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Abstract

We consider upper and lower bounds for maxmin allocations of a
completely divisible good in both competitive and cooperative strate-
gic contexts. We then derive a subgradient algorithm to compute the
exact value up to any fixed degree of precision.

1 Introduction

The notion of what is fair in the allocation of completely divisible goods to
a finite number of agents with subjective preferences has long been debated.
Predictably, no agreement has been reached on the subject. The situation is
often exemplified with children (players) at a birthday party who are around
a table waiting for their slice of the cake to be served, with the help of some
parent (an impartial referee). If we think about a special class of resolute
children who are able to specify their preferences in terms of utility set func-
tions, the parent in charge of the division could ease his task by using a
social welfare function to summarize the children’s utility values. Among
the many proposals, the maxmin – or Rawlsian – division was extensively
studied in the seminal work of Dubins and Spanier [10], who showed the ex-
istence of maxmin optimal partitions of the cake for any completely divisible
cake and its main properties. They also showed that when a condition of
mutual appreciation holds (assumption (MAC) below) the optimal partition
is also equitable, i.e. it assigns the same level of utility for each child.
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The study of the maximin optimal partition and its properties has contin-
ued in more recent years. In particular, its relationship with other important
notions such as efficiency (or Pareto optimality) and, above all, envy-freeness
has been investigated with alternating success: each maxmin partition is ef-
ficient, but while for the two children case Brams and Taylor [6] showed that
it also envy-free, the same may not hold when three or more children are to
be served, as shown in Dall’Aglio and Hill [9].

It is worth pointing out the relationship with n player bargaining solu-
tions. If we think about the division as deriving from a bargaining procedure
among children, it is straightforward to show that the egalitarian bargaining
solution proposed by Kalai [12] coincides with the equitable maximin divi-
sion. Therefore if the conditions proposed by Dubins and Spanier hold, the
two solutions actually coincide.

Little attention has been devoted, however, to finding optimal maximin
partitions with few notable exceptions: the case with two players with addi-
tive and linear utility over several goods has been considered by Brams and
Taylor [6], with the popular Adjusted Winner procedure. As a bonus in this
case, the resulting partition is also envy-free.

For the more general case of general preferences (expressed as set func-
tions) and arbitrary number of players, Legut and Wilczinski [17] gave a
characterization of the optimal maxmin allocation in terms of weighted den-
sity functions. Moreover Elton et al. [11] and Legut [14] provided lower
bounds on the maxmin value. The optimization problem was later analysed
by Dall’Aglio [7]. The general problem was reformulated as the minimiza-
tion of a convex function with a particular attention to the case where the
maxmin allocation is not equitable and the allocation of the cake occurs in
stages to subsets of players. No detail was given on how to proceed with the
minimization.

In most of the fair division literature, little is assumed about the strate-
gic behavior of the children. Brams and Taylor [6] discuss the issue of the
manipulability of the preferences: in most cases children may benefit from
declaring false preferences. A different approach takes into account the pos-
sibility for the children to form coalitions after (Legut [15] and Legut Potters
Tijs [16]) or before, Dall’Aglio et al. [8], the division of the cake. In both cases
coalitional games are defined and analysed. In the case of early cooperation
among children, the game is based on a maxmin allocation problem among
coalitions, each one having a joint utility function and a weight. The compu-
tation of the maxmin problem becomes essential to compute the coalitional
game values and its indices.

The coalitional maxmin problem is indeed a generalization of the classical
maxmin problem introduced by Dubins and Spanier. Therefore, we consider
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a common approach to set up an algorithm which, at each step, will compute
an approximating allocation, together with lower and upper bounds for the
maxmin value. The algorithm is based on a subgradient method proposed
by Shor [19] and it yields an approximation of the optimal allocation with
any fixed degree of precision.

2 The model and the maximin fair division

problem with coalitions

We represent our completely divisible good with the set C, usually C ⊂
R or C ⊂ R2, and let B(C) be the Borel σ−algebra of subsets of C. Let
N = {1, . . . , n} be the set of players, whose preferences on the good are
µ1, . . . , µn, where µi is a probability measures on C. We will consider the
following assumptions:

a) complete divisibility of the cake (CD). Each µi (i ∈ N) does not contain
atoms: If µi(A) > 0, A ∈ B(C), then there exists a measurable B ⊂ A
such that µi(A ∩B) > 0 and µi(A ∩Bc) > 0;

b) mutual absolutely continuity (MAC). If µi(A) > 0 for some i, then
µj(A) > 0 for every other j 6= i.

