
NONLINEAR FILTERING FOR JUMP DIFFUSION PROCESSES
WITH A FINANCIAL APPLICATION

Claudia Ceci, Katia Colaneri

Dipartimento di Scienze, Facoltá di Economia
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Abstract

We deal with a filtering problem of a general jump-diffusion process, X, when the observations process,
Y , is a correlated jump-diffusion having common jump times with X. In this frame, at any at time t the
σ-algebra FY

t provides all the available information about Xt and the central goal is to characterize the
filter, πt, that is the conditional distribution of Xt given observations FY

t . To this aim, we prove that πt

solves Kushner-Stratonovich equation and by applying the Filtered Martingale Problem approach ([18]),
that it is the unique weak solution to this equation. Under an additional hypothesis we provide also
a pathwise uniqueness result. As an application, we consider a financial market where Y describes the
logreturn process of a risky asset S whose dynamics depends on an unobservable stochastic factor X.
Investors acting on the market can access only to the information flow given by {FS

t }t∈[0,T ] = {FY
t }t∈[0,T ],

generated by stock prices. Thus, we are in presence not only of an incomplete market situation but also
of partial information. Assuming the price S of the risky asset modeled directly under a martingale
measure we study a risk-minimizing hedging problem, under restricted information, whose solution can
be computed via the filter by using a projection result ([26]) .
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1. Introduction

In this paper we consider a partially observed system (or filtering model), (X, Y ), where the signal X follows
a general jump-diffusion process and the observation Y is a correlated jump-diffusion having common jump
times with X. As usual in a filtering model, the signal X cannot be directly observed but we can only observe
a stochastic process, Y , related to X. At any time t the σ-algebra FY

t gives all the available information
about Xt. The central goal of filtering theory is to characterize the conditional distribution of Xt given the
observation FY

t , which provides the most detailed description of our knowledge of Xt. Filtering applications
arise in a great variety of engineering problems, informational sciences and recently in mathematical finance.
In particular in this note we deal with a financial application.

Filtering problems have been widely investigated in literature mainly in two cases: when Yt gives observations
of Xt in additional Gaussian noise (see for example [17, 21, 18]) and when Yt is a counting process or a marked
point process (see [3, 20, 12, 6, 7, 4] and reference therein).

The case of mixed type observations (marked point processes and diffusions) has been studied in [13, 14, 5].
All these papers analyze the situation in which the information flow has the structure Fm

t ∨ Fη
t , where

m(dt, dx) is a marked point process whose dynamics is influenced by a stochastic factor X and η gives
observations of X in additional Gaussian noise. Anyway, in this note it is considered the situation where the
observation is a general jump-diffusion process, that to the authors’ knowledge, has not been investigated
into existing literature. In a credit derivatives framework, in [13] the marked point process component is
given by the default indicator process and in [14] by the loss-state of the portfolio. Both of the models
assume intensities of default times to be influenced by the stochastic factor X, and the additional Gaussian
noise to be independent from X and m(dt, dx). The hypothesis of independence turns to be crucial in [13]
for applying a reference probability approach in order to reduce the filtering problem to the case where the
information flow consists only of the default history.
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As in [14, 5], we follow an alternative route based on the innovation method which allows us to take into
account the case where the signal X and the observation Y are correlated processes. By the innovation
method and an FY

t -martingale representation theorem we write down the Kushner-Stratonovich equation
(KS-equation) that the filter solves. The filtering equation is derived in [14] in the case where the state
process X is modeled as a finite-state Markov chain without common jump times with m(dt, dx) and in [5]
in the case where the state process X is a jump-diffusion that allows common jump times with m(dt, dx).
Anyway, the filtering equation derived in [5] is quite similar to that obtained herein, even if the structure
of the information flows are different. But, in this paper under weaker conditions we characterize the filter
as the unique weak solution to KS-equation. Moreover, we give pathwise uniqueness under an additional
constraint.

As an application we consider a financial market with a bond and a risky asset, whose price dynamics, S,
follows a geometric jump-diffusion. We assume the logreturn process Y , to be affected by an unobservable
stochastic factor, X, which may describe the activities of other markets, macroeconomics factors or mi-
crostructure rules that drive the market. The dynamics of Y and X may be strongly dependent, as provided
in the filtering model (X, Y ) considered before, in particular these two processes are correlated and may have
common jump times. This means that the model considered takes into account also the possibility of catas-
trophic events, which influence both the asset prices and the hidden state variable driving their dynamics. In
this frame investors acting on the market get access only to the information flow, {FS

t }t∈[0,T ] = {FY
t }t∈[0,T ],

generated by the stock price. We assume the risky asset S to be modeled directly under a martingale measure
and we deal with the hedging of a contingent claim by the risk minimization criterion which is well suited
to deal with restricted information in such a setting (see [26]).

The paper is organized as follows. The filtering model is described in Section 2. The main result, which
establishes a characterization of the filter as the unique solution to the Kushner Stratonovich equation is
given in Section 3. The proofs of weak and strong uniqueness for this equation are postponed in Appendix
B. Here we deduce these results from uniqueness for the filtered martingale problem ([18]). The topic of
Section 4 is a financial application of the filtering problem; we discuss the risk minimization hedging problem
under restricted information.

2. The filtering model

A partially observed system (X, Y ), where X is the unobservable component (state process) and Y the
observable one, on a stochastic basis

(
Ω,F , (Ft)t∈[0,T ], P

)
, is described by the following system of stochastic

differential equations:
dXt = b0(t, Xt)dt + σ0(t, Xt)dW 0

t +
∫

Z

K0(t, Xt− , ζ)N(dt, dζ); X0 = x0 ∈ R

dYt = b1(t, Xt, Yt)dt + σ1(t, Yt)dW 1
t +

∫
Z

K1(t, Xt− , Yt− , ζ)N(dt, dζ); Y0 = y0 ∈ R
(2.1)

Here N(dt, dζ) is a Poisson random measure on R+ × Z, and ν(dζ)dt represents its intensity. Note that
ν(dζ) is a σ−finite measure on a measurable space (Z,Z). The processes W 0

t and W 1
t are correlated

(P,Ft)-standard Brownian motions with correlation coefficient ρ ∈ [−1, 1]. The R-valued functions b0(t, x),
b1(t, x, y), σ0(t, x) > 0, σ1(t, y) > 0, K0(t, x, ζ) and K1(t, x, y, ζ) are measurable functions of their arguments.
Let us remark that in the dynamics of the observation process Y , the diffusive coefficient does not depend
on the state process X, although the drift does.

From now on we will write bi(t), σi(t),Ki(t, ζ), i = 0, 1, for b0(t,Xt), b1(t, Xt, Yt), σ0(t, Xt), σ1(t, Yt), K0(t,Xt− , ζ)
and K1(t, Xt− , Yt− , ζ) respectively, unless it is necessary to underline the dependence on the processes in-
volved.

We assume some requirements for (2.1) to be well defined

E
∫ T

0

∫
Z

|Ki(t, ζ)|ν(dζ)dt < ∞, E
∫ T

0

|bi(t)|dt < ∞, E
∫ T

0

σ2
i (t)dt < ∞, i = 0, 1, (2.2)

under these constraints, both of the processes X and Y have finite first moment.
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We also assume strong existence and uniqueness for the system (2.1). Sufficient conditions are summarized
in Appendix A. In particular, these assumptions imply that the pair (X, Y ) is a (P,Ft)-Markov process.

We denote by (FY
t )t≥0 the filtration generated by the observation process Y until time t. In the partially

observed system considered in this note, at any time t, the σ-algebra FY
t provides all the available information

about the signal Xt.

By defining P(R) the space of the probability measures over R, it is known that there exists a P(R)-valued
FY

t -adapted process, πt, such that

πt(f) = E[f(t,Xt) | FY
t ] (2.3)

for any bounded and measurable function f(t, x) on [0, T ] × R. Since Xt is a càdlàg process, there exists a
version of πt with càdlàg paths (see for instance [18]).

¿From now on we will write R̂t for the (P,FY
t )-optional projection of a progressively measurable process

Rt, satisfying E|Rt| < ∞, defined as the unique optional process such that for any FY
t -stopping time τ ,

R̂τ = E[Rτ |FY
τ ] a.s. on {τ < ∞}.

With this notation we can write the FY
t -optional projection of a process f(t,Xt), as

̂f(t,Xt) = πt(f).

In this case ̂f(t,Xt) has càdlàg trajectories (it can happen to use both of the notations, ̂f(t, Xt) and πt(f)).

Remark 2.1 In the sequel we will use two well-known facts: for every (P,Ft)-martingale mt, the projection
m̂t is a (P,FY

t )-martingale and that for any progressively measurable process Ψt with E
∫ T

0
|Ψt|dt < ∞,

̂∫ T

0

Ψtdt−
∫ T

0

Ψ̂tdt

is a (P,FY
t )-martingale. Note that this implies that E

∫ T

0
Ψtdt = E

∫ T

0
Ψ̂tdt .

We will also need the following result.

Proposition 2.2 Let (mt)t≥0 be a (P,Ft)-local martingale. If there exists a localizing sequence (τn)n∈N of
FY

t -stopping times for mt, then m̂t is a (P,FY
t )-local martingale.

Proof.
By a standard calculation we get, ∀ 0 ≤ s < t ≤ T < ∞

E
[
m̂t∧τn

|FY
s

]
= E

[
E
[
mt∧τn

|FY
t∧τn

]
|FY

s

]
= E

[
E
[
mt∧τn

|FY
t∧τn

]
1Iτn>s|FY

s

]
+ E

[
E
[
mt∧τn

|FY
t∧τn

]
1Iτn≤s|FY

s

]
= E

[
E [mt∧τn

|Fs] |FY
s

]
1Iτn>s + E

[
mτn

|FY
τn

]
1Iτn≤s

= m̂s∧τn

Hence m̂t∧τn
is a (P,FY

t )-martingale and this prove the statement.

