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Abstract

The contribution of this paper is twofold: we study by a BSDE approach power utility maximization
problems in a partially observed financial market with jumps and we solve by the innovation method
the arising filtering problem. We consider a Markovian model where the risky asset dynamics St follows
a pure jump process whose local characteristics are not observable by investors. More precisely, the
stock price process dynamics depends on an unobservable stochastic factor Xt described by a jump-
diffusion process. We assume that agents’ decisions are based on the knowledge of an information flow,
{Gt}t∈[0,T ], containing the asset price history, {FS

t }t∈[0,T ]. Using projection on the filtration Gt, the
partially observable investment problem is reduced to a full observable problem. In the case where
Gt = FS

t the value process and the optimal investment strategy are represented in terms of solutions
to a BSDE driven by the FS-compensated martingale random measure associated to St and the FS-
compensated martingale random measure can be obtained by filtering techniques ([7], [5]). Next, we
extend the study to the case Gt = FS

t ∨ Fη
t , where ηt gives observations of Xt in additional Gaussian

noise. This setup can be viewed as an abstract form of ”insider information”. The value process is now
characterized as a solution to a BSDE driven by the G-compensated martingale random measure and the
so-called innovation process. Computation of these quantities leads to a filtering problem with mixed
type observation and whose solution is discussed via the innovation approach.
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1. Introduction

The purpose of this paper is to study portfolio selection problems under partial information in an incomplete
financial market with the risky asset dynamics described by a marked point process. With the advent of
intraday information, since real asset prices on a very small time scale are piecewise constant and jump
in reaction to trades or to significant new informations, jump models have become more popular in the
financial literature (see for instance [37, 17, 7, 5]). Jump-times and jump-sizes in stock price processes are
often generated by various external events whose impact on the stock market cannot completely be analyzed,
thus it is natural to assume that the local characteristics of risky asset prices depend on an unobservable
state variable.

We consider an incomplete financial market with one bond and one risky asset. The risky asset price St

follows a pure jump process whose local characteristics are not observable by investors. More precisely, we
study a Markovian model where the dynamics of the stock price St depends on an unobservable stochastic
factor Xt described by a jump-diffusion having common jump times with St. Presence of common jump
times means that the trading activity may affect the law of Xt and could be also related to the possibility
of catastrophic events. In such a context, we solve the portfolio optimization problem when agents (with
power utility functions) want to maximize the expected utility from terminal wealth assuming that they can
observe only an information flow {Gt}t∈[0,T ] containing the asset price history {FS

t }t∈[0,T ].

Utility maximization problems in a full information setup have been studied extensively in the literature by
using different approaches, such as convex duality methods, stochastic control techniques based on Hamilton-
Jacobi-Bellman equation or backward stochastic differential equations (BSDEs) (see for example ([32, 12,
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24, 20, 39, 30, 33, 9, 10] and references therein). Portfolio selection problems with partial information have
been studied in [34, 38, 29] in a continuous setting and in [1, 27] for jump-diffusions. In [1] it is assumed that
investors are only able to observe the stock price process and not the Markov chain which drives the jump
intensity. In [27] a default model is studied where investors only observe the asset prices and the default
times, while the Brownian motion which drives the asset price dynamics, the drift process and the default
intensities are not directly observable.

Our contribution consists in solving the optimization problem in a general discontinuous setting when both
the local characteristics of the stock price and not only the jump intensity are unobservable. By projection
results we reduce the partially observable problem to one with full information, involving only observable
processes. Two situations are studied, in the first one {Gt}t∈[0,T ] = {FS

t }t∈[0,T ] (only stock prices are
observed) and in the second one {Gt}t∈[0,T ] ⊃ {FS

t }t∈[0,T ].

Where {Gt}t∈[0,T ] = {FS
t }t∈[0,T ], by applying the Bellman optimality principle we directly show that the

value function solves a BSDE driven by the FS
t -compensated martingale random measure associated to

St. A similar procedure is followed in [30] and in [26] in a full information framework and in [27] under
restricted information. In [30] the case where the dynamics of asset prices are described by a continuous
semimartingale is studied, in [26] and [27] market models where stocks are exposed to a counterpart risk
inducing a finite number of jumps in the prices are discussed. Under further assumptions on the model
and assuming compactness of the valued set of admissible strategies, we characterize the value process as
the unique solution to the BSDE. Since the BSDE involved and the optimal strategy depend on the FS-
compensated martingale random measure we have to solve a filtering problem, which in the case where
{Gt}t∈[0,T ] = {FS

t }t∈[0,T ] has been studied in [7, 5].

Next, we examine the case Gt = FS
t ∨F

η
t , where ηt gives observations of Xt in additional Gaussian noise, that

is ηt =
∫ t

0
γ(Xs)ds + W 1

t , with γ(x) a bounded measurable function and W 1
t a (P,Ft)-standard Brownian

motion independent of the Poisson random measure driving the asset price dynamics. In this situation,
which can be viewed as an abstract form of ”insider information”, agents observe stock prices and receive
in addition noisy signals on the unobservable stochastic factor Xt. The value process is now characterized
in terms of solutions to a BSDE driven by the Gt-compensated martingale random measure and the Gt-
innovation process, quantities which depend on the filter. We recall that the filter is the cadlag version
of the conditional law of Xt given Gt. By the innovation approach we derive the Kushner-Stratonovich
equation that the filter solves and we characterize the filter as the unique weak solution of this equation, via
the Filtered Martingale Problem ([25]). The proofs of these Theorems are postponed in Appendix.

Filtering problems with mixed type observations (marked point processes and diffusions) have been studied
in [18, 19] in a framework of credit derivatives. In [18] the marked point process Yt is the default indicator
process and in [19] is the loss-state of the portfolio. In both models the intensities of default times depend
on a factor Xt and the additional Gaussian noise is assumed independent of Xt and Yt. Whereas in this
paper we examine a more general setup which allows correlation between the additional Gaussian noise and
the stochastic factor. The above mentioned assumption is crucial in [18] to apply a reference probability
approach (in a setup where common jump times between Yt and Xt are allowed) in order to reduce the
filtering problem to the case where the information flow consists only of the default history. As in [19] we
apply an alternative route based on the innovation method, but in [19] the state process Xt is modeled as a
finite-state Markov chain without common jump times with Yt whereas we describe Xt as a jump-diffusion
process having common jumps times with the marked point process.

The paper is organized as follows. In Section 2, we describe the model. In Section 3, we formulate the
optimization problem. In Section 4, we derive the BSDE representation of the value function in the case
{Gt}t∈[0,T ] = {FS

t }t∈[0,T ]. Section 5 is devoted to the case where agents observe the stock prices and receive
in addition noisy signals on the stochastic factor, that is Gt = FS

t ∨F
η
t ⊃ FS

t . We show a suitable martingale
representation property and we derive the BSDE that the value process solves. In Section 6 we study the
related filtering problem by characterizing the filter as the unique weak solution to the Kushner-Stratonovich
equation. In Section 7 a particular case where the risky asset dynamics is described by a geometric pure
jump process driven by two independent point processes, describing upward and downward jumps and whose
intensities are not directly observable by investors, is proposed. For this model an explicit representation of
the optimal investment strategy is provided. This result extends to the partial information case some results
obtained in [9] in a full information setting.
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2. The market model

We consider a finite time horizon investment model on [0, T ] with one riskless money market account and a
risky asset.

2.1. Preliminaries

On some underlying filtered probability space (Ω, {Ft}t∈[0,T ], P ), satisfying the usual hypotheses, we assume
that the price Bt of the cash account solves

dBt = rBtdt, B0 ∈ IR+ (2.1)

with constant risk-free interest rate, r ≥ 0, and the price St of the risky asset follows a geometric marked
point process

St = S0e
Yt . (2.2)

The logreturn process Yt depends on an external stochastic factor Xt and satisfies

Yt =
∫ t

0

∫
Z

log (1 +K(s,Xs− , Ys− ; ζ))N (ds, dζ). (2.3)

Here N (dt, dζ) denotes a (P,Ft)-standard Poisson random measure on IR+×Z with mean measure dt ν(dζ),
with ν(dζ) a σ-finite measure on a measurable space (Z,Z), and K(t, x, y; ζ) is an IR-valued measurable
function, such that K(t, x, y; ζ) + 1 > 0.