As consequence, and by the Radon-Nikodym theorem,

µi(A) =

∫
A

fi(x)dx ∀ i ∈ N, ∀A ∈ B(C),

where f1, . . . , fn are density functions and fi is the density of µi, B(C)
are the Borel sets in C;

Throughout the rest of the work we will assume that (CD) always holds,
while (MAC ) is a useful, though restrictive assumption that we will employ
only when strictly needed.

Let Πn be the set of all possible n−allocations of C to agents in N. How
do players behave in the division procedure? In the simplest case, each player
compete with the others to get a part of the cake with no strategic interaction
with other players. Therefore, individual players seek an allocation with
values as high as possible. A fair compromise between the conflicting interests
is given by the maximin allocation (A∗1, . . . , A

∗
n) ∈ Πn that achieves

vm = max
(A1,...,An)∈Πn

{
min
i∈N

µi(Ai)

}
. (1)
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With a completely divisible cake, the allocation (A∗1, . . . , A
∗
n) is fair, i.e.

µi(A
∗
i ) ≥ 1

n
for all i ∈ N, while if also (MAC ) holds, it is also egalitarian, i.e.

µi(A
∗
i ) = µj(A

∗
j) for all i, j ∈ N (See [10]). Therefore, under this assumption,

an optimal allocation is also the bargaining solution proposed by Kalai and
Smorodinski [13] for the two players case and by Kalai [12] for any numbers
of players.

Dall’Aglio, Branzei and Tijs ([8]) proposed a strategic model of interaction
among players, where players, before the division takes place, gather into
mutually disjoint coalitions. Within each coalition, players pursue an efficient
allocation of their collective share of the cake.

Let G be the family of all partitions of N and, for each Γ ∈ G, let be
|Γ| = m, m ≤ n, and let be the coalitions indexes set M = {1, . . . ,m}. Thus,
players cluster into coalitions specified by the structure Γ = {S1, . . . , Sm}. In
any coalition Sj, j ∈M, players state their joint preferences as follows

µSj
(B) = max

{Di}i∈Sj
partition of B

µi(Di) =

∫
B

fSj
(x)dx (2)

with fSj
(x) = maxi∈Sj

fi(x).
Once the global coalition structure is known, a fair allocation of the cake

among the competing coalitions is sought. Fairness here must take into
account the different importance that coalitions may assume and this is taken
into account by a weight function w : P(N)→ R+.

In this framework, coalitions take up the role that in (1) was assumed by
single players and the will agree on a division of the cake which achieves the
following value

v(Γ, w) = max
(B1,...,Bm)∈Πm

{
min
j∈M

µSj
(Bj)

w(Sj)

}
, (3)

Single coalitions can evaluate their performance in the division by con-
sidering the following coalitional game

η(S,w) = w(S)v(ΓS, w) S ⊂ N (4)

where ΓS = {S, {j}j /∈S}. η(S,w) can be interpreted as the minimal utility
that coalition S is going to receive in the division when the system of weight
w is enforced, independently of the behavior of the other players.

A crucial question lies in the definition of the weight system. We list
three proposals:

• wcard = |S|, S ⊂ N . This is certainly the most intuitive setting. Al-
though very natural, this proposal suffers from a serious drawback,
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since players participating in the game η(·, w) may be better off wait-
ing to seek for cooperation well after the cake has been divided (see
[8]);

• wpost = µS (∪i∈SA∗i ), S ⊂ N , where {A∗1, A∗2, . . . , A∗n} is the partition
maximizing (1). By seeking early agreements among them, players
will be better off than postponing such agreements until the cake is
cut. The above mentioned problem is overcome at the cost of a less
intuitive (and more computationally challenging) formulation. (see [8]).
It is interesting to note that to find these weights we need to solve (1);

• wbarg = µS(C), S ⊂ N . Here (3) returns the Kalai-Smorodinski bar-
gaining solution in the coaltional context.