Let us introduce the integer-valued random measure associated to the jumps of the process Y

m(dt, dx) =
∑

s:∆Ys 6=0

δ{s,∆Ys}(dt, dx) (2.4)

where δa denotes the Dirac measure at the point a. Note that the following equality holds∫ t

0

∫
R

x m(ds, dx) =
∫ t

0

∫
Z

K1(s, ζ)N(ds, dζ) (2.5)
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and, in general, for any measurable function g : R → R∫ t

0

∫
R

g(x) m(ds, dx) =
∫ t

0

∫
Z

1I{K1(s,ζ) 6=0}g (K1(s, ζ))N(ds, dζ). (2.6)

For all t ∈ [0, T ], for all A ∈ B(R), we define

d0(t, x) := {ζ ∈ Z : K0(t, x, ζ) 6= 0}, d1(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ) 6= 0},

dA(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ) ∈ A r {0}} ⊆ d1(t, x, y), (2.7)

and finally,
DA

t = dA(t, Xt− , Yt−) ⊆ Dt = d1(t, Xt− , Yt−), D0
t = d0(t, Xt−). (2.8)

Normally D0
t ∩ Dt 6= ∅ P − a.s. and this models the fact that the state process and the observation may

have common jump times.

Under the assumption

E
∫ T

0

ν(Ds) ds < ∞ (2.9)

in [4] (Proposition 2.2) it is proved that the (P,Ft)-predictable projection ([16, 3]), mp(dt, dx), of the integer
valued measure m(dt, dx) can be written as

mp(dt, dx) = λtφt(dx)dt, (2.10)

where ∀A ∈ B(R)

mp(dt,A) = λtφt(A)dt = ν(DA
t )dt. (2.11)

This means that ν(DA
t ) is the (P,Ft)−intensity of the point process Nt(A) = m((0, t]× A) that counts the

jumps the process Y does until time t whose widths belong to A. In particular λt = ν(Dt) provides the
(P,Ft)-predictable intensity of the point process Nt = m((0, t]×R) which counts the total number of jumps
of Y until time t.

Remark 2.3 Equation (2.10) can be also written as

mp(dt, dx) = λtφt(dx)dt =
∫

Dt

δK1(t,ζ)(dx)ν(dζ)dt. (2.12)

We finally denote by νp(dt, dx) the (P,FY
t )-predictable projection of the integer-valued measure m(dt, dx).

The following proposition, proved in [4], gives a representation of νp(dt, dx) in terms of the filter.

Proposition 2.4 The (P,FY
t )-predictable projection of the integer-valued measure m(dt, dx) is given by

νp(dt, dx) = λ̂tφt(dx)|t=t−dt = πt−(λtφt(dx))dt, (2.13)

that is, for any A ∈ B(R)

νp((0, t], A) =
∫ t

0

πs−(λsφs(A))ds =
∫ t

0

πs−
(
ν(dA(., Ys−))

)
ds. (2.14)

where πt− denotes the left version of the process πt.

The last part of this section focuses on finding a martingale representation theorem for (P,FY
t )-martingales

which is an essential tool to derive the filtering equation. To this aim we introduce the FY
t -compensated

martingale random measure

mπ(dt, dx) = m(dt, dx)− νp(dt, dx) = m(dt, dx)− πt−(λtφt(dx))dt, (2.15)
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and, assuming

E
∫ T

0

b2
1(t)

σ2
1(t)

dt < ∞, (2.16)

we define the innovation process

It = W 1
t +

∫ t

0

[
b1(s)
σ1(s)

− πs

(
b1

σ1

)]
ds. (2.17)

Let us notice that, by Remark 2.1 and assumptions (2.16),

E
∫ T

0

∣∣∣∣πt

( b1

σ1

)∣∣∣∣ dt ≤ E
∫ T

0

πt

∣∣∣∣ b1

σ1

∣∣∣∣ dt = E
∫ T

0

|b1(t)|
σ1(t)

dt < ∞.

By extending classical results in filtering theory ([21]) to our frame we get:

Proposition 2.5 The random process {It}t∈[0,T ] is a (P,FY
t )-Wiener process.

We write Fm
t for the filtration generated by the random measure m(dt, dx). Since the innovation process It

and the random measure m(dt, dx) are FY
t -adapted then Fm

t ∨ FI
t ⊆ FY

t . In general the inclusion is strict,
however we will prove a representation theorem for (P,FY

t )-martingales in terms of the FY
t -compensated

random martingale measure mπ(dt, dx) and the innovation process It.

For this purpose let us consider now, the positive local martingale defined by

Lt = E
(
−
∫ t

0

b1(s)
σ1(s)

dW 1
s

)
= exp

{
−
∫ t

0

b1(s)
σ1(s)

dW 1
s −

1
2

∫ t

0

b2
1(s)

σ2
1(s)

ds

}
(2.18)

where E denotes the Doléans-Dade exponential and we shall make the usual standing assumption

Assumption A: Lt is a (P,Ft)-martingale, that is E[LT ] = 1.

Under this last assumption we define a probability measure Q on FT equivalent to P such that

dQ

dP
|FT

= LT . (2.19)

By Girsanov Theorem the process

W̃ 1
t = W 1

t +
∫ t

0

b1(s)
σ1(s)

ds (2.20)

is a (Q,Ft)-Wiener process and by (2.17),

W̃ 1
t = It +

∫ t

0

πs

(
b1

σ1

)
ds; (2.21)

hence W̃ 1 is a (Q,FY
t )-Wiener process which in turn implies that

L̂t = E[Lt|FY
t ] =

dQ

dP
|FY

t
= E

(
−
∫ t

0

πs

( b1

σ1

)
dIs

)
. (2.22)

Let us notice that, by Jensen’s inequality, π2
t

(
b1
σ1

)
≤ πt

(
b21
σ2
1

)
and, by Remark 2.1, the following integrability

condition holds E
∫ T

0

πt

(
b2
1

σ2
1

)
dt = E

∫ T

0

b2
1(t)

σ2
1(t)

dt < ∞.

Before giving the claimed result, we want to underline the (P,FY
t )-semimartingale representation of Y

dYt = σ1(t)dIt +
{

πt(b1) +
∫

R
x λ̂tφt(dx)

}
dt +

∫
R

x mπ(dt, dx). (2.23)
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One can observe that again, by Remark 2.1 and assumptions (2.2),

E
∫ T

0

|πt(b1)|dt ≤ E
∫ T

0

πt|b1|dt = E
∫ T

0

|b1(t)|dt < ∞;

furthermore taking into account (2.12),

E
∫ T

0

∫
R
|x| λ̂tφt(dx)dt = E

∫ T

0

∫
R
|x| λtφt(dx)dt = E

∫ T

0

∫
Z

|K1(t, ζ)|ν(dζ)dt < ∞.

Proposition 2.6 Under (2.2), (2.9), (2.16) and Assumption A, every (P,FY
t )-local martingale Mt admits

the following decomposition

Mt = M0 +
∫ t

0

∫
R

w(s, x)mπ(ds, dx) +
∫ t

0

h(s)dIs (2.24)

where w(t, x) is an FY
t -predictable process and h(t) is an FY

t -adapted process such that∫ T

0

∫
R
|w(t, x)|πt−(λtφt(dx))dt < ∞,

∫ T

0

h(t)2dt < ∞ P − a.s.

Proof.
Let Q be the probability measure defined in (2.19), then recalling the (2.21), W̃ 1 is a (Q,FY

t )-Brownian
motion. Note that the following equality of σ-algebras holds:

FY
t = Fm

t ∨ FfW 1

t . (2.25)

As a matter of fact, by (2.21) we get the inclusion FY
t ⊇ Fm

t ∨ FfW 1

t , while the other one follows from the
fact that Yt solves the stochastic differential equation driven by m(dt, dx) and W̃ 1

t given by

dYt =
∫

R
x m(dt, dx) + σ1(t, Yt)dW̃ 1

t .

Let us note that the Q-distribution of the pair (m, W̃ 1
t ) is uniquely determined by its (Q,Fm

t ∨ FfW 1

t )-
predictable characteristics (see Remark 3.2 in [2]), and therefore by the (Q,FY

t )-predictable characteristics
because of the equality (2.25).

By applying Corollary III.4.31 of [16], every (Q,FY
t )-local-martingale, M̃t, has the representation property

with respect to (m, W̃ 1), that means that there exist two processes, h̃(t), FY
t -adapted and w̃(t, x), FY

t -
predictable, satisfying∫ T

0

h̃2(t)dt < ∞ and
∫ T

0

∫
R
|w̃(t, x)|πt−(λtφt(dx))dt < ∞ Q− a.s.

such that

M̃t = M̃0 +
∫ t

0

h̃(s) dW̃ 1
s +

∫ t

0

∫
R

w̃(s, x)mπ(ds, dx). (2.26)

Let Mt be a (P,FY
t )-local martingale. By Kallianpur-Striebel formula M̃t = MtL̂

−1
t is a (Q,FY

t )-local
martingale, where L̂t is defined in (2.22). Thus Mt = M̃tL̂t can be computed by the product formula:

dMt = M̃t−dL̂t + L̂t−dM̃t + d〈M̃ c, L̂c〉t + d

∑
s≤t

∆M̃s∆L̂s

 .

Note that dL̂t = −L̂tπt

(
b1

σ1

)
dIt, and then
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dMt = −M̃tL̂tπt

(
b1

σ1

)
dIt + L̂t−

{∫
R

w̃(t, x)mπ(dt, dx) + h̃(t)dW̃ 1
t

}
+ d〈

∫ ·

0

h̃(s)dW̃ 1
s ,−

∫ ·

0

L̂sπs

(
b1

σ1

)
dIs〉t

= −Mtπt

(
b1

σ1

)
dIt +

∫
R

L̂t−w̃(t, x)mπ(dt, dx) + L̂th̃(t)
(

dIt + πt

(
b1

σ1

)
dt

)
− h̃(t)L̂tπt

(
b1

σ1

)
dt

=
{
−Mtπt

(
b1

σ1

)
+ L̂th̃(t)

}
dIt +

∫
R

L̂t−w̃(t, x)mπ(dt, dx).

Finally, we only need to define

w(t, x) = L̂t−w̃(t, x) and h(t) = −Mtπt

(
b1

σ1

)
+ L̂th̃(t).

3. The filtering equation

Our purpose, in this section, is to characterize the filter that is the conditional distribution of the signal
X given the observation FY

t , which provides, as already said before, the most detailed description of our
knowledge of Xt.

In the case of diffusion observations the filtering problem has been widely studied in literature: textbook
treatments can be found for instance in Kallianpur [17] and Lipster Shiryaev [21]. More recently, results for
pure-jump observations have been achieved (see [3, 7, 4, 12] and references therein), while few results can be
found for mixed type information which involves pure-jump processes and diffusions ([13, 14, 5]) and, to the
authors’ knowledge, this is the first time that the filtering problem is studied for a general jump-diffusions
system as the one defined in (2.1).