We describe the unobservable hidden state process Xt as a jump-diffusion having common jump-times with
St. This means that the trading activity may affect the law of Xt and could be also related to the possibility
of catastrophic events. A natural way to describe this kind of behavior is to suppose that the pair (X,Y ) is
a global solution to the following stochastic differential equations (see [7])

Xt = x0 +
∫ t

0

b(Xs) ds+
∫ t

0

σ(Xs) dWs +
∫ t

0

∫
Z

K0(s,Xs− ; ζ) N (ds, dζ) (2.4)

Yt =
∫ t

0

∫
Z

K1(s,Xs− , Ys− ; ζ) N (ds, dζ) (2.5)

with
K1(s, x, y; ζ) = log(1 +K(s, x, y; ζ)). (2.6)

Here x0 ∈ IR, Wt is a (P,Ft)-standard Brownian motion independent ofN (dt, dζ) and the IR-valued functions
b(x), σ(x), K0(t, x; ζ) are measurable functions of their arguments.

We assume existence and uniqueness (at least in a weak sense) to the system (2.4)-(2.5). Three different
classes of sufficient conditions can be found in [7]. This assumption implies that the pair (Xt, Yt) is a
(P,Ft)-Markov process.

Writing Ito’s formula we find that the price St of the risky asset satisfies

dSt = St−

∫
Z

K(t,Xt− , Yt− ; ζ) N (dt, dζ), S0 ∈ IR+. (2.7)

From now on we will writeK(s; ζ),K1(s; ζ),K0(s; ζ) forK(s,Xs− , Ys− ; ζ),K1(s,Xs− , Ys− ; ζ) andK0(s,Xs− ; ζ)
respectively, unless it is necessary to underline the dependence on the processes involved.

The sequence {Tn}n≥0 of jump times of St coincides with that of Yt and is defined by

T0 = 0, T1 = inf{t > 0 :
∫ t

0

∫
Z

K1(s; ζ) N (ds, dζ) =/ 0}

Tn+1 = inf{t > Tn :
∫ t

Tn

∫
Z

K1(s; ζ) N (ds, dζ) =/ 0}.
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We introduce the sequence of the marks associated to the marked point process Yt

Zn = YTn
− YTn−1 =

∫
Z

K1(Tn, ; ζ) N ({Tn}, dζ), n ≥ 1

and we denote by Nt =
∑

n≥1 1I{Tn≤t} the point process which counts the total number of jumps of Yt (i.e. of
St). The process Yt is completely described by assigning the sequence {Tn, Zn}n≥1 or by giving the following
discrete random measure ([4],[22])

m(dt, dx) =
∑
n≥1

δ{Tn,Zn}(dt, dx) 1I{Tn<∞}. (2.8)

In [21] it is proved existence and uniqueness of a positive random measure mp(dt, dx), called the Ft-
predictable projection of m(dt, dx), such that ∀A ∈ B(IR) (where B(IR) denotes the family of Borel sets
of IR) the process mp((0, t], A) is predictable and

m((0, t], A)−mp((0, t], A) (2.9)

is a (P,Ft)-local martingale or equivalently for each H(t, x) nonnegative and predictable process

IE
( ∫ T

0

∫
IR

H(t, x)m(dt, dx)
)

= IE
( ∫ T

0

∫
IR

H(t, x)mp(dt, dx)
)
.

When the predictable projection is of the form mp(dt, dx) = λtΦt(dx)dt, where λt is a nonnegative Ft-
predictable process and Φt(dx) is a probability transition kernel, the pair (λt,Φt(dx)) is called the (P,Ft)-
local characteristics of Yt ([4]).

Define
D0(t, x) = {ζ ∈ Z : K0(t, x; ζ) 6= 0},

DA(t, x, y) = {ζ ∈ Z : K1(t, x, y; ζ) ∈ A \ {0}} ⊆ D(t, x, y) = {ζ ∈ Z : K1(t, x, y; ζ) 6= 0}, (2.10)

D1(t, x, y) = D0(t, x) ∩D(t, x, y).

From now and on we will write D0
t , DA

t , Dt and D1
t for D0(t,Xt−), DA(t,Xt− , Yt−), D(t,Xt− , Yt−) and

D1(t,Xt− , Yt−) respectively, unless it is necessary to underline the dependence on the processes involved.

In [5] (Proposition 2.2) it is proved the following result.

Proposition 2.1 Under the assumption

IE

∫ T

0

ν(Ds) ds < +∞ P − a.s. (2.11)

the (P,Ft)-predictable projection of m(dt, dx) is given by

mp(dt, dx) = λtΦt(dx)dt (2.12)

where ∀A ∈ B(IR)

mp(dt,A) = λtΦt(A)dt = ν(DA
t )dt = ν(DA(t,Xt− , Yt−))dt. (2.13)

In particular λt = ν(Dt) = ν(D(t,Xt− , Yt−)) provides the (P,Ft)-predictable intensity of the point process
Nt.

Remark 2.2 Since E
∫ T

0
ν(Ds) ds < +∞ the process given in (2.9) is a (P,Ft)-martingale, ∀A ∈ B(IR).
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The time-dependency of (λt,Φt(dx)) is introduced in order to incorporate seasonality effects, which are
typical for high frequency data. In particular λt, the (P,Ft)-intensity of the counting process Nt, corresponds
to the rate at which new economic information is absorbed by the market.

Let us observe that the following representation of St in terms of the integer-valued random measurem(dt, dx)
holds

St = S0 +
∫ t

0

∫
IR

Sr−(ex − 1)m(dr, dx). (2.14)

Moreover, by (2.13) for each Ft-adapted process, H(t, x), jointly measurable on (t, x) we have that∫
Z

H(t,K1(t; ζ))1IDt
(ζ)ν(dζ) =

∫
IR

H(t, x)λtΦt(dx) (2.15)

and for H(t, x) = (ex − 1)2 ∫
Z

K(t; ζ)2ν(dζ) =
∫

IR

(ex − 1)2λtΦt(dx).

In the next proposition, proved in [11] (Proposition 2.2) we will give the semimartingale structure for the
risky asset St.

Proposition 2.3 Under (2.11) and the following condition

∀t ∈ [0, T ]
∫

Z

K(t; ζ)2ν(dζ) < +∞ P − a.s. (2.16)

St is a (P,Ft)-special semimartingale ([22]) with the decomposition

St = S0 +MS
t +AS

t (2.17)

where

AS
t =

∫ t

0

∫
Z

Sr−K(r; ζ)ν(dζ)dr =
∫ t

0

∫
IR

Sr−(ex − 1)λrΦr(dx)dr

is a predictable process with bounded variation paths,

MS
t =

∫ t

0

∫
Z

Sr−K(r; ζ)(N (dr, dζ)− ν(dζ)dr) =
∫ t

0

∫
IR

Sr−(ex − 1)(m(dr, dx)− λrΦr(dx)dr)

is a locally square-integrable local martingale whose angle process is given by

< MS >t=
∫ t

0

∫
Z

S2
r−K(r; ζ)2ν(dζ)dr =

∫ t

0

∫
IR

S2
r−(ex − 1)2λrΦr(dx)dr. (2.18)

2.2. Partial Information

We suppose that investors acting in the market have only limited access to the information flow. The flow
of observable events, {Gt}t∈[0,T ], contains all information on the underlying asset price, that is

FS
t = σ{Ss; s ≤ t} ⊆ Gt ⊆ Ft. (2.19)

Note that
FS

t = FY
t = Fm

t = σ{m((0, s], A); s ≤ t, A ∈ B(IR)}.

Moreover we assume that {Gt}t∈[0,T ] is right continuous and that G0 contains all the P -null sets of FT .
This situation is referred as partial information in contrast to the case of full information.

We will reduce our model to a full information model by introducing the (P,Gt)-predictable projection,
νp(dt, dx), of the integer-valued measure m(dt, dx). This leads to a filtering problem where Xt represents
the signal or state process, Gt provides all the available information about Xt and the conditional distribution
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of Xt given Gt is the most detailed description of our knowledge of Xt. It is known ([25]) that there exists a
probability measure-valued optional process πt(dx) such that, for any bounded measurable function f(t, x)

πt(f) = IE[f(t,Xt) | Gt], (2.20)

and since Xt is a cadlag process πt has a version with cadlag paths.