It is easy to verify that the fully competitive division (1) is a special case
of (3), whenever Γ = {{1}, {2}, . . . , {n}} and w = wcard. We thus turn our
attention to the latter problem.

The optimization problem (3) can be seen as an infinite dimensional as-
signment problem. In principle we could attribute any point of the cake C to
any of the participating players (provided certain measurability assumptions
are met). For very special instances this becomes a linear program: when
the preferences have piecewise constant densities, or when the cake is made
of a finite number of parts (or indivisible pieces).

2.1 A geometrical setting

We now describe a geometrical setting already employed in [3], [7] and [2]
to explore fair division problems. In what follows we consider the weighted
preferences and densities, µwj and fwj , given respectively by

µwj =
µSj

wj
fwj =

fSj

wj
.

Let ∆m−1 denote the (m− 1)−simplex. The partition range is defined as

P := {(µw1 (B1), . . . , µwh (Bm)) : (B1, . . . , Bm) ∈ Πm} ⊂ Rm
+ .

Let us consider some of its features. Each point p ∈ P is the image, under
µ, of a m-partition of C. Moreover, P is a set contained in [0, 1]m, which
includes ∆m−1. Then, for any {B1, . . . , Bm} ∈ Πm,

1 ≤
m∑
j=1

µwj (Bj) ≤ m. (5)
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Finally, P is compact and, if (CD) holds, P is also convex ([18]). Therefore
v(Γ, w) = max {x > 0 : (x, x, . . . , x) ∩ P 6= ∅}. So, the point v(Γ, w) is the
intersection between the Pareto frontier of P and the egalitarian line

` = {xw ∈ Rm : xw1 = xw2 = . . . = xwm},

where xwj = xj/wj, for all j ∈M.

3 Upper and lower bounds for the maximin

value

We turn our attention to a simpler optimization problem, which in general
may return an unfair solution, but it also gives upper and lower easy-to-
compute bounds for the original problem. This bounds depend on a weighted
maxsum partition, which we can derive through a straightforward extension
of a result by Dubins and Spanier ([10]).

Proposition 3.1. ([7]) Let α ∈ ∆m−1. A m−partition of C, Bα is such that
for all k, ` = 1, 2, . . . ,m, if

αkf
w
k (x) ≥ α`f

w
l (x) for all x ∈ Bα

k , (6)

then

(Bα
1 , . . . , B

α
m) ∈ argmax

(B1,...,Bm)∈Πm

m∑
j=1

αjµ
w
j (Bj). (7)

The value of this maxsum problem is itself an upper bound for problem
(3). For any choice of α ∈ ∆m−1 we have a maxsum partition Bα corre-
sponding to α.

Definition 3.2. The partition value vector (PVV) uα = (uα1 , . . . , u
α
m),

is defined by

uαj = µwj (Bα
j ), j = 1, . . . ,m.

The PVV uα is a point where the hyperplane
∑m

j=1 αjxj = k touches the
partition range P , so uα lies on the Pareto border of P . Moreover, for any
α ∈ ∆m−1 there exists at least one PVV ([2]). We are ready to state the first
approximation result.
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Proposition 3.3. Let be g : ∆m−1 → R+ as it follows:

g(α) :=

∫
C

max
j∈M
{αjf

wj

j (x)}dx.

Then,
v(Γ, w) ≤ g(α).

Moreover,

(i) g(α) is convex;

(ii) v(Γ, w) = minα∈∆m−1 g(α).

Proof. Let us consider the intersection point between the hyperplane
∑m

j=1 αjx
w
j =

k and the egalitarian line,
α1x

w
1 + α2x

w
2 + . . .+ αm−1x

w
m−1 + αmx

w
m = k

xw1 − xw2 = 0
...
xwm−1 − xwm = 0

which is xw1 = . . . = xwm = k. Then, the hyperplane touching P , i.e.
∑m

j=1 αju
α
j =

g(α), intersects the egalitarian line in the point which has all coordinates
equal to g(α). Since P is convex and the hyperplane

∑m
j=1 αju

α
j = g(α) is

a supporting plane at uα, by separability properties of convex sets the in-
tersection point is external to P for all α ∈ ∆m−1. So, g(α) ≥ xPj , where
xP ∈ {x ∈ Rm : x ∈ ` ∩ P}.