Several approaches have been considered in nonlinear filtering literature and among them we choose the
innovation method which consists of deriving the dynamics of the filter, the so called Kushner-Stratonovich
equation (KS-equation) and to characterize the filter itself as the unique solution to this equation. The
KS-equation plays an essential role in the study of partially observable control problems by the Hamilton-
Jacobi-Bellman approach (see for instance [8, 22, 1]).

First of all we want to recall a result proved in [7] (Corollary 2.2).
Let us denote by C1,2

b ([0, T ]×R) (resp. C1,2,2
b ([0, T ]×R×R)) the set of the functions f defined on [0, T ]×R

(resp. [0, T ]× R× R) such that f, ∂f
∂t , ∂f

∂x and ∂2f
∂x2 (resp. f, ∂f

∂t and all the first and second derivatives with
respect to (x, y)) are bounded continuous functions.

Lemma 3.1 Under the assumptions (2.2) for i = 0, and

E
∫ T

0

ν(D0
t )dt < ∞ (3.1)

Xt is a (P,Ft)-Markov process with generator

LXf(t, x) =
∂f

∂t
(t, x) + b0(t, x)

∂f

∂x
+

1
2
σ2

0(t, x)
∂2f

∂x2
+
∫

Z

{f(t, x + K0(t, x, ζ))− f(t, x)}ν(dζ). (3.2)

More precisely, for any function f(t, x) ∈ C1,2
b ([0, T ]×R) the following semimartingale decomposition holds

f(t, Xt) = f(0, x0) +
∫ t

0

LXf(s,Xs)ds + mf
t (3.3)

where mf
t is the (P,Ft)-martingale given by

mf
t =
∫ t

0

∂f

∂x
(s,Xs)σ0(s,Xs)dW 0

s +
∫ t

0

∫
Z

{f(s,Xs− + K0(s,Xs− , ζ))− f(s,Xs−)} (N(ds, dζ)− ν(dζ)ds).

(3.4)
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Next theorem establishes the main result of this note.

Theorem 3.2 Under the same assumptions of Proposition 2.6, (3.1) and

E
∫ T

0

(σ−1
1 (t))2dt < ∞, (3.5)

the filter (2.3) is a solution of KS-equation, which is given, for any function f(t, x) ∈ C1,2
b ([0, T ]× R) by

πt(f) = f(0, x0) +
∫ t

0

πs(LXf)ds +
∫ t

0

∫
R

wπ
s (f, x)mπ(ds, dx) +

∫ t

0

hπ
s (f)dIs (3.6)

where

wπ
t (f, x) =

dπt−(λφf)
dπt−(λφ)

(x)− πt−(f) +
dπt−(Lf)
dπt− (λφ)

(x) (3.7)

hπ
t (f) = σ−1

1 (t)[πt(f)− πt(b1)πt(f)] + ρπt

(
σ0

∂f

∂x

)
(3.8)

Here by dπt− (λφf)

dπt− (λφ) (x) and dπt− (Lf)

dπt− (λφ) (x) we mean the Radon-Nikodym derivatives of the measures πt−(λφf)

and πt−(Lf) with respect to πt− (λφ), and the operator L̄f is defined as follows:

L̄f = L̄f(., Yt− , dz), ∀A ∈ B(R) L̄f(t, x, y, A) =
∫

dA(t,x,y)

[f(t, x + K0(t, x, ζ))− f(t, x)]ν(dζ).

We recall that dA(t, x, y) is defined in (2.7) hence the operator L takes into account common jump times
between the state X and the observations Y .

Remark 3.3 Let us observe that equation (3.6) is similar to the filtering equation derived in [5], even if
a different partially observed system has been considered there. More precisely, in [5], the information flow
has the structure Fm

t ∨Fη
t , where m(dt, dx) is a marked point process with dynamics affected by a stochastic

factor X (whose dynamics is described by the first equation of (2.1)), and ηt =
∫ t

0
γ(Xs)ds + W 1

t , for any
bounded measurable function with γ(x). Nevertheless, let us point out that in [5] the filtering equation has
been derived requiring boundness on λt = ν(Dt) and σ0(t, x).

Before giving the proof of the above theorem, we ought to check that all the terms in (3.6) are well defined.

Remark 3.4 Since∫
R
|wπ

s (f, x)|πs−(λsφs(dx)) ≤ |πs−(λsf)|+ |πs−(λs)πs−(f)|+ |πs−(L̄f)(R)| ≤ 4‖f‖πs− |λs|

assumption (2.9) and Remark 2.1 imply that

E
∫ T

0

∫
R
|wπ

s (f, x)|πs−(λsφs(dx))ds ≤ 4‖f‖E
∫ T

0

|λs|ds < ∞. (3.9)

Moreover, since for any f(t, x) ∈ C1,2
b ([0, T ]× R)

(hπ
t (f))2 ≤ Bf

{
(σ−1

1 (t))2(1 + π2
t (b1)) + π2

t (σ0)
}

with Bf a suitable positive constant, by Jensen’s inequality and again by Remark 2.1 we get

E
∫ T

0

(hπ
t (f))2dt ≤ Bf E

∫ T

0

{
(σ−1

1 (t))2[1 + b2
1(t)] + σ2

0(t)
}

dt < ∞. (3.10)

Thus, taking into account (3.9) and (3.10), the integrals in (3.6) with respect to the compensated martingale
measure mπ(dt, dx) and to the innovation process It, are (P,FY

t )-martingales. Finally note that∣∣LXf(t, Xt)
∣∣ ≤ B̃f

(
1 + |b0(t)|+ |σ0(t)|2 + ν(D0

t )
)

(3.11)

for a suitable positive constant B̃f , and then E
∫ T

0

∣∣πt

(
LXf

)∣∣ dt ≤ E
∫ T

0

∣∣LXf(t, Xt)
∣∣ dt < ∞.
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Proof.
We shall consider the semimartingale

Zt = f(t, Xt) = f(0, X0) +
∫ t

0

LXf(s,Xs)ds + mf
t (3.12)

where mf
t is given in (3.4). To keep formulas simpler to be read, we will leave out the dependence from the

the process Xt unless it is necessary, that is ft = f(t, Xt), LXft = LXf(t,Xt) and ∂f
∂x (t) = ∂f

∂x (t, Xt).
Now we project the semimartingale Zt on FY

t

Ẑt = Ẑ0 +
̂∫ t

0

LXfsds + m̂f
t = Ẑ0 +

∫ t

0

L̂Xfsds−
∫ t

0

L̂Xfsds +
̂∫ t

0

LXfsds + m̂f
t

and by Remark 2.1, Ẑt − Ẑ0 −
∫ t

0

L̂Xfsds is an FY
t - martingale. Proposition 2.6 ensures us the existence of

two processes hπ, wπ such that

Ẑt − Ẑ0 −
∫ t

0

L̂Xf(s,Xs)ds =
∫ t

0

∫
R

wπ
s (f, x)mπ(ds, dx) +

∫ t

0

hπ
s (f)dIs

with E
∫ T

0

∫
R
|wπ

s (f, x)|πs(λsφs(dx))ds < ∞ and E
∫ T

0

(hπ
s (f))2ds < ∞.

The strategy for proving the thesis consists on two steps. We will consider the FY
t -adapted processes W̃ 1

t ,

whose expression is given by W̃ 1
t = W 1

t +
∫ t

0

b1(s)
σ1(s)

ds = It +
∫ t

0

πs

(
b1

σ1

)
ds, and a bounded process Ut of

the form Ut =
∫ t

0

∫
R

Γ(s, x)m(ds, dx), where Γ is a bounded FY
t -predictable process and go on as follows:

step 1. we will compute ẐtW̃ 1
t and ẐtW̃

1
t separately; since W̃ 1

t is FY
t -adapted, the equality ẐtW̃ 1

t = ẐtW̃
1
t

holds;

step 2. we will compute ẐtUt and ẐtUt and again since Ut is FY
t -adapted we have the equality ẐtUt = ẐtUt.

These two equalities will give us the shape of the processes hπ, wπ.

Step 1.
By applying the product rule

d(ZtW̃
1
t ) = Zt−dW̃ 1

t + W̃ 1
t−dZt + d〈Zc, W̃ 1〉t

= ZtdW 1
t + Zt

b1(t)
σ1(t)

dt + W̃ 1
t LXftdt + +

∂f

∂x
(t)σ0(t)ρdt + dm1

t

where m1
t =

∫ t

0

W̃ 1
s dmf

s is a (P,Ft)-local martingale and by ρ we mean the correlation coefficient between

the Brownian motions W 1 and W 0. Let us notice that one can introduce an FY
t -localizing sequence for m1

as

τ̃n = T ∧ inf{t : |W̃ 1
t | ≥ n}.

If we project ZtW̃
1
t on FY

t we will get on {t ≤ τ̃n}

d(ẐtW̃ 1
t ) =

{
̂

Zt
b1(t)
σ1(t)

+ ˜̂W 1
t LXft +

̂∂f

∂x
(t)σ0(t)ρ

}
dt + ẐtdW 1

t + dm̂1
t + dm̃1

t

where m̃1
t is a (P,FY

t )-martingale (see Remark 2.1) and, by Proposition 2.2, m̂1
t∧eτn

is a (P,FY
t )-martingale.
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On the other side,

d(ẐtW̃
1
t ) =

{
Ẑtπt

(
b1

σ1

)
+ W̃ 1

t L̂Xft + hπ
t (f)

}
dt + dm2

t

where m2
t =

∫ t

0

{
W̃ 1

s hπ
s (f) + Ẑs

}
dIs +

∫ t

0

W̃ 1
s

∫
R

wπ
s (f, x)mπ(ds, dx) is a (P,FY

t )-local martingale.

Since ẐtW̃ 1
t = ẐtW̃

1
t , they have the same limited variation parts, that means

̂
Zt

b1(t)
σ1(t)

+ W̃ 1
t L̂Xft +

̂∂f

∂x
(t)σ0(t)ρ = Ẑtπt

(
b1

σ1

)
+ W̃ 1

t L̂Xft + hπ
t (f) on {t ≤ τ̃n}.