From now on we will denote by V̂ the (P,Gt)-optional projection of a generic process V defined as the unique
optional process (in a P -indistinguishable sense) such that for each Gt-stopping time τ , V̂τ = IE[Vτ |Gτ ],
P − a.s.. Hence

V̂t = IE[Vt|Gt] P − a.s.

In particular ̂f(Xt) = πt(f), P − a.s. and this implies that ̂f(Xt) has cadlag trajectories. From now on we
will use both the notations ̂f(Xt) and πt(f) to denote the (P,Gt)-optional projection of a process f(Xt).

Proposition 2.4 The (P,Gt)-predictable projection of the integer-valued measure m(dt, dx) is given by

νp(dt, dx) = λ̂tΦt(dx)|t=t−dt = πt−(λtΦt(dx)), (2.21)

that is, for any A ∈ B(IR)

νp((0, t], A) =
∫ t

0

πs−(λsΦs(A))ds =
∫ t

0

πs−
(
ν(DA(., ., Ys−))

)
ds. (2.22)

where πt− denotes the left version of the process πt.

Proof.
By definition of (P,Ft)-predictable projection of the integer-valued measure m(dt, dx) we have that, for each
H(t, x) {P,Ft}-predictable process jointly measurable w.r.t. (t, x) ∈ [0, T ]× IR, verifying the condition
IE

∫ T

0

∫
IR
|H(r, x)|λrΦr(dx)dr < +∞, the process

mt =
∫ t

0

∫
IR

H(r, x)(m(dr, dx)− λrΦr(dx)dr) (2.23)

is a {P,Ft}-martingale.
We will use two well-known facts: for every (P,Ft)-martingale mt, the projection m̂t is a (P,Gt)-martingale
and that for any progressively measurable process Ψt with IE

∫ T

0
Ψtdt < +∞

̂∫ T

0

Ψtdt−
∫ T

0

Ψ̂tdt

is a (P,Gt)-martingale. Note that this implies that E
∫ T

0
Ψtdt = IE

∫ T

0
Ψ̂tdt .

Let us now consider in (2.23) a process H(t, x) which is (P,Gt)-predictable. By projection on Gt we get that∫ t

0

∫
IR

H(r, x)m(dr, dx)− IE[
∫ t

0

∫
IR

H(r, x)λrΦr(dx)dr|Gt]

is a (P,Gt)-martingale, and ∫ t

0

∫
IR

H(r, x)m(dr, dx)−
∫ t

0

∫
IR

H(r, x)λ̂rΦr(dx)dr

is a (P,Gt)-martingale.
Finally, since IE

∫ T

0

∫
IR
|H(r, x)|λ̂rΦrdr = IE

∫ T

0

∫
IR
|H(r, x)|λrΦr(dx)dr, we get that, for any (P,Gt)-predictable

process H(t, x) verifying the condition IE
∫ T

0

∫
IR
|H(r, x)|λ̂rΦr(dx)dr < +∞, the process∫ t

0

∫
IR

H(r, x)m(dr, dx)−
∫ t

0

∫
IR

H(r, x)λ̂rΦr(dx)|r=r−dr
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is a (P,Gt)-martingale and this concludes the proof.

Let us introduce the (P,Gt)-compensated martingale random measure

mπ(dt, dx) = m(dt, dx)− νp(dt, dx) = m(dt, dx)− πt−(λtΦt(dx))dt. (2.24)

From now on we will consider the following (P,Gt)-semimartingale representation of St

St =
∫ t

0

∫
IR

Sr−(ex − 1)mπ(dr, dx) +
∫ t

0

∫
IR

Sr−(ex − 1)πr−(λrΦr(dx))dr. (2.25)

This model may now be treated as a full information model with respect to the observable flow {Gt}t∈[0,T ].

Remark 2.5 Recalling that the (P,Ft)-semimartingale representation of St can be written also as

St =
∫ t

0

∫
Z

Sr−K(r; ζ)(N (dr, dζ)− ν(dζ)dr) +
∫ t

0

∫
Z

Sr−K(r; ζ)ν(dζ)dr,

by projection on Gt we obtain that St−
∫ t

0

∫
Z
Sr−K̂(r; ζ)ν(dζ)dr is a (P,Gt)-martingale, which in turn implies∫ t

0

∫
Z

Sr−K̂(r; ζ)ν(dζ)dr =
∫ t

0

∫
IR

Sr−(ex − 1)πr−(λrΦr(dx)).

In a more general framework, for each Ft-adapted process, H(t, x), by projecting on Gt equation (2.15) we
get ∫

Z

IE[H(t,K1(t; ζ))1IDt(ζ) | Gt]ν(dζ) = IE[
∫

IR

H(t, x)λtΦt(dx) | Gt].

In particular, for H(t, x) = (ex − 1)2, we find that∫
Z

̂K(t; ζ)
2
ν(dζ) =

∫
IR

(ex − 1)2λ̂tΦt(dx).

From now on we will assume (2.11), (2.16) and

∀t ∈ [0, T ]
∫

Z

̂K(t; ζ)
2
ν(dζ) < +∞ P − a.s. (2.26)

This condition is not a consequence of (2.16) but it is for example fulfilled if

IE[
∫

Z

K(t; ζ)2ν(dζ)] < +∞.

Following the same lines of Proposition 2.3, hypothesis (2.26) implies that St is a (P,Gt)-locally square
integrable special semimartingale.

3. Utility maximization problem

We are interested in solving an optimal portfolio problem for a small investor who has access only to
the observable flow {Gt}t∈[0,T ]. In this section we discuss the problem without specifying the structure
of {Gt}t∈[0,T ]. We assume that the agent does not affect prices and that continuous trading with perfect
liquidity is allowed. The agent with initial capital z0 > 0, invests at any time t ∈ [0, T ] the part θt of the
wealth Zt, in stock St and his remaining wealth in the bond Bt. The dynamics of Bt and St are given in
(2.1) and (2.7), respectively. The amount of money invested in stock St at time t is θtZt− . Since the agent’s
information is described by the filtration {Gt}t∈[0,T ] the decision θt must be adapted to Gt. By considering
Gt-predictable, self-financing strategies, taking values in a set Aθ ⊂ IR, the dynamics of the wealth process
controlled by the investment process θt can be written as
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dZt = Zt−

(
θt
dSt

St−
+ (1− θt)rdt

)
(3.1)

and, taking into account (2.25), as

dZt = Zt−

(
θt

∫
IR

(ex − 1)mπ(dt, dx) + θt

∫
IR

(ex − 1)λ̂tΦt(dx)dt+ (1− θt)rdt
)
. (3.2)

Let us observe that (3.2) makes sense only when the following inequalities hold∫ T

0

∫
IR

|θt(ex − 1)|λ̂tΦt(dx)dt < +∞,

∫ T

0

|θt|dt < +∞ P − a.s.. (3.3)

For a given strategy {θt}t∈[0,T ] the solution Zt to (3.1) will of course depend on θ. To be precise, we should
denote the process Zt by Zθ

t , but sometimes we will suppress θ.

For an agent with power utility

U(x) =
xα

α
α < 1, α 6= 0

the objective is to maximize the expected utility of his terminal wealth

IE
[
U(ZT )

]
= IE

[Zα
T

α

]
for a suitable class Θ of admissible strategies. This class consists of all Aθ-valued, (P,Gt)-predictable pro-
cesses, {θt}t∈[0,T ], such that equation (3.2) has a unique solution Zθ

t > 0, P − a.s., ∀t ∈ [0, T ]. We shall
assume furthermore that

sup
θ∈Θ

IE|U(Zθ
T )| < +∞. (3.4)

Let us observe that θt = 0, ∀t ∈ [0, T ], is an admissible strategy, since the associated wealth, Z0
t = z0e

rt, is
a positive and deterministic process.