(i) The domain of g is convex, so we have to show that for all α̂, α̃ ∈ ∆m−1

and t ∈ [0, 1] the following holds:

g(tα̂ + (1− t)α̃) ≤ tg(α̂) + (1− t)g(α̃). (8)

Take x ∈ C. For an index j∗ ∈M we have

max
j∈M

(tα̂jfj(x) + (1− t)α̃jfj(x)) = tα̂j∗fj∗(x) + (1− t)α̃j∗fj∗(x),

hence, tα̂j∗fj∗(x) ≤ tmaxj∈M α̂jfj(x) and (1−t)α̃j∗fj∗(x) ≤ (1−t) maxj∈M α̃jfj(x).
Thus

tα̂j∗fj∗(x) + (1− t)α̃j∗fj∗(x) ≤ tmax
j∈M

α̂jfj(x) + (1− t) max
j∈M

α̃jfj(x).

Taking the integral over C, we obtain (8).

(ii) We get the minimum of g(α) when the touching point uα lies also on
the egalitarian line. The only point belongs both egalitarian line and Pareto
boundary of P is just v(Γ, w).
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We now turn our attention to a lower bound for v(Γ, w). Although we
will see later only one PVV is enough to assure such a bound, we give a
general result for the case where several PVVs have already been computed.
We derive the second approximation result through a convex combination of
these easily computable points in P , which lies close to v(Γ, w).

Proposition 3.4. Suppose that there are m PVV’s u1, . . . , um, with u` =
(u1`, . . . , um`) and

max
i=1,...,m

ui` = u`` ` = 1, . . . ,m. (9)

Then, for any Γ ∈ G,

v(Γ, w) ≥ v(U) :=
1∑m

`=1

∑m
j=1 [U−1]j`

, (10)

where U−1 is the inverse matrix of U = (u1, . . . , um).

Proof. Consider the hyperplane through the m PVVs. We can describe it as
the convex combination among the m PVVs,

H := t1u
1 + t2u

2 + . . .+ tmu
m = k,

where t1, . . . , tm ∈ ∆m−1. Now, let us obtain its interection with the egali-
tarian line, the point (xw, . . . , xw) as it follows:



t1u11 + t2u12 + . . .+ tmu1m = xw
t1u21 + t2u22 + . . .+ thu2m = xw
...
t1um1 + t2um2 + . . .+ tmumm = xw
t1 + t2 + . . .+ tm = 1

We are dealing with a linear system with m + 1 unknown quantities,
t1, t2, . . . , tm, xw.

Then, we can get xw,
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xw =

det


u11 u12 . . . u1m 0
u21 u22 . . . u2m 0
...

...
...

...
...

um1 um2 . . . umm 0
1 1 . . . 1 1



det


u11 u12 . . . u1m −1
u21 u22 . . . u2m −1
...

...
...

...
...

um1 um2 . . . umm −1
1 1 . . . 1 0


=

det(U)

det


0 1 1 . . . 1
−1 u11 u12 . . . u1m

−1 u21 u22 . . . u2m
...

...
...

...
...

−1 um1 um2 . . . umm


=

det(U)∑m
`=1

∑m
j=1 (−1)`+jdet(Uj`)

=
1∑m

`=1

∑m
j=1 [U−1]j`

,

where U = (u1, . . . , um), det(Uj`) is the (j, `)-th minor of U, and the second
equality derives by adeguate exchanges of rows and columns in the denomi-
nator matrix. In fact, we get the second after an even number of exchanges
on the first.

An illustration of the position of the bounds with respect to the partition
range in the case of two coalitions is shown in Figure 1

As stated before, the result can be used even if we have fewer vectors
satisfying (9). We replace any missing PVV uq by the following vector

eq = (0, . . . , 0, µwq (C), 0, . . . , 0), (11)

where µwq (C) is the weighted joint utility of the whole cake by coalition Sq.
Actually, even a single PVV is enough to establish a lower bound.