Equivalently,

hπ
t (f) = πt

(
f

b1

σ1

)
− πt(f)πt

(
b1

σ1

)
+ πt

(
σ0

∂f

∂x

)
ρ on {t ≤ τ̃n}.

Now, when n →∞, τ̃n goes to T P − a.s. and so the process hπ
t (f) is completely defined.

Step 2.

We now choose the bounded process Ut :=
∫ t

0

∫
R

Γ(s, x)m(ds, dx) =
∫ t

0

∫
Z

1IDs
(ζ)Γ(s,K1(s, ζ)))N(ds, dζ)

(see (2.6) for last equality), then

d(ZtUt) = Zt−dUt + Ut−dZt + d[Z,U ]t =
{

UtL
Xft + Vt + Zt

∫
R

Γ(t, x)λtφt(dx)
}

dt + dm3
t (3.13)

where Vt :=
∫

Z
1IDt

(ζ){f(t, Xt− + K0(t, ζ))− f(t, Xt−)}Γ(t,K1(t, ζ))ν(dζ) and

m3
t =

∫ t

0

∫
R

Zs−Γ(s, x)
(
m(ds, dx)− λsφs(dx)ds

)
+
∫ t

0

∂f

∂x
(s)σ0(s)UsdW 0

s +

+
∫ t

0

∫
Z

{f(s,Xs− + K0(s, ζ))− f(s,Xs−)}{1IDs
(ζ)Γ(s,K1(s, ζ)) + Us−}

(
N(ds, dζ)− ν(dζ)ds

)
is a (P,Ft)-martingale. By projecting on FY

t , the equation (3.13) becomes:

d(ẐtUt) =
{

ÛtLXft + V̂t +
∫

R
Γ(t, x)Ẑtλtφt(dx)

}
dt + dm̃3

t (3.14)

with m̃3
t a (P,FY

t )-martingale.

On the other hand

d(ẐtUt) = Ẑt−dUt + Ut−dẐt + d[Ẑ, U ]t

=
{∫

R
Ẑt−Γ(t, x) ̂λtφt(dx) + UtL̂Xft +

∫
R

Γ(t, x)wπ
t (f, x) ̂λtφt(dx)

}
dt + dm4

t (3.15)

where m4
t is the (P,FY

t )-martingale given by

m4
t =

∫ t

0

hπ
s (f)dIs +

∫ t

0

{Ẑs−(Γ(s, x) + wπ
s (f, x)) + Us−wπ

s (f, x)}mπ(ds, dx).

As in step 1. the finite variation parts in (3.14) and (3.15) must be equal, so∫
R

wπ
t (f, x)Γ(t, x) ̂λtφt(dx) =

∫
R

Γ(t, x)Ẑtλtφt(dx) + V̂t −
∫

R
ẐtΓ(t, x) ̂λtφt(dx) (3.16)

Now we are looking for wπ
t (f, x) with the following shape:

wπ
t (f, x) = w1(t, f, x)− w2(t, f, x) + w3(t, f, x).

10



We can always choose w2(t, f, x) = Ẑt− and by equality (3.16), w1, w3 need to satisfy:∫
R

w1(t, f, x)Γ(t, x)λ̂tφt(dx) =
∫

R
Γ(t, x) ̂Zt−λtφt(dx)

∫
R

w3(t, f, x)Γ(t, x)λ̂tφt(dx) = V̂t.

Denoting by {Tn} the sequence of jump times of Y (i.e. of Nt = m([0, t)×R)), we select Γ(t, x) of the form
Γ(t, x) = Ct1IA(x)1I{t≤Tn∧T} with Ct any bounded, FY

t -predictable and positive process and A ∈ B(R).

With this choice the process Ut :=
∫ t

0

∫
R

Γ(s, x)m(ds, dx) is bounded since |Ut| ≤
∫ T∧Tn

0

|Cs|dNs ≤ Dn, with

D a suitable positive constant. Then on {t ≤ Tn ∧ T}

Vt =
∫

Z

Ct1IDA
t
(ζ){f(t, Xt− + K0(t, Xt− , ζ))− f(t,Xt−)}ν(dζ)

= Ct

∫
DA

t

{f(t, Xt− + K0(t, Xt− , ζ))− f(t, Xt−)}ν(dζ).

If we call
∫

dA(t,x,y)
{f(t, x + K0(t, x, ζ))− f(t, x)}ν(dζ) =: Lf(t, x, y, A), then we get ∀A ∈ B(R)∫

A

w3(t, f, x)λ̂tφt(dx) =
∫

A

L̂f(Xt− , Yt− , dx),
∫

A

w1(t, f, x)λ̂tφt(dx) =
∫

A

̂Zt−λtφt(dx) on {t ≤ Tn∧T}.

Thus

w1(t, f, x)− w2(t, f, x) + w3(t, f, x) =
dπt−(λφf)
dπt−(λφ)

(x)− πt−(f) +
dπt−(Lf)
dπt− (λφ)

(x) on {t ≤ Tn ∧ T}.

Now, since the counting process Nt = m((0, t]×R) is nonexplosive, Tn goes to ∞ with n and this concludes
the proof.

It can be observed that KS-equation (3.6) can be also written as

πt(f) = f(0, x0)+
∫ t

0

{πs(LX
0 f)+πs(f)πs(λs)−πs(fλs)}ds+

∫ t

0

∫
R

wπ
s (f, x)m(ds, dx)+

∫ t

0

hπ
s (f)dIs (3.17)

where

LX
0 f(t, x, y) = LXf(t, x)− L̄f(t, x, y, R)

=
∂f

∂t
(t, x) + b0(t, x)

∂f

∂x
+

1
2
σ2

0(t, x)
∂2f

∂x2
+
∫

d1c(t,x,y)

{f(t, x + K0(t, x, ζ))− f(t, x)}ν(dζ)

(d1c(t, x, y) = {ζ ∈ Z : K1(t, x, y, ζ) = 0}) and it has a natural recursive structure. This can be seen if we
write the equation at the jump times and between two consecutive jump times of Y . In fact, if Tn is a jump
time for the process Y that occurs before time T ,

πTn(f) =
dπT−n

(λTn
φTn

f)
dπT−n

(λTnφTn)
(Zn) +

dπT−n
(L̄Tn

f)
dπT−n

(λTnφTn)
(Zn), Zn = YTn − YTn−1 .

Hence πTn
(f) is completely determined by the observed data (Tn, Zn) and by the knowledge of πt(f) for all

t ∈ [Tn−1, Tn), since πT−n
(f) = limt→T−n

πt(f).

Then for t ∈ [Tn, Tn+1 ∧ T )

πt(f) = πTn
(f) +

∫ t

Tn

{πs(LX
0 f) + πs(f)πs(λs)− πs(fλs)}ds +

∫ t

Tn

hπ
s (f)dIs.

To show uniqueness for the solution to KS-equation we want to proceed as in [18], but we need to know
exactly the shape of the generator of the pair (X, Y ). Then the following Lemma 3.5 helps us to reach the
purpose.
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Lemma 3.5 Under (2.2), (2.9) and (3.1), (Xt, Yt) is a (P,Ft)-Markov process with generator LX,Y defined
by, ∀f ∈ C1,2,2

b ([0, T ]× R× R)

LX,Y f(t, x, y) =
∂f

∂t
+ b0(t, x)

∂f

∂x
+ b1(t, x, y)

∂f

∂y
+

1
2
σ2

0(t, x)
∂2f

∂x2
+ ρσ0(t, x)σ1(t, y)

∂2f

∂x∂y
+

+
1
2
σ2

1(t, y)
∂2f

∂y2
+
∫

Z

(f(t, x + K0(t, x, ζ), y + K1(t, x, y, ζ))− f(t, x, y)) ν(dζ)
(3.18)

Proof.
By the assumption of existence and uniqueness for the solution of the system (2.1), the martingale problem
for the operator LX,Y is well posed and this implies that the pair (X, Y ) is a (P,Ft)-Markov process.

Then the proof consists of applying Itô’s formula to a C1,2,2
b ([0, T ]× R× R) function, f(t, x, y),

df(t, Xt, Yt) = LX,Y f(t, Xt, Yt)dt + σ0(t)
∂f

∂x
(t,Xt, Yt)dW 0

t + σ1(t)
∂f

∂y
(t, Xt, Yt)dW 1

t +

+
∫

Z

(f(t,Xt− + K0(t, ζ), Yt− + K1(t, ζ))− f(t,Xt− , Yt−)) (N(dt, dζ)− ν(dζ)dt)

= LX,Y f(t, Xt, Yt)dt + dMf
t . (3.19)

Finally by (2.2), (2.9) and (3.1), since

E
∫ T

0

∫
Z

|f(t,Xt− + K0(t, ζ), Yt− + K1(t, ζ))− f(t,Xt− , Yt−)|ν(dζ)dt ≤ 2‖f‖E
∫ T

0

{ν(D0
t ) + ν(Dt)}dt < ∞,

Mf
t is a (P,Ft)- martingale.

Remark 3.6 By projecting equation (3.19) on FY
t we can state that πt (f(·, Yt)) −

∫ t

0

πs

(
LX,Y f(·, Ys)

)
ds

is a (P,FY
t )-martingale for each f ∈ C1,2,2

b ([0, T ]× R× R).

We want to use this martingale property to characterize the distribution of the pair (πt, Yt) by exploiting
the idea given in [18]; therefore we introduce the notion of filtered martingale problem (FMP).

Definition 3.7 We say that a process (µt, Ut) defined on a probability space
(
Ω̃, F̃t, P̃

)
, with càdlàg trajec-

tories and taking values in P(R)× R, is a solution of the filtered martingale problem FMP( LX,Y , x0, y0) if
µ is FU

t - adapted and

µt (f(·, Ut))−
∫ t

0

µs

(
LX,Y f(·, Us)

)
ds

is a (P̃ ,FU
t )-martingale for each f ∈ C1,2,2

b ([0, T ]× R× R) and E eP [µ0f(·, U0)] = f(0, x0, y0).

Now we are ready to give the definition of weak solution of the filtering equation.