Proposition 3.1 Let {θt}t∈[0,T ] be an admissible strategy. Then

1 +
∫

IR

θs(ex − 1)m({s}, dx) > 0 P − a.s. (3.5)

and the wealth process Zθ
t can be written as

Zθ
t = z0 exp

[ ∫ t

0

∫
IR

log(1 + θs(ex − 1))m(ds, dx) +
∫ t

0

(1− θs)rds
]
. (3.6)

Furthermore, the following inequality is fulfilled∫
IR

|1 + θt(ex − 1)|α1ID(t,x)λ̂tΦt(dx) < +∞ P − a.s. (3.7)

with

D(t, x) = {ω ∈ Ω : 1 + θt(ω)(ex − 1) > 0}. (3.8)

Proof.
Equation (3.2) can be written as dZt = Zt−dM

θ
t , where

Mθ
t =

∫ t

0

∫
IR

θs(ex − 1)mπ(ds, dx) +
∫ t

0

∫
IR

θs(ex − 1)λ̂sΦs(dx)ds+
∫ t

0

(1− θs)rds

is a (P,Gt)-local semimartingale. From Doléans-Dade formula we get that
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Zt = z0 e
Mθ

t Πs≤t(1 + ∆Mθ
s )e−∆Mθ

s

and since Zt > 0 then ∀s ≤ t, 1 + ∆Mθ
s = 1 +

∫
IR
θs(ex − 1)m({s}, dx) > 0.

By standard computation we derive expression (3.6). Moreover we have that

dZα
t = Zα

t−dM
θ
t (α) (3.9)

where

Mθ
t (α) =

∫ t

0

∫
IR

[(1 + θs(ex − 1))α − 1]m(ds, dx) +
∫ t

0

α(1− θs)rds. (3.10)

Finally, if (3.7) does not hold we get that

IE[
∫ T

0

∫
IR

Zα
s−(1 + θs(ex − 1))αm(ds, dx)] = IE[

∫ T

0

∫
IR

Zα
s−(1 + θs(ex − 1))α1ID(s,x)λ̂sΦs(dx)ds] = +∞

which in turn implies

IE[Zα
T ] = zα

0 + IE[
∫ T

0

Zα
s−dM

θ(α)] = +∞

and this is in contrast with (3.4).

As usual in stochastic control frame we introduce the associated value process ([14]), which gives a dynamic
extension of the initial problem to each initial time t ∈ [0, T ]

Vt(z) = ess sup
θ∈Θt

IE
[Zα

T

α
| Gt

]
, (3.11)

where z denotes the amount of capital at time t and Θt the set of the admissible strategies on the interval
[t, T ]. Equation (3.6) implies

Vt(z) =
zα

α
Jt

where for 0 < α < 1

Jt = ess sup
θ∈Θt

IE
[Zα

T

Zα
t

| Gt

]
, (3.12)

and

Jt = ess sup
θ∈Θt

IE
[
exp

{
α

∫ T

t

∫
IR

log(1 + θs(ex − 1))m(ds, dx) + α

∫ T

t

(1− θs)rds
}
| Gt

]
. (3.13)

For α < 0 the ess sup is replaced by the ess inf in (3.12) and (3.13).

By a duality approach in [24] it is proved that the optimal strategy exists in a general incomplete semi-
martingale market under suitable assumptions on the utility function (verified by the power one).
Moreover, the Bellman optimality principle ([14]) can be stated as in Proposition 6.9 of [26].

Proposition 3.2 The following properties hold true
(i) For 0 < α < 1, {Jt}t∈[0,T ] is the smallest cadlag Gt-adapted process such that for each θt ∈ Θ the process
{(Zθ

t )αJt}t∈[0,T ] is a (P,Gt)-supermartingale with JT = 1.

(i’) For α < 0, {Jt}t∈[0,T ] is the greatest cadlag Gt-adapted process such that for each θt ∈ Θ the process
{(Zθ

t )αJt}t∈[0,T ] is a (P,Gt)-submartingale with JT = 1.

(ii) θ∗t ∈ Θ is an optimal strategy if and only if the process {(Zθ
t )αJt}t∈[0,T ] is a (P,Gt)-martingale.
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We give now some further properties of the process Jt.

Proposition 3.3 We have that
(i) For 0 < α < 1, for any t ∈ [0, T ], Jt ≥ 1, P − a.s. and supt∈[0,T ] IE[Jt] ≤ J0 < +∞.

(ii) For α < 0, for any t ∈ [0, T ], 0 < Jt ≤ 1, P − a.s..

Proof.
Since θt = 0 is an admissible strategy, by (3.12) we get that

for 0 < α < 1, Jt ≥ eαr(T−t) ≥ 1 and for α < 0, Jt ≤ eαr(T−t) ≤ 1.

By (i) of Proposition 3.2, for 0 < α < 1, zα
0 e

rtJt is a (P,Gt)-supermartingale, hence IE(Jt) ≤ e−rtJ0, where
J0 = supθ∈Θt

IE[Zα
T ] < +∞.

Finally for α < 0, since Zα
T

Zα
t
> 0, we have that Jt ≥ 0, P − a.s. and by the existence of an optimal strategy

that Jt > 0.

In the next sections we will use the following notations

• Sp, 1 ≤ p ≤ +∞, denotes the space of IR-valued Gt-adapted stochastic processes {Ht}t∈[0.T ] with
‖H‖Sp = ‖ supt∈[0.T ] | Ht | ‖Lp < +∞.

• L2
νp ( L2

νp,loc ) denotes the space of IR-valued Gt-predictable processes {U(t, x)}t∈[0.T ] indexed by x with

IE
( ∫ T

0

∫
IR

| U(t, x) |2 λ̂tΦt(dx)dt
) 1

2
< +∞

(
resp.

∫ T

0

∫
IR

| U(t, x) |2 λ̂tΦt(dx)dt
) 1

2
< +∞ P − a.s.

)
.

• L2 ( L2
loc ) denotes the space of IR-valued Gt-adapted processes {Rt}t∈[0.T ] with

IE
( ∫ T

0

| Rt) |2 dt
) 1

2
< +∞

(
resp.

∫ T

0

| Rt |2 dt
) 1

2
< +∞ P − a.s.

)
.

• If U(t, x) ∈ L2
νp we define

‖U‖L2
νp

= IE
( ∫ T

0

∫
IR

| U(t, x) |2 λ̂tΦt(dx)dt
) 1

2
.

4. The case Gt = FS
t

In this section we deal with the case where investors can only observe stock prices, that is we assume Gt = FS
t .

The filtering problem in this frame has been already examined in [7] and [5]. The filter, πt, is characterized
as the unique (in a weak sense) solution to the so called Kushner-Stratonovich equation and an explicit
representation via the Feynman-Kac formula is provided. For details we refer to [7] if Y is a discrete valued
process and to [5] if Y is a real-valued process.

By using Proposition 3.2 and existence of an optimal strategy [24] we show that the process Jt is a so-
lution to a BSDE, driven by the FS

t - compensated martingale random measure mπ(dt, dx) = m(dt, dx) −
πt−(λtΦt(dx))dt.

Since θt = 0 is an admissible strategy, Proposition 3.2 implies that {eαrtJt}t∈[0.T ], for 0 < α < 1 (α < 0) is
a (P,FS

t )-supermartingale (submartingale) hence it admits a unique Doob-Meyer decomposition

eαrtJt = mJ
t −At (4.1)

with mJ
t a (P,FS

t )-local martingale and At a nondecreasing (nonincreasing) (P,FS
t )-predictable process with

A0 = 0. By a classical martingale representation Theorem (see for example, Theorem III 4.37 in [22]) there
exists a (P,FS

t )-predictable process Γ(t, x) ∈ L2
νp,loc such that

mJ
t =

∫ t

0

∫
IR

Γ(s, x)mπ(ds, dx). (4.2)
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Theorem 4.1 For 0 < α < 1 (α < 0) the process {Jt,Γ(t, x)}t∈[0.T ] solves the following BSDE

Jt = 1−
∫ T

t

∫
IR

e−αrsΓ(s, x)mπ(ds, dx) +
∫ T

t

ess sup
θ∈Θ

f(s, J,Γ, θ)ds (4.3)

(ess inf in the case α < 0), where

f(s, J,Γ, θ) =
∫

IR

(
Js + Γ(s, x)e−αrs

)[
{1 + θs(ex − 1)}α − 1

]
1ID(s,x)λ̂sΦs(dx)− αJsr(θs − 1). (4.4)

The strategy θ∗t ∈ Θ is optimal if and only if for 0 < α < 1 it realizes the ess sup of f(s, J,Γ, θ) (ess inf in
the case α < 0).
Moreover, {Jt,Γ(t, x)}t∈[0.T ] is the smallest for 0 < α < 1 (the greatest for α < 0) solution to (4.3) such
that MJ

t defined in (4.6) below is a (P,FS
t )- local martingale.