Corollary 3.5. Let u` be such that (9) holds. Then, for any Γ ∈ G,

v(Γ, w) ≥ u``

1 +
∑

j 6=`
u``−uj`
µwj (C)

, (12)
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Figure 1: Upper and lower bounds for the two-coalition case
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Proof. For any q 6= `, replace any other PVV with the corresponding vector
(11). Without loss of generalization, let us suppose ` = 1. Then

v(Γ, w) ≥

det


u11 0 . . . 0 0
u21 µw2 (C) . . . 0 0
...

...
...

...
...

um1 0 . . . µwm(C) 0
1 1 . . . 1 1



det


u11 0 . . . 0 −1
u21 µw2 (C) . . . 0 −1
...

...
...

...
...

um1 0 . . . µwm(C) −1
1 1 . . . 1 0


=

u11

∏
j 6=1 µ

w
j (C)

det


0 1 1 . . . 1
−1 u11 0 . . . 0
−1 u21 µw2 (C) . . . 0
...

...
...

...
...

−1 um1 0 . . . µwm(C)


=

u11

∏
j 6=1 µ

w
j (C)∏

j 6=1 µ
w
j (C) +

∑
j 6=1

∏
i 6=j µ

w
j (C)(u11 − uj1)

=
u11

∏
j 6=1 µ

w
j (C)∏

j 6=1 µ
w
j (C)

[
1 +

∑
j 6=1

(u11−uj1)

µwj (C)

]
=

u11

1 +
∑

j 6=1
(u11−uj1)

µwj (C)

.

In the case of complete competition, we recognize the results of Elton et
al. ([11]) and Legut ([14]).

Corollary 3.6. Suppose ` ∈ N such that u` satisfies (9). Then,

v(Γ, w) ≥ u``
nu`` + 1−K

≥ 1

n+ 1−K
(13)

where K =
∑

i∈N ui`.
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Proof. When each agent plays on his own, Γ = {1, 2, . . . , n} (therefore, M =
N),

and wi = 1, for any i ∈ N. Note that µwi (C) = 1, for all i ∈ N. Hence,

v(Γ, w) ≥ u``
1 +

∑
i 6=` u`` − ui`

=
u``

nu`` + 1−K
≥ 1

n+ 1−K
,

with K =
∑

i∈N ui`.

The lower bound in Prop. 3.4 employs the same geometric setting by
Legut [14]. The same framework also shows us how the lower bound v(U)
can be improved by an accurate replacement of the vectors in U . Let p(uα)
be the projection of uα on ∆m−1, and CH(p(u1), . . . , p(um)) be the convex
hull of the PVV’s projections on ∆m−1. Pick an α∗ ∈ ∆m−1 and compute
uα
∗
. If p(uα

∗
) ∈ CH(p(u1), . . . , p(um)), and uα

∗

`` = maxi∈M uα
∗

i` , then replace
u` in U with uα

∗
. It is easy to show that the lower bound has not decreased

with this substitution.

4 The subgradient method

In the previous section we have seen that for each choice of the coefficients
α we can derive upper and lower bounds for v(Γ, w). In principle, if we
were extremely lucky, a particular choice of the α, corresponding to the P
supporting hyperplane, had an egalitarian PVV, we would guess the optimal
value and the optimal partition achieved. More realistically, we describe a
way of improving the coefficients α so that eventually the bounds shrink to
the desired value.

Since in general g(α) is a nondifferentiable convex function, we can rely
on a simple minimizing algorithm developed by Shor [19], the subgradient
method. In particular, since g domain is constrained, we should use an
its extension, the projected subgradient method, which solves constrained
convex optimization problems. Let us start by describing the method through
some basic definitions and the essential convergence result.

Definition 4.1. Let f be a convex function with domain D and let x0 an
interior point of D. A vector g(x0) is called a subgradient or a generalized
gradient of f at x0 if it satisfies1

f(x)− f(x0) ≤ (g(x0), x− x0) for all x ∈ D. (14)

1Here (·, ·) indicates the inner product.
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Let us named ∂xf(x) the set of subgradients of a convex function f at
any interior point x of the f domain.