Definition 3.8 A weak solution to Kushner-Stratonovich equation (3.6) is a process (µt, Ỹt) defined on a
probability space (Ω̃, F̃t, P̃ ) with càdlàg trajectories, taking values on P(R) × R, such that Ỹ0 = y0 P̃ -a.s.,
E eP [µ0(f)] = f(0, x0) ∀f ∈ C1,2

b ([0, T ]× R), and satisfying

(i) µt is F eY
t -adapted

(ii) the (P̃ ,F eY
t )-predictable projection of the counting measure associated to the jumps of Ỹ , m̃(dt, dx), is

given by µt−(λtφt(dx))dt
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(iii) Ĩt =
∫ t

0

1
σ1(s)

(
dỸs −

∫
R

x m̃(ds, dx)
)

is a (P̃ ,F eY
t )-Brownian motion

(iv) the pair (µt, Ỹt) solves the Kushner-Stratonovich equation (3.6), with mπ(dt, dx), It, wπ
t (f, x) and hπ

t (f)
replaced by mµ(dt, dx) = m̃(dt, dx) − µt−(λtφt(dx))dt, Iµ

t = Ĩt −
∫ t

0
µs(b1/σ1)ds, wµ

t (f, x) and hµ
t (f),

respectively

(v)
∫ T

0
µt(b2(·, Ỹt))dt < ∞, P̃ -a.s. with b2(t, x, y) = λ(t, x, y) + |b0(t, x)|+ σ2

0(t, x) + ν(d0(t, x)) + 1+b21(t,x,y)

σ2
1(t,y)

.

Remark 3.9 In (ii) we mean that ∀ A ∈ B(R), µt−(λtφt(A)) = µt−(ν(dA(·, Ỹt−))) is the (P̃ ,F eY
t )-intensity

of the counting process m̃((0, t]×A). In particular,

µt−(λtφt(R)) = µt−(ν(d1(·, Ỹt−)) = µt−(λ(·, Ỹt−)) = µt−(λ)

is the (P̃ ,F eY
t )-intensity of the point process m̃((0, t]×R), where we used the notation λ(t, x, y) = ν(d1(t, x, y)).

Remark 3.10 Taking into account (v) we can prove that for any f ∈ C1,2,2
b ([0, T ]× R× R)∫ T

0

|wµ
t (f, x)|µt−(λtφt(dx))dt ≤ 4‖f‖

∫ T

0

µt(λ)dt ≤ 4‖f‖
∫ T

0

µt(b2)dt < ∞ P̃ − a.s. (3.20)

∫ T

0

hµ
t (f)2dt ≤ Bf

∫ T

0

{
µt(σ2

0) +
1 + µt(b2

1(·, Ỹt)

σ2
1(t, Ỹt)

}
dt ≤ Bf

∫ T

0

µt(b2)dt < ∞ P̃ − a.s. (3.21)

∫ T

0

∣∣µt(LXf)
∣∣ dt ≤ B̃f

∫ T

0

{
1 + |µt(b0)|+ µt(σ0)2 + µt(ν(d0))

}
dt ≤ B̃f

∫ T

0

µt(b2)dt < ∞ P̃ −a.s. (3.22)

with Bf and B̃f suitable positive constants. Thus all the stochastic integrals in KS-equation considered in (iv)
are well defined and those driven by Iµ

t and by mµ(dt, dx) = m̃(dt, dx) − µt−(λtφt(dx))dt are (P̃ ,F eY
t )-local

martingales.

Remark 3.11 Let us notice that the pair filter-observation, (πt, Yt), is a weak solution to (3.6). As a matter
of fact, (i), (ii),(iv) and (v) of Definition (3.8) are trivially verified; for (iii) consider the probability measure
Q defined in (2.19), then by Girsanov Theorem the process

W̃ 1
t = W 1

t +
∫ t

0

b1(s)
σ1(s)

ds = It +
∫ t

0

πs

( b1

σ1

)
ds =

∫ t

0

1
σ1(s)

(
dYs −

∫
R

x m(ds, dx)
)

is a (Q,FY
t )-Wiener process.

Now we can state a weak uniqueness result for the solution of Kushner-Stratonovich equation whose proof
is postponed in Appendix B.

Theorem 3.12 Under the same hypotheses of Theorem 3.2, uniqueness for the solutions to FMP(LX,Y , x0, y0)
implies that all weak solutions (µt, Ỹt) of Kushner-Stratonovich equation have the same law. In particular
µt and πt have the same law.

Again in Appendix B we will give a class of sufficient conditions that ensures uniqueness for the solution to
the filtered martingale problem for LX,Y (see Proposition 6.1).

In the remaining part of the section we discuss pathwise uniqueness for the solution of Kushner-Stratonovich
equation.

Firstly, we start by giving the definition of strong solution.
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Definition 3.13 A strong solution for Kushner-Stratonovich equation is an FY
t −adapted càdlàg P(R)−valued

process {µt}t∈[0,T ] such that
∫ T

0

µs(b2)ds < ∞ P − a.s. (b2 is defined in (v) of Definition 3.8), and solving

Kushner-Stratonovich equation that is, ∀f ∈ C1,2,2
b ([0, T ]× R× R) and ∀t ≤ T

µt(f) = π0(f) +
∫ t

0

µs(LXf)ds +
∫ t

0

∫
R

wµ
s (f, x)mµ(dt, dx) +

∫ t

0

hµ
s (f)dIµ

s (3.23)

where {
dIµ

t = dW 1
t +

{
b1(t)
σ1(t)

− µt

(
b1
σ1

)}
dt

mµ(dt, dx) = m(dt, dx)− µt−(λtφt(dx))dt

and wµ
t (f, x) and hµ

t (f) defined respectively in (3.7),(3.8) replacing π with µ.

Note that the condition
∫ T

0

µs(b2)ds < ∞ P − a.s. makes the integrals in (3.23) well defined and those

driven by Iµ and mµ(dt, dx), (P,FY
t )-local martingales (as already observed in Remark 3.10).

Theorem 3.14 Let (Xt, Yt) be defined as in (2.1), and assume that uniqueness holds for the FMP (LX,Y , x0, y0).
Let {µt}t∈[0,T ] be a strong solution for Kushner-Stratonovich equation such that µt−(λtφt(dx))dt and πt−(λtφt(dx))dt
are equivalent measures over [0, T ]× R then µt = πt P − a.s. for all t ≤ T .

The proof is postponed in Appendix B.

We conclude this section considering a simplified model and giving a sufficient condition which implies that
the additional hypotesis in Theorem 3.14 is satisfied.

Example 3.15 Observation dynamics driven by independent point processes.

Suppose there exists a finite set of measurable functions Ki
1(t, y) 6= 0 for all (t, y) ∈ [0, T ]×R, for i = 1, ..., n,

such that

d1(t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ) 6= 0} =
n⋃

i=1

d1
i (t, x, y) and d1

i (t, x, y) ∩ d1
j (t, x, y) = ∅ ∀i 6= j

where d1
i (t, x, y) := {ζ ∈ Z : K1(t, x, y, ζ) = Ki

1(t, y)}. This implies that K1(t, Xt− , Yt− , ζ) =
n∑

i=1

K1
i (t, Yt−)1IDi

t
(ζ)

with Di
t = d1

i (t, Xt− , Yt−). It is not difficult to see that the observation process Y has the following dynamics:

dYt = b1(t, Xt, Yt)dt + σ1(t, Yt)dW 1
t +

n∑
i=1

Ki
1(t, Yt−)dN i

t (3.24)

where N i
t = N((0, t]×Di

t), for i = 1, ..., n, turn to be independent counting processes with (P,Ft)-intensities
given by λi

t = ν(Di
t). Let us point out that the signal X influences drift and the intensities of the point

process driving the observation dynamics but not the jump coefficients Ki
t(t, Yt−) for i = 1, ..., n, which are

observable. In such a model the counting measure m(dt, dx) can be written as

m(dt, dx) =
∑

s:∆Ys 6=0

δ{s,∆Ys}(dt, dx) =
n∑

i=1

δKi
1(t,Yt− )(dx)dN i

t

and the (P,Ft)-dual predictable projection of m(dt, dx) becomes

λtφt(dx)dt =
∫

Dt

δK1(t,ζ)(dx)ν(dζ)dt =
n∑

i=1

δKi
1(t,Yt− )(dx)

∫
Di

t

ν(dζ)dt =
n∑

i=1

δKi
1(t,Yt− )(dx)λi

t.

14



Of course λt = ν(Dt) =
n∑

i=1

λi
t provides the (P,Ft)-intensity of Nt = m((0, t]× R).

We want to verify that, under the assumption

λi(t, x, y) = ν
(
d1

i (t, x, y)
)

> 0 ∀(t, x, y) ∈ [0, T ]× R× R, i = 1, ..., n (3.25)

for any FY
t -adapted, càdlàg, P(R)-valued process {µt}t∈[0,T ], the measures µt−(λtφt(dx))dt and πt−(λtφt(dx))dt

are equivalent. Note that we can write

πt−(λtφt(dx))dt =
n∑

i=1

δKi
1(t,Yt− )(dx)πt−(λi)dt

µt−(λtφt(dx))dt =
n∑

i=1

δKi
1(t,Yt− )(dx)µt−(λi)dt

because δKi
1(t,Yt− )(dx) for i = 1, ..., n, are FY

t -measurable. Note that (3.25) implies πt−(λi) > 0, µt−(λi) > 0,
i = 1, ..., n, and the Radon-Nikodym derivative of µt−(λtφt(dx))dt with respect to πt−(λtφt(dx))dt becomes

dµt−(λφ)
dπt−(λφ)

(x) =

∑n
i=1 δKi

1(t,Yt− )(x)µt−(λi)∑n
i=1 δKi

1(t,Yt− )(x)πt−(λi)

=
n∑

i=1

1I{Ki
1(t,Yt)=x}

µt−(λi)
πt−(λi)

.

On the other side, there exists also the Radon-Nikodym derivative of πt−(λtφt(dx))dt with respect to
µt−(λtφt(dx))dt given by

dπt−(λφ)
dµt−(λφ)

(x) =
n∑

i=1

1I{Ki
1(t,Yt)=x}

πt−(λi)
µt−(λi)

and this means that these two measures are equivalent. In this way we have just proved the following
corollary for the simplified model of the example.