Proof.
Let us consider the case 0 < α < 1. The proof for α < 0 can be performed in an analogous way.
By applying the product rule to (Zθ

t )αJt, ∀θ ∈ Θ

(Zθ
t )αJt = zα

0 J0 +
∫ t

0

Js−d(Zθ
s )α +

∫ t

0

(Zθ
s−)αdJs +

∑
s≤t

∆(Zθ
s )α∆Js,

since by (4.1), (4.2)

dJt = −αrJtdt+ e−αrt(dmJ
t − dAt), ∆Js = e−αrs

∫
IR

Γ(s, x)m({s}, dx) (4.5)

and by (3.9)

∆(Zθ
s )α = (Zθ

s−)α

∫
IR

[{1 + θs(ex − 1)}α − 1]m({s}, dx),

we get

d
(
(Zθ

t )αJt

)
= (Zθ

t−)αe−αrtdmJ
t + e−αrt

∫
IR

(
Jt−e

αrt + Γ(t, x)
)
(Zθ

t−)α
[
{1 + θt(ex − 1)}α − 1

]
m(dt, dx)+

−αr(Zθ
t )αJtθtdt− (Zθ

t−)αe−αrtdAt.

Then

d
(
(Zθ

t )αJt

)
= dMJ

t −(Zθ
t−)αe−αrt

[
dAt−

∫
IR

(
Jte

αrt+Γ(t, x)
)
[{1+θt(ex−1)}α−1]1ID(t,x)λ̂tΦt(dx)dt+αJtrθte

αrtdt
]

where

MJ
t = MJ

0 +
∫ t

0

∫
IR

(Zθ
s−)αe−αrsΓ(s, x){1 + θs(ex − 1)}α1ID(s,x)m

π(ds, dx)+ (4.6)

∫ t

0

∫
IR

(Zθ
s−)αJs−

[
{1 + θs(ex − 1)}α − 1]1ID(s,x)m

π(ds, dx).

Since (Zθ
t )αJt is a supermartingale ∀θt ∈ Θ, it follows that (4.6) is a (P,FS

t )-local martingale and

dAt −
∫

IR

(
Jte

αrt + Γ(t, x)
)[
{1 + θt(ex − 1)}α − 1

]
1ID(t,x)λ̂tΦt(dx)dt+ αJtrθte

αrtdt ≥ 0

which in turn implies

dAt ≥ ess sup
θ∈Θ

[ ∫
IR

(
Jte

αrt + Γ(t, x)
)[
{1 + θt(ex − 1)}α − 1

]
1ID(t,x)λ̂tΦt(dx)dt+ αJtrθte

αrtdt
]
.
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By Theorem 2.2 in [24] there exists an optimal strategy θ∗t ∈ Θ and by the Bellman optimality principle
Jt(Zθ∗

t )α is a (P,FS
t )- martingale. Thus

dAt = ess sup
θ∈Θ

[ ∫
IR

(
Jte

αrt + Γ(t, x)
)
[{1 + θt(ex − 1)}α − 1]1ID(t,x)λ̂tΦt(dx)dt+ αJtrθte

αrtdt
]
. (4.7)

Finally (4.5), (4.2) and (4.7) yield that (Jt,Γ(t, x)) solves BSDE (4.3).

We now prove that {Jt,Γ(t, x)}t∈[0.T ] is the smallest solution such that MJ
t in (4.6) is a (P,FS

t )-local
martingale. Let {J̃t, Γ̃(t, x)}t∈[0.T ] be a solution of BSDE (4.3). The product rule implies that

d
(
(Zθ

t )αJ̃t

)
= dM J̃

t − (Zθ
t )α

[
ess sup

θ∈Θ
f(t, J̃ , Γ̃, θ)− f(t, J̃ , Γ̃, θ)

]
dt

with M J̃
t a (P,FS

t )-local martingale such that M J̃
0 = zα

0 J̃0 and

dM J̃
t =

∫
IR

(Zθ
t−)αe−αrt

{
Γ̃(t, x) +

(
J̃t−e

αrt + Γ̃(t, x)
)
[{1 + θt(ex − 1)}α − 1]

}
1ID(t,x)m

π(dt, dx).

We have that M J̃
t ≥ (Zθ

t )αJ̃t ≥ 0, and M J̃
t is a supermartingale since every lower bounded local martingale

is a supermartingale. This implies that (Zθ
t )αJ̃t is a supermartingale for each θ ∈ Θ and the thesis follows

by (i) in Proposition 3.2 .

Under further assumptions we characterize Jt as the unique solution to the BSDE (4.3).

Proposition 4.2 Assume the valued set of admissible portfolios, Aθ, to be compact and that there exists a
constant C > 0 such that |K(t; ζ)| ≤ C and λt = ν(Dt) ≤ C, P − a.s. (see Section 2). Then the process
{Jt,Γ(t, x)}t∈[0.T ] is the unique solution in S2 × L2

νp to the BSDE (4.3). Moreover Jt is a bounded process.

Proof.
First, let us observe that |K(t; ζ)| ≤ C and λt ≤ C imply

λ̂tΦt(IR) = IE[λt|FS
t ] ≤ C,

∫
IR

(ex − 1)2λ̂tΦt(dx) = IE[
∫

Z

K(t; ζ)2ν(dζ)|FS
t ] ≤ C3. (4.8)

As in [2] we consider the space L(IR, νp) of measurable functions u(x) with the topology of convergence in
measure and define for u, ũ ∈ L(IR, νp),

‖u− ũ‖t =
( ∫

IR

|u(x)− ũ(x)|2λ̂tΦt(dx)
) 1

2
. (4.9)

For 0 < α < 1, the generator of BSDE (4.3) is given by

g(t, y, u) = ess sup
θ∈Θ

[∫
IR

(
y + u(x)e−αrt

)[
{1 + θt(ex − 1)}α − 1

]
1ID(t,x)λ̂tΦt(dx)− αyr(θt − 1)

]
, (4.10)

(for α < 0 the ess sup is replaced by the ess inf).
We show that g(t, y, u) is Lipschitz in (y, u), namely there exists a constant C̃ > 0 such that

|g(t, y, u)− g(t, ỹ, ũ)| ≤ C̃
(
|y − ỹ|+ ‖u− ũ‖t

)
P × dt− a.e.

Let 0 < α < 1. We have successively

g(t, y, u) = ess sup
θ∈Θ

{∫
IR

(
(y−ỹ)+(u(x)−ũ(x))e−αrt

)[
{1+θt(ex−1)}α−1

]
1ID(t,x)λ̂tΦt(dx)−α(y−ỹ)r(θt−1)+

∫
IR

(
ỹ + ũ(x)e−αrt

)[
{1 + θt(ex − 1)}α − 1

]
1ID(t,x)λ̂tΦt(dx)− αỹr(θt − 1)

}
,
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g(t, y, u)−g(t, ỹ, ũ) ≤ ess sup
θ∈Θ

[∫
IR

(
(y−ỹ)+(u(x)−ũ(x))e−αrt

)[
{1+θt(ex−1)}α−1

]
1ID(t,x)λ̂tΦt(dx)−α(y−ỹ)r(θt−1)

]
,

g(t, y, u)− g(t, ỹ, ũ) ≤ ess sup
θ∈Θ

{∫
IR

[
{1 + θt(ex − 1)}α − 1

]
1ID(t,x)λ̂tΦt(dx) + αr(θt − 1)

}
|y − ỹ|+

ess sup
θ∈Θ

( ∫
IR

[
{1 + θt(ex − 1)}α − 1

]21ID(t,x)λ̂tΦt(dx)
) 1

2 ‖u− ũ‖t.

Hence (4.8) and compactness of Aθ imply

g(t, y, u)− g(t, ỹ, ũ) ≤ C̃
(
|y − ỹ|+ ‖u− ũ‖t

)
P × dt− a.e.

for a suitable constant C̃ > 0 and by symmetry the Lipschitz property follows. By classical results we get
that there exists unique solution in S2×L2

νp to the BSDE (4.3) (see for instance [2], Proposition 3.2). In an
analogous way the case α < 0 can be performed.

Finally, to obtain boundedness of Jt, we recall that

dZα
t = Zα

t−dM
θ
t (α)

where

Mθ
t (α) =

∫ t

0

∫
IR

[{1 + θs(ex − 1)}α − 1]m(ds, dx) +
∫ t

0

α(1− θs)rds.