Definition 4.2. Let D be a closed convex set and let || · || be the Euclidean
norm. The projection of x ∈ Rn on D is denoted by p(x) and it is defined as

p(x) = argmin
z∈D

||z − x||. (15)

Proposition 4.3. ([19], [5]) Let f be a convex function defined on D ⊆ Rm,
which has a bounded set of minimum points D∗ and let g(x) ∈ ∂xf(x) be a
bounded subgradient, i.e. there exists G > 0 such that ||g(x)|| ≤ G for all
x ∈ D. Moreover, let {st}+∞

t=1 a sequence of positive numbers satisfying the
conditions:

• limt→+∞ st = 0,

•
∑+∞

t=0 st = +∞.

Then for any x0 ∈ D the sequence {xt}+∞
t=0 generated according to the

formula

xt+1 = p[xt − stg(xt)] (16)

has the following property: either an index t∗ exists such that xt
∗ ∈ D∗, or

limt→+∞ f
t
best − f ∗ = 0, where

• f tbest = mini=1,...,t f(xt),

• f ∗ = minx∈D f(x).

Let us check that g(α) can be minimized through the projected subgra-
dient method. First of all, g(α) is convex with minα∈∆m−1 = v(Γ, w), and we
can easily show that uα is a bounded subgradient of g(α) :

∂αg(α) = ∂α

∫
C

max
j∈M
{αjf

wj

j (x)}dx =

∫
C

∂α max
j∈M
{αjf

wj

j (x)}dx

=

∫
C

∂ααjf
∗wj

j (x)dx =

∫
C

f
∗wj

j (x)dx = uα.

Let us choose a sequence {st}∞t=1 such that limt→+∞ st = 0 and
∑+∞

t=0 st =
+∞. For a given set α(t) ∈ ∆m−1 of coefficients compute the subgradient ut.
The new set of coefficients is

αt+1 = p[αt − stut] = (αt − stut + λ)+
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where λ is the normalizing constant such that

m∑
i=1

(αti − stuti + λ)+ = 1.

We state that there exists a sequence s
′
t such that s

′
t ≤ st, limt→+∞ s

′
t = 0,∑+∞

t=0 s
′
t = +∞ and αti − s

′
tu
t
i + λ > 0 for all t ∈ N and for all i = 1, . . . ,m.

If this is the case, then

m∑
i=1

(αti − s
′

tu
t
i + λ) = 1,

i. e.
m∑
i=1

αti − s
′

t

m∑
i=1

uti +mλ = 1,

hence
λ = s

′

tū
t,

where ūt =
∑m

i=1 u
t
i

m
is the average of the subgradient vector components.

Therefore our claim becomes

Proposition 4.4. There exists a sequence s
′
t ≤ st which satisfies

(1) limt→+∞ s
′
t = 0,

(2)
∑+∞

t=0 s
′
t = +∞,

(3) αti − s
′
t(u

t
t − ūt) > 0 for all t ∈ N and for all i = 1, . . . ,m.

Proof. Firstly, notice that constraint (3) involves only those indexes i ∈
{1, . . . ,m} for which uti > ūt. Let be It the set of those indexes in the step
t. For each of them we would get

s
′

t <
αti

uti − ūt
=

mαti
(m− 1)uti −

∑
j 6=i u

t
j

.

Now, let us name

τt = min
i∈It

{
mαti

(m− 1)uti −
∑

j 6=i u
t
j

}
− ε,

with ε > 0. Hence , let us define

s
′

t = min{st, τt}.
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Thus, s
′
t satisfies (3) and (1), as trivially, limt→+∞ s

′
t = 0. To show (2), let

us suppose
∑+∞

t=0 s
′
t < +∞. This implies for some i∗ ∈ {1, . . . ,m} and some

sequence {tr} ⊂ N

lim
tr→+∞

mαtri∗

(m− 1)utri∗ −
∑

j 6=i∗ u
tr
j

= 0.

Since (m−1)utri∗−
∑

j 6=i∗ uj
tr > 0, taking a further subsequence {tp} ⊂ {tr}

we have

α
tp
i∗ → α̃i∗ = 0, so

∑
j 6=i∗

α
tp
j →

∑
j 6=i∗

α̃j = 1, and

u
tp
j → ũj for all j ∈ {1, . . . ,m}, with (m− 1)ũi∗ >

∑
j 6=i∗

ũj (∗).

By the continuity, ũ = (ũ1, . . . , ũm) lies on the upper surface of P and it
is supported by the hyperplane

∑m
j=1 α̃jxj = k.