Corollary 3.16 Let (Xt, Yt) be the usual partially observed system of the (2.1), where in particular the dy-
namics of Y is given by (3.24), and assume uniqueness for the FMP (LX,Y , x0, y0). Let {µt}t∈[0,T ] be a strong

solution for KS-equation given by the (3.6)
(
with mπ(dt, dx) =

∑n
i=1 δKi

1(t,Yt− )(dx)(dN i
t − πt−(λi)dt)

)
re-

placing πt by µt. Then µt = πt P − a.s. for all t ≤ T .

4. Application to finance: Risk minimizing hedging

On a probability space
(
Ω,F , (Ft)t∈[0,T ], P

)
, we consider a financial market with a nonrisky asset, with price

process normalized to unity, and one risky asset whose price process St follows a geometric jump-diffusion
process given by

St = S0e
Yt S0 ∈ R+. (4.1)

We assume that the dynamics of the logreturn process Yt depends on some unobservable stochastic factor
X and the pair (X, Y ) is the unique solution to the sistem (2.1).

Applying Itô’s formula we get that St solves the following differential equation

dSt = St−

{
b(t)dt + σ(t)dW 1

t +
∫

Z

K(t, ζ)N(dt, dζ)
}

(4.2)

where we wrote b(t), σ(t) and K(t, ζ) for b(t,Xt, St), σ(t, St),K(t,Xt− , St− , ζ) respectively, and those func-
tions are given by
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b(t, x, s) = b1

(
t, x, ln

s

S0

)
+

1
2
σ2

1

(
t, ln

s

S0

)
(4.3)

σ(t, s) = σ1

(
t, ln

s

S0

)
(4.4)

K (t, x, s, ζ) = eK1(t,x,ln s/S0,ζ) − 1. (4.5)

In the following proposition we give the semimartingale structure of the process S under general hypotheses.

Proposition 4.1 Assuming the following integrability conditions

∫ T

0

|b1(t)|dt < ∞;
∫ T

0

σ2(t)dt < ∞;
∫ T

0

ν(Dt)dt < ∞;
∫ T

0

∫
Z

|K(t, ζ)|2ν(dζ)dt < ∞ P − a.s. (4.6)

then St is a (P,Ft)-special semimartingale with unique decomposition

St = S0 + MS
t + AS

t (4.7)

where

AS
t =

∫ t

0

Srb(r)dr +
∫ t

0

∫
Z

SrK(r, ζ)ν(dζ)dr =
∫ t

0

Srb(r)dr +
∫ t

0

∫
R

Sr(ex − 1)λrφr(dx)dr (4.8)

is a predictable process with bounded variation paths,

MS
t =

∫ t

0

Srσ(r)dW 1
r +

∫ t

0

∫
Z

Sr−K(r, ζ)(N(dr, dζ)− ν(dζ)dr)

=
∫ t

0

Srσ(r)dW 1
r +

∫ t

0

∫
R

Sr−(ex − 1)(m(dr, dx)− λrφr(dx)dr) (4.9)

is a square-integrable local martingale whose angle process is given by

〈MS〉t =
∫ t

0

S2
rσ(r)2dr +

∫ t

0

∫
Z

S2
rK(r, ζ)2ν(dζ)dr =

∫ t

0

S2
rσ(r)2dr +

∫ t

0

∫
R

S2
r (ex − 1)2λrφr(dx)dr. (4.10)

If in addition

∀t ∈ [0, T ], x ∈ R, s ∈ R+ b(t, x, s) +
∫

Z

K(t, x, s, ζ)ν(dζ) = 0 (4.11)

S is a square-integrable local martingale.

Proof.
Recalling the definition in (4.1), we observe that the process St is the exponential of the semimartingale Yt,
and therefore it is itself a semimartingale by Theorem 4.57 in [16]. Then if we integrate the equation (4.2),
we get the explicit decomposition,

St = S0 +
∫ t

0

Su−

{
b(u) +

∫
Z

K(u, ζ)ν(dζ)
}

du +
∫ t

0

Suσ(u) dW 1
u +

∫ t

0

∫
Z

Su−K(u, ζ) (N(du, dζ)− ν(dζ)du)

= S0 + AS
t + MS

t

where AS
t and MS

t are given by (4.8) and (4.9) respectively. This decomposition is unique since the process
AS

t is predictable.

Besides MS
t is a square integrable local martingale (see [24], Theorem 1 page 102).

For the sharp brackets note that MS
t is the sum of a continuous local martingale and a purely discontinuous

local martingale, therefore we get:

d〈MS〉t = S2
t σ2(t)dt +

∫
Z

S2
t K2(t, ζ)ν(dζ)dt
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which is equivalent to (4.10).

Finally, the last part of the proposition is a consequence of (4.8) and the decomposition of the semimartingale
St.

The pair (X, S) is a (P,Ft)-Markov process whose generator is computed in the next lemma.

Lemma 4.2 Under the hypotheses of Proposition 4.1, and in addition∫ T

0

σ2
0(t, Xt)dt < ∞,

∫ T

0

ν0(Dt)dt < ∞ P − a.s. (4.12)

(Xt, St) is a (P,Ft)-Markov process with generator

LX,Sf(t, x, s) =
∂f

∂t
+ b0(t, x)

∂f

∂x
+ b(t, x, s) s

∂f

∂s
+

1
2
σ2

0(t, x)
∂2f

∂x2
+ ρ σ0(t, x) σ(t, s)s

∂2f

∂x∂s
+

+
1
2
σ2(t, s) s2 ∂2f

∂s2
+
∫

Z

(
f
(
t, x + K0(t, x, ζ), s(1 + K(t, x, s, ζ))

)
− f(t, x, s)

)
ν(dζ).

(4.13)

More precisely, for any function f(t, x, s) ∈ C1,2,2
b ([0, T ]×R×R+) the following semimartingale decomposition

holds

f(t, Xt, St) = f(t, x0, S0) +
∫ t

0

LX,Sf(r, Xr, Sr)dr + Mf
t (4.14)

where Mf
t is a (P,Ft)-local martingale.

Proof.
By applying Itô’s formula to the function f(t, Xt, St) we get (4.14) with

dMf
t = σ0(t)

∂f

∂x
dW 0

t +σ(t)St
∂f

∂s
dW 1

t +
∫

Z

[f(t, Xt− + K0(t, ζ), St−(1 + K(t, ζ))− f(t, Xt− , St−)] (N(dt, dζ)− ν(dζ)dt)

(4.15)
and by (4.12) and (4.6)∫ T

0

σ2
0(t)

(
∂f

∂x

)2

dt < ∞,

∫ T

0

σ2(t)S2
t

(
∂f

∂s

)2

dt < ∞ P − a.s.

∫ T

0

∫
Z

|f(t, Xt−+K0(t, ζ), St−(1+K(t, ζ))−f(t, Xt− , St−)|ν(dζ)dt ≤ 2‖f‖
∫ T

0

{ν(D0
t )+ν(Dt)}dt < ∞ P−a.s.

that means that all the integrals in (4.14) are well defined and Mf
t is a local martingale.

From now on we will assume that P is a martingale measure for S and the following stronger conditions

Assumptions B: (2.2), (2.9), (4.11), E
∫ T

0

ν(D0
t )dt < ∞ and E

∫ T

0

∫
Z

|K(t, ζ)|2ν(dζ)dt < ∞.

We consider a contingent claim whose final payoff is a function H(ST ) such that E
[
H2(ST )

]
< ∞.

In order to hedge against this claim, we want to use a portfolio strategy which involves the stock S and the
riskless bond (normalized to one), and which yield the random payoff H(ST ) at the terminal time T .

More precisely, an Ft-portfolio-strategy δt = (δ0
t , δ1

t ) is a process representing the quantities invested in each
title, such that δ0

t is Ft-adapted, and δ1
t is Ft-predictable.

The financial value of this portfolio δ is given by

Vt(δ) = δ0
t + δ1

t St. (4.16)
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Definition 4.3 A strategy δ is H-admissible if VT (δ) = H(ST ) P−a.s. and it verifies regularity conditions:

E

(∫ T

0

|δ1
t |2d〈S〉t

)
< ∞, E

(
sup
t≤T

|Vt|2
)

< ∞.

Since we are working in an incomplete market, the claim can not be replicated by a self-financing strategy
(perfect duplication), it makes sense to define a cost process for the strategy δ as

Ct(δ) = Vt(δ)−
∫ t

0

δ1
rdSr. (4.17)

The cost process is nothing but the difference between the portfolio value and the total gains from trade.

Let us make some comments about the structure of this process. First of all note that
∫ t

0
δ1
rdSr is a square-

integrable martingale even thought S is just a local martingale, as it is shown in Lemma (2.1) of [26].

We are interested in the so called mean-self financing strategies, i.e. those strategies such that Ct(δ) is a
martingale. Note that if δ is an H-admissible mean-self financing strategy, we get:

E [CT (δ)|Ft] := E

[
VT (δ)−

∫ T

0

δ1
rdSr|Ft

]
= Vt(δ)−

∫ t

0

δ1
rdSr.

Since the part concerning the stochastic integral is a martingale, so is the portfolio value V . Now, the
strategy is H-admissible, and this means that VT (δ) = H(ST ). Putting together these two comments we get
the following relation

E [VT (δ)|Ft] = E [H(ST )|Ft] = Vt(δ). (4.18)

We say that an H-admissible strategy is risk minimizing if it minimizes the associated risk process

Rt(δ) = E
[
(Ct(δ)− CT (δ))2|Ft

]
. (4.19)

We now consider the situation where investors acting on the market can only keep past asset prices; the
stochastic factor which affects the stock price dynamics is not directly observed. Thus the agent’s information
is described by the filtration {FS

t }t∈[0,T ] = {FY
t }t∈[0,T ].

In this partial observation background the hedger’s decision (δ0, δ1) must be adapted to the flow FS
t . Hence

we define an FS
t -strategy δ, as an Ft-strategy such that the process δ0

t is FS
t -adapted and δ1

t is FS
t -predictable.

In this framework we give also the definition of the FS
t -risk-process as

RS
t (δ) = E

[
(Ct(δ)− CT (δ))2|FS

t

]
. (4.20)

The agent’s aim is to find a strategy δ belonging to the set of FS
t H-admissible strategies that minimizes the

risk process RS
t , and that we will call FS

t -risk minimizing strategy.

We want to proceed as in [26], so we first compute the risk minimizing strategy in complete information and
then the FS

t -strategy can be found by projecting on FS
t .