Since Aθ is a compact set, there exist two positive constants Ci > 0, i = 1, 2, such that

IE
[Zα

T

Zα
t

|Gt

]
≤ 1 + IE

[ ∫ T

t

∫
IR

Zα
s−

Zα
t

[(1 + C1(ex − 1))α − 1]m(ds, dx)] + C1

∫ T

t

Zα
s

Zα
t

ds|Gt

]
≤

1 + IE
[ ∫ T

t

∫
IR

Zα
s

Zα
t

(1 + C1(ex − 1))αλsΦs(dx)ds+ C1

∫ T

t

Zα
s

Zα
t

ds|Gt

]
=

1 + IE
[ ∫ T

t

∫
Z

Zα
s

Zα
t

(1 + C1K(t; ζ))α1IDt
(ζ)ν(dζ)ds+ C1

∫ T

t

Zα
s

Zα
t

ds|Gt

]
,

where the last equality is a consequence of (2.15). Recalling that Dt = {ζ ∈ Z : K(t; ζ) 6= 0}, by boundedness
of K(t; ζ) and λt = ν(Dt) we have that

IE
[Zα

T

Zα
t

|Gt

]
≤ 1 + C2

∫ T

t

IE
[Zα

s

Zα
t

|Gt

]
ds.

Finally, by Gronwall Lemma we find that, for a suitable constant C3 > 0

IE
[Zα

T

Zα
t

|Gt

]
≤ eC3(T−t)

which implies that Jt ≤ eC3T , ∀t ∈ [0, T ].

5. A model with Gt ⊃ FS
t

In this section we assume that investors receive informations on the stock price and in addition noisy signals
on the stochastic factor Xt. Thus they have access to the information given by the filtration Gt = FS

t ∨ Fη
t

generated by the past asset prices and by a process ηt, giving observations of X in additional Gaussian noise,
namely

ηt =
∫ t

0

γ(Xs)ds+W 1
t . (5.1)
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Here W 1
t is a (P,Ft)-standard Brownian motion independent of N (dt, dζ) and γ(x) is a bounded measurable

function. The Brownian motions W 1
t and Wt may be correlated, with correlation ρ ∈ [−1, 1].

The (P,Gt)-predictable projection of the integer-valued measure m(dt, dx), νp(dt, dx), can be now computed
as in (2.22), where the filter in this framework is defined by

πt(f) = IE[f(t,Xt) | Gt] = IE[f(t,Xt) | FS
t ∨ Fη

t ]. (5.2)

We introduce the innovation process

It = ηt −
∫ t

0

πs(γ)ds. (5.3)

It is well known, in the case Gt = Fη
t that It is a (P,Fη

t )-Brownian motion. This result can be easily extended
to our setting following the same lines of that used in [28], Theorem 7.12.

Proposition 5.1 The random process {It}t∈[0,T ] is a (P,Gt)-Wiener process.

It is known ([25]) that there exists a functional Ht defined on the space of cadlag trajectories DIR2 [0, T ] with
values in the space of probability measures on IR such that the filter is given by πt = Ht(Y.∧t, η.∧t). Thus,
according to the definition of It we have that

FS
t ∨ FI

t ⊆ Gt = FS
t ∨ Fη

t

and in general this inclusion can be strict, hence a martingale representation theorem for (P,Gt)-martingales
with respect to mπ(dt, dx) and It cannot be directly derived from usual martingale representation theorems.

Proposition 5.2 Every (P,Gt)-locally square integrable local-martingale Mt admits the decomposition

Mt = M0 +
∫ t

0

∫
IR

φ(t, x)mπ(ds, dx) +
∫ t

0

ψsdIs (5.4)

where φ(t, x) is a Gt-predictable process and ψt is a Gt-adapted process such that∫ T

0

∫
IR

| φ(t, x) |2 πt(λtΦt(dx))dt < +∞,

∫ T

0

ψ2
sds < +∞ P − a.s.

Proof.
Let Q be the probability measure defined, ∀t ∈ [0, T ], as

Lt =
dQ

dP
|Gt

= E
(
−

∫ t

0

γ̂(Xs)dIs
)

= exp
{
−

∫ t

0

γ̂(Xs)dIs −
1
2

∫ t

0

γ̂(Xs)2ds
}

where E denotes the Doléans-Dade exponential. Since γ(x) is bounded the exponential local martingale Lt

is actually a (P,Gt)-martingale and it is a bounded martingale such that IE
[
(supt∈[0,T ] Lt)2

]
< +∞. From

Girsanov Theorem,

It +
∫ t

0

γ̂(Xs)ds = ηt

is a (Q,Gt)-Brownian motion. Let us observe the Q-distribution of the pair (Yt, ηt) is uniquely determined
by the (Q,Gt)-predictable characteristics. This can be proved by conditioning on Fη

t and then averaging
over the Wiener measure. In fact, for any bounded functions f and g since Fη

t ⊆ Gt we have that

IEQ[f(ηt)g(Yt)] = IEQ[f(ηt)IEQ[g(Yt)|Fη
t ]] =

IEQ[f(ηt)IEQ[g(Y0) +
∫ t

0

∫
IR

{g(Ys− + x)− g(Ys−}πs−(λsφs(dx))ds|Fη
t ]]

and this expectation can be evaluated by integration with respect to the Wiener measure.
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Thus, as in [3], we apply Corollary III.4.31 of [22] which asserts that for any M̃t, (Q,Gt)-locally square
integrable local-martingale, there exist two Gt-adapted processes φ̃(t, x) and ψ̃t, with φ̃(t, x) predictable,
such that

M̃t = M̃0 +
∫ t

0

∫
IR

φ̃(s, x)mπ(ds, dx) +
∫ t

0

ψ̃sdηs (5.5)

and ∫ T

0

∫
IR

| φ̃(t, x) |2 πt(λtΦt(dx))dt < +∞,

∫ T

0

ψ̃2
t dt < +∞ Q− a.s..

Let Mt be a (P,Gt)-local martingale, by Kallianpur-Striebel formula M̃t = MtL
−1
t is a (Q,Gt)-local martin-

gale. We can write Mt = M̃tLt and by the product rule we get

dMt = M̃t−dLt + Lt−dM̃t + d
〈
M̃ c, Lc

〉
t
+ d(

∑
s≤t

∆M̃s∆Ls) =

= Lt(ψ̃t − γ̂(Xt)M̃t)dIt +
∫

IR

Lt− φ̃(t, x)mπ(dt, dx)

which gives the martingale representation for Mt with ψt = Ltψ̃t − γ̂(Xt)Mt and φ(t, x) = Lt− φ̃(t, x).

As in Section 4 we want to characterize the value function by a BSDE. In this frame the Doob-Meyer
decomposition of eαrtJt is given again by (4.1) but, by Proposition 5.2, mJ

t has the representation

mJ
t =

∫ t

0

∫
IR

Γ(s, x)mπ(ds, dx) +
∫ t

0

RsdIs, (5.6)

with Γ(t, x) ∈ L2
νp,loc and Rt ∈ L2

loc.

By using exactly the same arguments as in the proofs of Theorem 4.1 and Proposition 4.2 we get the following
results

Theorem 5.3 For 0 < α < 1, the process {Jt,Γ(t, x), Rt}t∈[0.T ] is a solution to the BSDE

Jt = 1−
∫ T

t

∫
IR

e−αrsΓ(s, x)mπ(ds, dx)−
∫ T

t

e−αrsRsdIs +
∫ T

t

ess sup
θ∈Θ

f(s, J,Γ, θ)ds (5.7)

(ess inf in the case α < 0), where

f(s, J,Γ, θ) =
∫

IR

(
Js + Γ(s, x)e−αrs

)[
{1 + θs(ex − 1)}α − 1

]
1ID(s,x)λ̂sΦs(dx)− αJsr(θs − 1). (5.8)

The strategy θ∗t ∈ Θ is optimal if and only if for 0 < α < 1 it realizes the ess sup of f(s, J,Γ, θ) (ess inf in the
case α < 0). Moreover {Jt,Γ(t, x), Rt}t∈[0.T ] is the smallest for 0 < α < 1 (the greatest for α < 0) solution
to (5.7) such that

MJ
t = MJ

0 +
∫ t

0

∫
IR

(Zθ
s−)αe−αrsΓ(s, x){1 + θs(ex − 1)}αmπ(ds, dx)+ (5.9)

∫ t

0

∫
IR

(Zθ
s−)αJs−

[
{1 + θs(ex − 1)}α − 1

]
mπ(ds, dx) +

∫ t

0

(Zθ
s−)αe−αrsRsdIs.

is a (P,Gt)-local martingale.

