation requests. r w hreservey,z denotes a request issued
either by an MLO with y as minil and z as il or by an SLO with il = y = z.
Variable y denotes the read level of the request, variable z denotes the write
level. w confirmy denotes a write request of level y, issued by an object with y

as il. Hotel reservation requests are served as specified by process HOTEL RES.

HOTELSEEK(2) = ?r_w_hreserve(y,z).!hotel.(
( [y <= z] [z <= 2] HOTEL_RES(y,z,2) ) +
( [y <= 2] [2 <= z] HOTEL_RES(y,2,2) ) +
( [y > 2] !answer_hres(-1). HOTELSEEK(2) ) ) +

?w_confirm(y). HOTELSEEK(2)

HOTEL_RES(min,il,max) =
( [min <= 0] [0 <= il] !answer_hres(0). HOTELSEEK(2) ) +
( [min <= 1] [1 <= il] !answer_hres(1). HOTELSEEK(2) ) +
( [min <= 2] [2 <= il] !answer_hres(2). HOTELSEEK(2) ) +
( [min <= 3] [3 <= il] !answer_hres(3). HOTELSEEK(2) ) +
!answer_hres(-1). HOTELSEEK(2)

The Alitalia specification is very simple. A web site such as the Alitalia
one can be implemented using a groupware protocol. These protocols ad-
dress, among others, the concurrency control problems that arise in systems
with multiple users (namely, groupware systems [1,12]) whose actions may be
conflicting. A typical example is to reserve the same seat to two or more users
that are concurrently booking a flight. The high integrity level of the Alitalia
site can be guaranteed by formally specifying the protocol and by proving
the non interference properties of interest. Validation can be done by model
checking using, for instance, the results given in [18] where some properties of
a public subscribe groupware protocol have been proved.

ALITALIA(3) = ?r_w_freserve(y,z). !flight.
[y <= z] !answer_fres(z). ALITALIA(3) +

?w_confirm(y). ALITALIA(3)

Finally, the travel agency.

TA(3) = ?r_w_booktravel(y,z). [y <= z] TA_BOOK(y,z,3) +
?r_infotravel(y). TA_INFO(y,3,3)

TA_BOOK(min,il,3) = F_BOOK(min,il,3) +
H_BOOK(min,il,3) +
F_BOOK(min,il,3).H_BOOK(min,il,3)

F_BOOK(min,il,3) = !r_w_freserve(min,il). ?answer_fres(x).
( [x < min] !answer_booktravel(-1). TA(3) +
[min <= x] [x <= il] TA_FINALIZE(min,x,3) +
[il <= x] TA_FINALIZE(min,il,3) )

H_BOOK(min,il,3) = !r_w_hreserve(min,il). ?answer_hres(x).

10
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( [x < min] !answer_booktravel(-1). TA(3) +
[min <= x] [x <= il] TA_FINALIZE(min,x,3) +
[il <= x] TA_FINALIZE(min,il,3) )

TA_FINALIZE(min,il,3) = !write_data(il). !w_confirm(il).
!answer_booktravel(il). TA(3)

TA_INFO(min,3,3) = !read_data(min). ?answer_data(x).
( [x < min] !answer_info(-1). TA(3) +
[x >= min] !answer_info(x). TA(3) )

We also need to specify a generic user of the system, which can ask for
information or book a travel.

User(x) = !info. ( ( !r_infotravel(x). ?answer_info(y).
( ( [y < 0 ] !failure. User(x) ) +

( [y >= 0 ] !success. User(x) ) ) ) +
!book. ( !r_w_booktravel(0,x). ?answer_booktravel(y).

( ( [y < 0 ] !failure. User(x) ) +
( [y >= 0 ] !success. User(x) ) ) ) )

In our test, we use a generic process consisting of the travel agency, the
air company, the hotel booking site, a generic user of level 2 and the disks.

( HOTELSEEK(2) || ALITALIA(3) || TA(3) || User(2) || DISK_MANAGER(3)
|| DISK_0 || DISK_1 || DISK_2 || DISK_3 ) \read_data \answer_data

\write_data \answer_hres \r_w_hreserve \w_confirm \r_w_freserve
\answer_fres \r_w_booktravel \r_infotravel \answer_booktravel
\answer_info \read_disk \write_disk

The only non restricted actions are info, book, hotel and flight. There-
fore we will use them when specifying the ACTL formula. As a first example,
we want to prove that, if a client requires a booking service (action !book),
the travel agency will either book an hotel (action !hotel ) or a flight (action
!flight) before any positive answer (action !success). Formally, we require
to verify the following ACTL formula:

AG [ !book ] A [ true { ~ !success } U { !hotel | !flight } true ]

The result of the model checker is that the formula is true and that 153
states has been observed. The following formula:

AG [ !info ] A [ true { ~ !success } U { !hotel | !flight } true ]

states that at any request of information will follow the booking of an hotel
or a flight. Of course, in this case the result of the model checker is that the
formula is false.