Proposition 4.4 Under Assumptions B, let g(t, Xt, St) := E [H(ST )|Ft]. If g ∈ C1,2,2
b ([0, T ]×R×R+) then

g solves {
LX,Sg(t, x, s) = 0
g(T, x, s) = H(s).

Besides, the risk-minimizing strategy under complete information is
δ0,∗
t = g(t,Xt, St)− δ1,∗

t St

δ1,∗
t =

h(t, Xt− , St−)
St−Σ(t, Xt− , St−)

(4.21)
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where

h(t, x, s) = ρ σ0(t, x)σ(t, s)
∂g

∂x
+ s σ2(t, s)

∂g

∂s
+∫

Z

K(t, x, s, ζ)
[
g
(
t, x + K0(t, x, ζ), s(1 + K(t, x, s, ζ))

)
− g(t, x, s)

]
ν(dζ) (4.22)

and
Σ(t, x, s) = σ(t, s)2 +

∫
Z

K(t, x, s, ζ)2ν(dζ). (4.23)

Proof.
For the first part of the proposition, suppose that g ∈ C1,2,2

b ([0, T ]× R× R+), by applying Itô’s formula we
get

g(t,Xt, St) = g(0, X0, S0) +
∫ t

0

LX,Sg(r, Xr, Sr)dr + Mg
t (4.24)

where Mg
t is a (P,F)-local martingale. Since, by definition, g(t, Xt, St) is a (P,Ft)-martingale, all finite

variation terms in (4.24) have to vanish and this leads to equation (4.4).

Let us move on to the second part of the proposition. Since, by Proposition 4.1, S is a square integrable
local martingale, Kunita-Watababe decomposition allows us to write H(ST ) as

H(ST ) = E [H(ST )] +
∫ T

0

ξH
r dSr + LH

T (4.25)

where ξH
t is an Ft-predictable process with E

[∫ T

0
(ξH

r )2d〈S〉r
]

< ∞, and LH is a square integrable martingale

null at t = 0, such that 〈S, LH〉t = 0 .
If S is a local martingale, it has been proved in [27] that there exists a unique H−admissible mean-self
financing risk minimizing strategy we denote by (δ0,∗, δ1,∗), where δ1,∗ is exactly given by the process ξH in
(4.25), then the value of this strategy V (δ∗) is a martingale according to the equation (4.18) and finally

Vt(δ∗) = E [VT (δ∗)|Ft] = E [H(ST )|Ft] = g(t, Xt, St). (4.26)

By using the expression (4.25), the (4.26) becomes

Vt(δ∗) = E [H(ST )] + E

[∫ T

0

ξH
r dSr|Ft

]
+ E

[
LH

T |Ft

]
= E [H(ST )] +

∫ t

0

ξH
r dSr + LH

t (4.27)

where the equality (4.27) follows from the fact that LH
t and

∫ t

0
ξH
r dSr are martingales.

Now, if we consider the sharp bracket between V (δ∗) and S, we have

〈V (δ∗), S〉t = 〈
∫ .

0

ξH
r dSr, S〉t + 〈LH , S〉t = 〈

∫ .

0

ξH
r dSr,

∫ .

0

dSr〉t =
∫ t

0

ξH
r d〈S〉r

from which we obtain an expression for ξH in terms of the Radon-Nikodym derivative

ξH
t =

d〈V (δ∗), S〉t
d〈S〉t

.

We want to compute this derivative. Recall the shape of the martingale Mg, given in (4.15) replacing f by
g, and Proposition 4.1, we obtain

d〈V (δ∗), S〉t =
∫ t

0

Sr−h(r, Xr− , Sr−)dr (4.28)
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with h(t, x, s) given in (4.22). On the other side, by (4.10)

〈S〉t =
∫ t

0

S2
r

{
σ(r)2 +

∫
Z

K(r, ζ)2ν(dζ)
}

dr =
∫ t

0

S2
r Σ(r, Xr− , Sr−)dr

hence the risk-minimizing strategy turns to be

δ1,∗
t = ξH

t =
h(t, Xt− , St−)

St−Σ(t, Xt−, St−)
.

Note that Assumptions B imply integrability for the processes h(t, Xt− , St−) and Σ(t, Xt− , St−) and then
allow us to apply Schweizer results (see [26]): this means that the risk minimizing strategy under partial
information δ̄∗, for our model can be obtained by projecting the strategy δ∗ over FS

t− = FY
t− . More precisely

δ̄0,∗
t =Vt(δ̄∗)− δ̄1,∗

t St

δ̄1,∗
t =

E
[
h(t,Xt− , St−)|FY

t−

]
St−E

[
Σ(t,Xt− , St−)|FY

t−

] (4.29)

Recalling that the filter is defined as
πt(f) = E

[
f(t, Xt)|FY

t

]
and since it is a càdlàg process, the (P,FS

t )-predictable projection of f(t,Xt) coincides with the left version
of πt(f) (see [11]). Now we are in the position to state the announced result.

Proposition 4.5 Under Assumptions B, if g ∈ C1,2,2
b ([0, T ]×R×R), then the FS

t -risk-minimizing strategy
is given by 

δ̄0,∗
t = πt [g(·, St)]− δ̄1,∗

t St

δ̄1,∗
t =

πt− [h(·, St−)]
St−πt− [Σ(·, St−)]

.

where h and Σ are given in (4.22) and (4.23), respectively.

5. Appendix A

We will give the following sufficient conditions (see for [7] and [15]) which ensure strong existence and strong
uniqueness for solutions to system (2.1).

Assumption C

(i) let b0(t, x), b1(t, x, y), σ0(t, x), and σ1(t, y) be jointly continuous functions of their arguments, and
K0(t, x, ζ),K1(t, x, y, ζ) R−valued, jointly continuous functions in (t, x, y).

(ii) Suppose there exists a constant C > 0 such that ∀t ∈ [0, T ]

|b0(t, x)|2 ≤ C(1 + |x|2); |σ0(t, x)|2 ≤ C(1 + |x|2)
|b1(t, x, y)|2 ≤ C(1 + |x|2 + |y|2); |σ1(t, y)|2 ≤ C(1 + |y|2)∫

Z

|K0(t, x, ζ)|2ν(dζ) ≤ C(1 + |x|2);
∫

Z

|K1(t, x, y, ζ)|2ν(dζ) ≤ C(1 + |x|2 + |y|2)
(5.1)

(iii) ∀r > 0, there exists a constant L = L(r) > 0 such that, ∀x, x′, y, y′ ∈ Br(0) := {z ∈ R : |z| ≤ r}

|b0(t, x)− b0(t, x′)| ≤ L|x− x′| |σ0(t, x)− σ0(t, x′)| ≤ L|x− x′|
|b1(t, x, y)− b1(t, x′, y)| ≤ L(|x− x′|+ |y − y′|) |σ1(t, y)− σ1(t, y′)| ≤ L|y − y′|∫
Z

|K0(t, x, ζ)−K0(t, x′, ζ)|2ν(dζ) ≤ L|x− x′|2∫
Z

|K1(t, x, y, ζ)−K1(t, x′, y′, ζ)|2ν(dζ) ≤ L(|x− x′|2 + |y − y′|2)

(5.2)
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We refer to (5.1) and (5.2) respectively as growth conditions and local Lipschitz conditions.

Other classes of conditions which imply strong existence and weak uniqueness of solutions to system (2.1)
without requiring continuity of Ki, i = 0, 1, can be deduced by those given in [7], Appendix A.

6. Appendix B

Proof of Theorem 3.12
Let (µ, Ỹ ) be a weak solution to KS-equation, we will prove that (µ, Ỹ ) solves the stopped FMP(LX,Y , x0, y0).
More precisely, we will show that there exists a sequence ηn of F eY

t -stopping times, where ηn tends to ∞
with n, and probability measures Q̃n equivalent to P̃ such that

µt∧ηn

(
F (·, Ỹt∧ηn)

)
−
∫ t∧ηn

0

µs

(
LX,Y F (·, Ỹs∧ηn)

)
ds (6.1)

is a (Q̃n,F eY
t )-martingale for each F ∈ C1,2,2

b ([0, T ]× R× R).

It is sufficient to prove (6.1) for functions of the type F (t, x, y) = f(t, x)g(y).

Remember that

dỸt = σ1(t)dĨt +
∫

R
x m̃(dt, dx)

by applying Itô’s formula we get

dg(Ỹt) = g′(Ỹt−)dỸt +
1
2
g′′(Ỹt)σ2

1(t)dt +
∫

R

[
g(Ỹt− + x)− g(Ỹt−)

]
m̃(dt, dx)− g′(Ỹt−)

∫
R

x m̃(dt, dx)

= g′(Ỹt−)σ1(t)dĨt +
1
2
g′′(Ỹt)σ2

1(t)dt +
∫

R

[
g(Ỹt− + x)− g(Ỹt−)

]
m̃(dt, dx).

Since (µ, Ỹ ) is a weak solution to KS-equation, then

µt(f) = f(0, x0) +
∫ t

0

µs(LXf)ds +
∫ t

0

∫
R

wµ
s (f, x)mµ(ds, dx) +

∫ t

0

hµ
s (f)dIµ

s

and by the product rule

d(µt(f)g(Ỹt)) = µt−(f)
(

g′(Ỹt)σ1(t)dĨt +
1
2
g′′(Ỹt)σ2

1(t)dt +
∫

R

[
g(Ỹt− + x)− g(Ỹt−)

]
m̃(dt, dx)

)
+

+g(Ỹt−)
(

µt(LXf)dt +
∫

R
wµ

t (f, x)mµ(dt, dx) + hµ
t (f)dIµ

t

)
+

+σ1(t)h
µ
t (f)g′(Ỹt)dt +

∫
R

wµ
t (f, x)

(
g(Ỹt− + x)− g(Ỹt−)

)
m̃(dt, dx)

= µt−(f)g′(Ỹt)µt(b1)dt +
1
2
µt−(f)g′′(Ỹt)σ2

1(t)dt + g(Ỹt−)µt(LXf)dt + +σ1(t)h
µ
t (f)g′(Ỹt)dt

+
∫

R
(µt(f) + wµ

t (f, x))
[
g(Ỹt− + x)− g(Ỹt−)

]
µt(λtφt(dx))dt + dMfg

t (6.2)

where in (6.2) we used the equality

m̃(dt, dx) = mµ(dt, dx) + µt−(λtφt(dx))dt, dĨt = dIµ
t + µt

( b1

σ1

)
dt

and by dMfg
t we mean

dMfg
t = {µt(f)σ1(t)g′(Ỹt) + g(Ỹt)h

µ
t (f)} dIµ

t +
∫

R
{µt−(f) + wµ

t (f, x)}
[
g(Ỹt− + x)− g(Ỹt−)

]
mµ(dt, dx) +

+ g(Ỹt−)
∫

R
wµ

t (f, x) mµ(dt, dx). (6.3)
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Now we want to introduce a probability measure equivalent to P̃ such that Mfg turns to be a local martingale.
To this aim let us define L̃t = E

(∫ t

0
µs

(
b1
σ1

)
dĨs

)
, since b1(t)

σ1(t)
may be unbounded, L̃t is only a (P̃ ,F eY

t )-local

martingale. Hence, we need to introduce the sequence of F eY
t -stopping times, defined as

ηn = T ∧ inf
{

t :
∫ t

0

∣∣∣∣µs

(
b1

σ1

)∣∣∣∣ ds ≥ n} ∧ inf{t :
∫ t

0

µs|b2|ds ≥ n

}
where b2(t, x, y) is given in (v) of Definition 3.8.