Proposition 5.4 Assume the valued set of admissible portfolios, Aθ, to be compact and that there exists
a constant C > 0 such that |K(t; ζ)| ≤ C and λt ≤ C, P − a.s.. The process {Jt,Γ(t, x), Rt}t∈[0.T ] is the
unique solution in S2 × L2

νp × L2 to BSDE (5.7). Moreover Jt is a bounded process.
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6. The mixed type filtering problem

The filtering problem consists in computing the conditional distribution of a signal process, which is not
directly observable, given observations up to time. The case of diffusion observations has been widely studied
in literature and textbook treatments can be found in Kallianpur [23], Lipster Shiryaev [28] and Rogers and
Williams [36]. More recently, there are known results also for pure-jump observations (see [4, 7, 5, 16, 17]
and references therein). While few results can be found for mixed type information which involves pure-
jump processes and diffusions ([18, 19]) and to the author’s knowledge it is the first time that mixed type
observations filtering is studied for a general jump-diffusion signal allowing both correlation and common
jump times with the observations.

Several approaches have been considered in nonlinear filtering literature. Among them we recall the inno-
vation method and the reference probability approach. In the case where W 1

t in (5.1) is independent of Wt

(see (2.4)) we can apply the reference probability approach proposed in [18] in order to reduce the filtering
problem with mixed type informations to a filtering problem with pure jump observations. But since we deal
with a mixed type observations model allowing correlation between W 1

t and Wt we choose the innovation
method. It consists in deriving the dynamics of the filter, the so called Kushner-Stratonovich equation (KS)
and to characterize the filter as the unique solution to this equation. The KS-equation plays an essential
role in the study of partially observable control problems by the Hamilton-Jacobi-Bellman approach (see for
instance [8, 31, 1]) and in credit risk setups with restricted information for describing the dynamic evolution
of a portfolio of credit risk securities ([19]).

Before writing down the filtering equation we give a result proved in [7], Corollary 2.2.

Lemma 6.1 Under the assumptions

IE

∫ T

0

ν(D0
t )dt < +∞, IE

∫ T

0

σ2(Xt)dt < +∞ (6.1)

Xt is a (P,Ft)-Markov process with generator

LXf(t, x) =
∂f

∂t
(t, x) + b(x)

∂f

∂x
+

1
2
∂2f

∂x2
σ2(x) +

∫
Z

{f(t, x+K0(t, x; ζ))− f(t, x)}ν(dζ). (6.2)

More precisely, for any any function f(t, x) ∈ C1,2
b (IR+ × IR) the following semimartingale decomposition

holds

f(t,Xt) = f(t, x0) +
∫ t

0

LXf(s,Xs)ds+mf
t (6.3)

where mf
t is a (P,Ft)-martingale.

The next Theorem whose proof is postponed in Appendix is the main result of this section.

Theorem 6.2 Let us assume the first of (6.1) and

λt = ν(Dt) ≤ C P − a.s., σ(x) ≤ C, (6.4)

with C > 0. The filter (5.2) is a solution of the KS-equation, that, for any function f(t, x) ∈ C1,2
b (IR+ × IR)

is given by

πt(f) = f(x0, y0) +
∫ t

0

πs(LXf)ds+
∫ t

0

∫
IR

φπ
s (f, x)mπ(ds, dx) +

∫ t

0

ψπ
s (f)dIs (6.5)

where

φπ
s (f, x) =

dπs−(λsΦsf)
dπs−(λsΦs)

(x)− πs−(f) +
dπs−(L̄sf)
dπs−(λsΦs)

(x) (6.6)

ψπ
s (f) = πs(γf)− πs(γ)πs(f) + ρπs(σ

∂f

∂x
), (6.7)

16



and
dπs−(λsΦsf)
dπs−(λsΦs)

(x),
dπs−(L̄sf)
dπs−(λsΦs)

(x)

denote the Radon-Nikodym derivatives of the measures πs−(λsΦsf), πs−(L̄f) respectively, with respect to
πs−(λsΦs), and the operator L̄tf is defined as, ∀A ∈ B(IR)

L̄tf = L̄f(., Yt− , dz), L̄f(t, x, y, A) =
∫

DA(t,x,y)

[f(t, x+K0(t, x; ζ))− f(t.x)]ν(dζ)

(DA(t, x, y) is defined in (2.10)).

Remark 6.3 Let us observe that, since∫
IR

|φπ
s (f, x)|πs−(λsΦs(dx)) ≤ |πs−(λsf)|+ |πs−(λs)πs−(f)|+ |πs−(L̄f)(IR)|,

assumption (6.4) and boundedness of γ imply that for any f(t, x) ∈ C1,2
b (IR+ × IR) it is possible to find a

constant Af > 0 such that

ψπ
s (f) ≤ Af ,

∫
IR

|φπ
s (f, x)|πs−(λsΦs(dx)) ≤ Af . (6.8)

Thus the integrals in (6.6) with respect to the compensated martingale random measure mπ(dt, dx) (defined
in (2.24)) and to the innovation process It (defined in (5.3)) are (P,Gt)-martingales.
We could weaken conditions (6.1) and (6.4) in order to get just (P,Gt)-local martingales, but we assume
them to avoid further technicalities in the proof of Theorem 6.2.

In order to characterize the filter we introduce the notion of weak solution to the filtering equation. Let
Π(IR) be the space of probability measure on IR.

Definition 6.4 As weak solution to KS-equation (6.5) we mean a process (µt, Ỹt, η̃t) defined on a probability
space (Ω̃, F̃t, P̃ ) taking values in Π(IR)× IR2 such that

- µt is F Ỹ
t ∨ F η̃

t -adapted with cadlag sample paths

- Ỹt is marked point process whose associated random measure m̃(dt, dx) has F Ỹ
t ∨F η̃

t -predictable projection
given by µt−(λtφt(dx))dt

- η̃t is a F Ỹ
t ∨ F η̃

t -Brownian motion.

- the triple (µt, Ỹt, η̃t) solves the KS-equation (6.5) with mπ(dt, dx), It, φπ
t (f, x) and ψπ

t replaced by mµ(dt, dx) =
m̃(dt, dx)− µt−(λtφt(dx))dt, I

µ
t = η̃t −

∫ t

0
µs(γs)ds, φ

µ
t (f, x) and ψµ

t , respectively .

Let us observe that, by performing a measure change that turns ηt into a Brownian motion, from Theorem
6.2 the triple (πt, Yt, ηt) provides a weak solution to equation (6.5). More precisely, the new probability
measure P̃ equivalent to P is defined as

dP̃

dP
|Ft = E

(
−

∫ t

0

γ(Xs)dW 1
s

)
= exp

{
−

∫ t

0

γ(Xs)dW 1
s −

1
2

∫ t

0

γ(Xs)2ds
}
.

From Girsanov Theorem ηt =
∫ t

0
γ(Xs)ds+W 1

s is a (P̃ ,Ft)-Brownian motion, which in turn implies that ηt

is a (P̃ ,FY
t ∨ Fη

t )-Brownian motion.

In the next Theorem the filter is characterized as the unique weak solution to the KS-equation (6.2). The
proof is given in Appendix.
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Theorem 6.5 Let us assume the first of (6.1) and (6.4). Under one of the following conditions

(i) b(x), σ(x), γ(x) ∈ C2
b (IR), ν(D0

t ) ≤ C, with C a positive constant,

(ii) b(x), σ(x) and γ(x) continuous functions in x ∈ IR, K0(t, x; ζ), K1(t, x, y; ζ) jointly continuous in (t, x)
and (t, x, y) respectively,

all weak solutions (µt, Ỹt, η̃t) of the KS-equation have the same law. In particular µt has the same law of the
filter πt.