First of all, we show that ũi∗ ≥ 1
m
> 0. In fact,

∑
j∈M ũj ≥ 1 by (5).

Therefore, (*) becomes

(m− 1)ũi∗ ≥
∑
j 6=i∗

ũj =
∑
j∈M

ũj − ũi∗ ≥ 1− ũi∗ , so

ũi∗ ≥
1

m
> 0.

Now, the coexistence of ũi∗ > 0 and α̃i∗ = 0 clashes with the hypoth-
esis (MAC). In fact, (ũ1, . . . , ũm) ∈ argmaxx∈P

∑
j∈M α̃jxj,

∑
j∈M α̃jũj =∑

j 6=i∗ α̃jũj = k and there is not (x1, . . . , xm) ∈ P for which
∑

j∈M α̃xj > k.

Since ũi∗ ≥ 1
m
> 0, there exists Ãi∗ such that ũi∗ = µi∗(Ãi∗) ≥ 1

m
. By

(MAC) we can derive a partition from Ãi∗ of (m− 1) subsets {Bj}j 6=i∗ , with
∪j 6=i∗Bj = Ãi∗ and Bj ∩ Bl = ∅ if j 6= l, such that µj(Bj) ≥ ε > 0 for all
j 6= i∗.

If we consider the partition ˜̃A defined as ˜̃Ai∗ = ∅, ˜̃Aj = Ãj ∪Bj, we get∑
j∈M

α̃jµj(
˜̃Aj) =

∑
j 6=i∗

α̃j(µj(Ãi∗) + µj(Bj)) = k + (m− 1)ε > k,

which is a contradiction.

While α converges to α∗, g(α) converges to v(Γ, w), which is the desidered
PVV u∗. Since the lower bound v(U) is a continuos function, for uα converging
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to u∗ we have that v(U) converge to v(U∗), where U∗ is a matrix containing
u∗. It is easy to show that v(U∗) = u∗. Without loss of generality, let us
suppose that u∗ is the first PVV in U∗ and let us remember that u∗ has
egalitarian component, that we indicate with u11. Then,

v(U∗) =
det(U∗)∑m

`=1

∑m
j=1(−1)`+1det(Uj`)

=
u11

∑m
j=1 (−1)j+1det(U∗j1)∑m

j=1 (−1)j+1det(U∗j1) +
∑m

`=2

∑m
j=1 (−1)j+`det(U∗j`)

= u11,

where the last equality holds because the second sum in the denominator
is equal to zero.

4.1 The algorithm

Now, we present an algorithm where the two bounds converge to the efficient
and fair value v(Γ, w). The algorithm elements are:

• αi, i = 1, . . . ,m are the supporting hyperplane coefficients;

• u is the PVV vector associated to α;

• V = {v1, . . . , vm} is the set of PVVs, such that maxi v
`
i = v``, for

` = 1, . . . ,m;

• g(α) =
∫
C

maxj∈Mαjf
w
j (x) dx;

• v(V ) = det(V )∑m
`=1

∑m
j=1 (−1)`+jdet(Vj`)

;

• ub is the upper bound;

• lb is the lower bound;

• {s′t} is a sequence such that

(1) limt→+∞ s
′
t = 0,

(2)
∑+∞

t=0 s
′
t = +∞,

(3) αti − s
′
t(u

t
t − ūt) > 0 for all t ∈ N and for all i = 1, . . . ,m.

Let us initialize the elements:
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• α0 =
(

1
m
, . . . , 1

m

)
;

• u0 is the PVV associated to α0;

• V 0 = {e1, . . . , em}, with e` = {0, . . . , µw` (C), . . . , 0};

• ub = g(α0);

• lb = v(V 0);

A generic step t follows:

1. update α : αt = αt−1 − s′t(ut−1 − ūt−1);

2. compute ut = PV V (αt);

3. update ub. Compute g(αt). If g(αt) < ub, then ub = g(αt);

4. update lb. Replace one vector in V t−1 : if maxi u
t
i = ut`, then replace v`

with ut, and save the new matrix in V t. Compute v(V t). If v(V t) > lb,
then lb = v(V t).

5. If ub− lb < ε, then STOP. Else, go back to 1.
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