6 Case Study: Peer to Peer Validation Service

We here describe a peer to peer architecture that a user can query to download
a video. This is a simplified instance of the concrete problem of identifying
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Peer1

RL 2

RL 1

3VO

Peer2

Fig. 3. The Peer to Peer Validation Service architecture.

remote file content before downloading in peer to peer systems, where some
or all of the peers are untrusted, or content-based access control has to be
enforced. In the example we assume that two peers exist, at level 1 and 2
respectively. Moreover, the system includes two refutation lists which collect
information of help to know whether the expected content of a file corresponds
to the file name. The download is filtered by a Validation object that first
looks for the video with a read video request, and then validates the answer
by querying the refutation lists. The system is described in Figure 3.

A peer’s answer to a read video request carries two values: the peer
integrity level, and an integer holding −1 if the peer does not have the video,
a different value otherwise. If the video is not found from both peers P, the
validator VO sends a negative answer to the user, otherwise it validates the
video content with the help of the clauses of the agents VAL and VAL2. This
involves querying one or more of the refutation lists processes RL.

In the example, we abstract from actual validation algorithms in VAL and
VAL2, and show a completely non-deterministic behaviour that can be refined
in any concrete solution. Our validation approach is compositional: to prove
the correctness of the final system, we only need to validate the refinement
step. Indeed, the abstract behaviour of the VO specified here corresponds to the
interface of any actual validation object, with a specific validation algorithm
demanded to the VAL agent.

To complete the example description, we assume that peers perform a
visible action video when the video is available, and the user performs the
visible actions start at search beginning, then success, or failure. The
last two actions discriminate the cases where a valid video was found from the
cases where either no video was found, or the video content was not correct.

P(x) = ?read_video(y). ( ( [y <= x] (!video. !answer_video(x,x). P(x) +
!answer_video(x,-1). P(x) ) ) +

( [y > x] !answer_video(-1,-1). P(x) ) )

RL(x) = ?query_video(y). ( ( [y <= x] !query_answer(x). RL(x) ) +
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( [y > x] !query_answer(-1). RL(x) ) )

VO(x) = ?user_req(y). ( ( [y <= x] !read_video(0). ?answer_video(z,w).
( ( [z = -1] !user_answer(-1). VO(x) ) +
( [z >=0] VAL(x,w) ) ) +

( [y > x] !user_answer(-1).VO(x) ) ) )

VAL(x,w) = [w = -1] !user_answer(-1). VO(x) +
[w >= 0] ( !query_video(0). ?query_answer(y).

( !user_answer(x). VO(x) +
!user_answer(-1). VO(x) +
VAL2(x) ) )

VAL2(x) = !query_video(0). ?query_answer(y). ( !user_answer(x). VO(x) +
!user_answer(-1). VO(x) )

User(x) = !start. !user_req(x). ?user_answer(y).
( ( [y < 0 ] !failure. User(x) ) +
( [y >= 0 ] !success. User(x) ) )

net Net = ( VO(3) || P(1) || P(2) || RL(1) || RL(2) || User(1) ) \read_video
\query_video \user_req \answer_video \query_answer \user_answer

The validation process has lead to the generation of a model with 524
states, against which the following properties have been checked, returning
the expected results.

AG [ !start ] A [ true { ~ !start } U { !failure | !video } true ]
-- The formula is TRUE --

AG [ !start ] A [ true { true } U { !video } true ]
-- The formula is FALSE --

7 The inverted Turing Test

The Inverted Turing test, proposed by Watt[19] as an alternative to the con-
ventional Turing Test for artificial intelligence, requires:

• to put a system in the role of the observer;

• the observer to discriminate between humans and machines.

The machine that wants to mimic humans should show naive psychology, that
faculty which predisposes us to anthropomorphism and enables us to ascribe
intelligence to others. An example test is the one that asks many questions
like “how close is a building to a house, how close is a hotel to a house, how
close is a lodge to a house, how close is a cavern to a house”, with answers
in a finite range, say 1–100. The observer compares the answers to a table
obtained by making the same questions to a sufficiently large population.

A variant of the Inverted Turing Test is the Editing Test [9], often used
to discriminate humans from machines when assigning a new e-mail address.
It is based on the so-called interpretative asymmetry, that is the asymmetry
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Fig. 4. The editing test: only humans are supposed to read the sequence of charac-
ters.

Provider33ITT

Fig. 5. The architecture of the subset of the WEB including an Inverted Turing
test.

of the skillful way in which humans “repair” deficiencies in speech, written
texts, handwriting, etc., and the failure of computers to achieve the same
interpretative competence. For instance, an optical sequence of characters
like the one in Figure 4 is printed on the screen, and the observed entity is
asked to type the characters with the keyboard.

The component implementing the Inverted Turing test can be modeled in
our framework as a validation object. The architecture of the subset of the
WEB of interest can be modeled as described in Figure 5: the validation object
intercepts the interactions between the entity (human or machine) asking for
an e-mail address.

8 Conclusion

We have proposed a formal method to describe web applications by means of
a process algebra which can be automatically verified by a model checker. By
considering a fragment of the ACTL logic which does not contain negation and
existential path quantification, we can introduce a formal notion of interface
which allows us to prove properties expressed by temporal formulae in a mod-
ular way. We exploit the notion of validation object proposed in fault tolerant
system verification and show examples of web applications where validation
objects play a fundamental role. We describe in details two case studies val-
idating some formulae with the help of the FMC model checker. Moreover,
we briefly sketch another example where a commonly used web application
can be easily modeled as a validation object. As a future work, we intend
to investigate the possibility to separately verify different parts of the system
and to compose the results.
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