For any n, we build a new probability measure equivalent to P̃ , Q̃n on (Ω,F eY
T ) as

L̃ηn
=

dQ̃n

dP̃
= E

(∫ ηn

0

µs

(
b1

σ1

)
dĨs

)
= exp

(∫ ηn

0

µs

(
b1

σ1

)
dĨs −

1
2

∫ ηn

0

µ2
s

(
b1

σ1

)
ds

)
. (6.4)

By Girsanov’s Theorem

Iµ
t = Ĩt −

∫ t∧ηn

0

µs

(
b1

σ1

)
ds

is a (Q̃n,F eY
t )-Brownian motion and, Mfg

t∧ηn
is a (Q̃n,F eY

t )-martingale since the following estimations hold
(see Remark 3.10):

E eQn

∫ T∧ηn

0

|wµ
t (f, x)|µt(λtφt(dx))dt ≤ 4‖f‖E eQn

∫ T∧ηn

0

µt(b2)dt ≤ 4‖f‖n < ∞

E eQn

∫ T∧ηn

0

|hµ
t (f)|µt(λtφt(dx))dt ≤ BfE eQn

∫ T∧ηn

0

µt (b2) dt ≤ Bfn < ∞

Finally, from the expressions of wµ, hµ and the generator LX,Y , equation (6.2) implies that

d µt∧ηn

(
fg(Ỹt∧ηn

)
)

= µt∧ηn

(
LX,Y fg(Ỹt∧ηn

)
)

dt + dMfg
t∧ηn

, (6.5)

with Mfg
t∧ηn

a (Q̃n,FY
t )- martingale, that is the pair (µ, Ỹ ) solves the stopped FMP (LX,Y , x0, y0).

By Corollary 3.4 in [18] if uniqueness holds for the FMP(LX,Y , x0, y0) then there exists a measurable function
Ht : DR[0, T ] → P(R) such that πt = Ht(Y ) P -a.s. and µt1I{t<ηn} = Ht(Ỹ )1I{t<ηn} Q̃n-a.s.

Since Q̃n is equivalent to P̃ the equality above becomes µt1I{t<ηn} = Ht(Ỹ )1I{t<ηn} P̃ -a.s. and taking n →∞
we get µt = Ht(Ỹ ), P̃ -a.s. Finally, since

dYt = σ1(t, Yt)dW̃ 1
t +

∫
R

xm(dt, dx), dỸt = σ1(t, Ỹt)dĨt +
∫

R
xm̃(dt, dx)

under P̃ the process Ỹ has the same law as the process Y under P . Thus (µt, Ỹt) and (πt, Yt) have the same
law, in particular µt and πt have the same law.

Proof of Theorem 3.14
With the same passages we did for proving the equality (6.2) it can be shown that

d(µt(f)g(Y )) = µt(f)g′(Yt)µt(b1)dt +
1
2
µt(f)g′′(Yt)σ2

1(t)dt + g(Yt)µt(LXf)dt + σ1(t)h
µ
t (f)g′(Yt)dt

+
∫

R
(µt(f) + wµ

t (f, x)) [g(Yt− + x)− g(Y )t−)]µt(λtφt(dx))dt + dmfg
t

where by mfg
t we mean

dmfg
t = {σ1(t)µt(f)g′(Yt) + g(Yt)h

µ
t (f)} dIµ

t +
∫

R
{µt−(f) + wµ

t (f, x)} [g(Yt− + x)− g(Yt−)]mµ(dt, dx) +

+ g(Yt−)
∫

R
wµ

t (f, x) mµ(dt, dx).
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We need to define a new probability measure equivalent to P under which mfg turns to be a local martingale.

From the hypothesis of equivalence of the two measures πt−(λtφt(dx))dt ans µt−(λtφt(dx))dt, there exists
an FY

t -predictable process Ψ(t, x) > −1 πt(λtφt(dx))dt− a.e. such that

(1 + Ψ(t, x))πt−(λtφt(dx))dt = µt−(λtφt(dx))dt.

Recalling that Iµ
t = It −

∫ t

0

{
µs

(
b1
σ1

)
− πs

(
b1
σ1

)}
ds, we define

τn :=T ∧ inf

{
t ≥ 0 :

∫ t

0

∣∣∣∣µs

(
b1

σ1

)
− πs

(
b1

σ1

)∣∣∣∣2 ds ≥ n

}
∧ inf

{
t ≥ 0 :

∫ t

0

|µs (b2)| ds ≥ n

}
∧ inf

{
t ≥ 0 :

∫ t

0

∫
R
|Ψ(s, x)|2 πs(λsφs(dx))ds ≥ n

} (6.6)

and the following change of measure
dQn

dP

∣∣∣FY
t

= Λt∧τn
(6.7)

where Λt∧τn
= E

(∫ t∧τn

0

{
µs

(
b1

σ1

)
− πs

(
b1

σ1

)}
dIs +

∫ t∧τn

0

∫
R

Ψ(s, x)mπ(dt, dx)
)

and, as usual, E repre-

sents the Doléans-Dade exponential.

Girsanov theorem implies that It−
∫ t

0

{
µs

(
b1

σ1

)
− πs

(
b1

σ1

)}
1Is<τnds is a (Qn,FY

t )-Brownian motion and

that the (Qn,FY
t )-predictable projection of the measure m(dx, dt) on {t < τn} is µt−(λtφt(dx))dt.

By performing similar computations as in the proof of Theorem 3.12 we get that mfg
t∧τn

is a (Qn,FY
t )-

martingale and so the pair (µt, Yt) solves the stopped FMP (LX,Y , x0, y0).

Finally, by Corollary 3.4 of [18], there exists a functional H such that

πt = Ht(Y ) P − a.s. and µt1It<τn
= Ht(Y )1It<τn

Qn − a.s.

Nevertheless Qn and P are equivalent measures, therefore

µt1It<τn
= Ht(Y )1It<τn

P − a.s.

τn is an increasing sequence, so there exists P−a.s. n(ω) such that ∀n > n(ω), τn(ω) = T .
Taking n →∞, we get µt = πt P−a.s.

In the next proposition we provide sufficient conditions for uniqueness of the solutions to the FMP (LX,Y , x0, y0).

Proposition 6.1 Under Assumptions C and one of the following conditions

sup
t,x

ν(d0(t, x)) + sup
t,x,y

ν(d1(t, x, y)) < ∞ (6.8)

or
sup
t,x,y

∫
Z

{|K0(t, x, ζ)|+ |K1(t, x, y, ζ)|}ν(dζ) < ∞ (6.9)

uniqueness holds for the FMP (LX,Y x0, y0).

Proof. It is sufficient to apply Theorem 3.3 in [18] after having checked the hypotheses are satisfied. By
Assumptions C the martingale problem for LX,Y is well posed. Furthermore, we have to prove that we
can choose as a domain for LX,Y , a set of functions DL ⊂ C1,2,2

b ([0, T ] × R × R), such that for f ∈ DL,
LX,Y f ∈ Cb([0, T ]× R× R).
We choose as DL the set of functions in C1,2,2

b ([0, T ]×R×R) having compact support with respect to (x, y)
uniformly in t; then there exists Rf > 0 such that for |x| > Rf and |y| > Rf , f(t, x, y) = 0,∀t ∈ [0, T ].
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Recalling the structure of the operator LX,Y ,

LX,Y f(t, x, y) =
∂f

∂t
+ b0(t, x)

∂f

∂x
+ b1(t, x, y)

∂f

∂y
+

1
2
σ2

0(t, x)
∂2f

∂x2
+ ρσ0(t, x)σ1(t, y)

∂2f

∂x∂y
+

+
1
2
σ2

1(t, y)
∂2f

∂y2
+
∫

Z

(f(t, x + K0(t, x, ζ), y + K1(t, x, y, ζ))− f(t, x, y)) ν(dζ)

thus, under (6.8), since∣∣∣∣∫
Z

(f(t, x + K0(t, x, ζ), y + K1(t, x, y, ζ))− f(t, x, y)) ν(dζ)
∣∣∣∣ ≤ 2 ‖f‖ ν

(
d0(t, x, y) ∪ d1(t, x, y)

)
we get, by (5.1) that ∀f ∈ DL there exists a constant Cf > 0 such that

∥∥LX,Y f
∥∥ ≤ ∥∥∥∥∂f

∂t

∥∥∥∥+ Cf

(
1 + R2

f

)
+ 2 ‖f‖ sup

t,x,y
ν
(
d0(t, x, y) ∪ d1(t, x, y)

)
.

Hence LX,Y f is bounded.

The same result can be obtained under (6.9). In fact∣∣∣∣∫
Z

(f(t, x + K0(t, x, , ζ), y + K1(t, x, y, ζ))− f(t, x, y)) ν(dζ)
∣∣∣∣ ≤

≤ max
{∥∥∥∥∂f

∂x

∥∥∥∥ ,

∥∥∥∥∂f

∂y

∥∥∥∥}∫
Z

{
| K0(t, x, ζ) | + | K1(t, x, y, ζ) |

}
ν(dζ).

Finally, in both cases, the continuity of LX,Y f(t, x, y) can be obtained by the dominated convergence theorem.
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