To conclude this section, let us observe that the KS-equation can be written also as

πt(f) = f(x0, y0)+
∫ t

0

{πs(LX
0 f)+πs(f)πs(λs)−πs(fλs)}ds+

∫ t

0

∫
IR

φπ
s (f, x)m(ds, dx)+

∫ t

0

ψπ
s (f)dIs (6.9)

where

LX
0 f(t, x, y) = LXf(t, x)− L̄f(t, x, y, IR) =

∂f

∂t
(t, x) + b(x)

∂f

∂x
+

1
2
∂2f

∂x2
σ2(x) +

∫
Dc(t,x,y)

|{f(t, x+K0(t, x; ζ))− f(t, x)}ν(dζ)

(Dc(t, x, y) = Z−D(t, x, y) = {ζ ∈ Z : K1(t, x, y; ζ) = 0}) and it has a natural recursive structure. This can
be seen if we write the equation at the jump times and between two consecutive jump times. In fact, at a
jump time Tn

πTn
(f) =

dπT−n
(λTn

ΦTn
f)

dπT−n
(λTn

ΦTn
)

(Zn) +
dπT−n

(L̄Tn
f)

dπT−n
(λTn

ΦTn
)
(Zn), Zn = YTn

− YTn−1 .

Hence πTn(f) is completely determined by the observed data (Tn, Zn) and by the knowledge of πt(f) in the
interval [Tn−1, Tn), since πT−n

(f) = limt→T−n
πt(f).

For t ∈ [Tn, Tn+1)

πt(f) = πTn
(f) +

∫ t

Tn

{πs(LX
0 f) + πs(f)πs(λs)− πs(fλs)}ds+

∫ t

Tn

ψπ
s (f)dIs.

7. A particular case

As example we deal with the particular case when the risky asset follows a geometric pure jump process
driven by two independent point processes. In [6, 9, 10] similar models driven by two independent Poisson
processes have been considered in full information frameworks. We now examine in the frame of restricted
information the utility maximization problem in the case where the intensities of the point processes driving
the stock price dynamics are not directly observable by investors.

This particular model is presented since it allows us to obtain explicit expressions for the quantities of
interest.

Let us define

D+(t,Xt− , Yt−) = {ζ ∈ Z : K(t,Xt− , Yt− ; ζ) > 0}, D−(t,Xt− , Yt−) = {ζ ∈ Z : K(t,Xt− , Yt− ; ζ) < 0}.

From now on we will write K(t; ζ), D+
t , D−t for K(t,Xt− , Yt− ; ζ), D+(t,Xt− , Yt−) and D−(t,Xt− , Yt−)

respectively, unless it is necessary to underline the dependence on the processes involved.
Assume

K(t; ζ) = K+(t, St−)1ID+
t
(ζ)−K−(t, St−)1ID−

t
(ζ) (7.1)

with K+(t, x),K−(t, x) two positive jointly measurable functions (as in Section 2 we assume K−(t, x) < 1).
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In this particular case equation (2.7) can be written as

dSt = St−(K+(t, St−)dN1
t −K−(t, St−)dN2

t ) (7.2)

where N1
t = N ((0, t), D+

t ) and N2
t = N ((0, t), D−t ) are two independent counting processes with (P,Ft)-

predictable intensities given by λ1(t) = ν(D+
t ) and λ2(t) = ν(D−t ). The counting processes N1

t and N2
t

describe upwards and downwards jumps of St and N1
t +N2

t = Nt (with Nt the point process which counts
the total number of jumps of St). In this model the agent can observe K+(t, St−) and K−(t, St−) but not
the intensities λi(t), i = 1, 2, since they depend on the unobservable stochastic factor Xt.

In [6] and [9], the full information optimal investment problem for CRRA preferences has been solved by
using the Hamilton-Jacobi-Bellman approach (in [9] by considering K+ and K− Markovian in the stochastic
factor Xt− instead of St−). In [10] the exponential utility case has been studied by a BSDE approach, for
K+ and K− general predictable processes. In all these papers the intensities, λi(t), i = 1, 2, have been
assumed deterministic functions on time while in this note they are stochastic processes which depend on
the unobservable endogenous process Xt.

From now on we denote by K+
t and K−

t the processes K+(t, St−) and K−(t, St−), respectively and

H1(t) = log(1 +K+
t ) > 0, H2(t) = log(1−K−

t ) < 0. (7.3)

The integer-valued random measure m(dt, dx) defined in (4.2) becomes

m(dt, dx) = δH1(t)(dx)dN
1
t + δH2(t)(dx)dN

2
t , (7.4)

and its (P,Ft)-predictable dual projection is given by

mp(dt, dx) =
(
δH1(t)(dx)λ1(t) + δH2(t)(dx)λ2(t)

)
dt. (7.5)

By introducing the filter, πt(f) = IE[f(t,Xt)|Gt], the (P,Gt)-predictable dual projection of m(dt, dx) can be
written as

νp(dt, dx) =
(
δH1(t)(dx)πt−(λ1) + δH2(t)(dx)πt−(λ2)

)
dt,

with πt−(λ1) = πt−(ν(D+(., ., Yt−)) and πt−(λ2) = πt−(ν(D−(., ., Yt−)) the (P,Gt)- predictable intensities of
N1

t and N2
t .

By applying Theorem 6.2 and Theorem 6.5 the filter is characterized as the unique weak solution to the
KS-equation, that in this special case can be written in the simplified form

πt(f) = f(x0, y0) +
∑

i=1,2

∫ t

0

πs(λi)+{πs−(λif)− πs−(λi)πs−(f) + πs−(Rif)}(dN i
s − πs−(λi)ds)+ (7.6)

∫ t

0

πs(LXf)ds+
∫ t

0

ψπ
s (f)dIs

where a+ = 1
a1I{a>0}, ψπ

s (f) is given in (6.7) and

Rif(t, x) =
∫

Z

[f(t, x+K0(t, x; ζ))− f(t.x)]ν(dζ)1I{Hi(t) 6=0} i = 1, 2.

In the last part of this section we examine in this special case the utility maximization problem under
restricted information by using the BSDE approach. We will assume the riskless interest rate r = 0. First,
note that the Doob-Meyer decomposition of Jt given in (4.1) and (4.2) can be now written as

Jt = mJ
t −At, mJ

t =
∫ t

0

Γ1(s)
(
dN1

s − πs−(λ1)ds
)

+
∫ t

0

Γ2(s)
(
dN2

s − πs−(λ2)ds
)

+
∫ t

0

RsdIs (7.7)
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with Γ1(s) = Γ(s,H1(s)) and Γ2(s) = Γ(s,H2(s)) and Rt ∈ L2
loc.

We shall denote by L2
i (L2

i,loc), i = 1, 2, the space of IR-valued Gt-predictable processes {U(t)}t∈[0.T ] with

IE
( ∫ T

0

| U(t) |2 πt−(λi)dt
) 1

2
< +∞

(
resp.

∫ T

0

| U(t) |2 πt−(λi)dt
) 1

2
< +∞ P − a.s.

)
.

Proposition 7.1 The process {Jt,Γ1(t),Γ2(t), Rt}t∈[0.T ] solves the BSDE

Jt = 1−
∫ T

t

Γ1(s)(dN1
s −πs−(λ1)ds)−

∫ T

t

Γ2(s)(dN2
s −πs−(λ2)ds)+

∫ T

t

g(s, Js,Γ1(s),Γ2(s))ds−
∫ T

t

RsdIs

(7.8)
where

g(t, y, z1, z2) = (y + z1)
[
{1 + θ∗(t, y, z1, z2)K+

t }α − 1
]
πt(λ1) + (y + z2)

[
{1− θ∗(t, y, z1, z2)K−

t }α − 1
]
πt(λ2)

with

θ∗(t, y, z1, z2) =
1− (y+z1

y+z2

) 1
α−1

(
Gt

) 1
α−1

K−
t +

(
y+z1
y+z2

) 1
α−1

(
Gt

) 1
α−1

K+
t

, Gt =
K+

t πt−(λ1)
K−

t πt−(λ2)
. (7.9)

and the optimal investment strategy is given by θ∗t = θ∗(t, Jt− ,Γ1(t),Γ2(t)).

Moreover, {Jt,Γ1(t),Γ2(t), Rt}t∈[0.T ] is the smallest for 0 < α < 1 (the greatest for α < 0) solution to
(7.8) such that MJ

t defined (5.9 ) is a (P,Gt)-local martingale. Let us note that in this frame MJ
t has the

representation

MJ
t = MJ

0 +
∫ t

0

(Zθ
s−)αRsdIs +

∫ t

0

(Zθ
s−)α(Js− + Γ1(s)){1 + θs(K+

s }α(dN1
s − πs−(λ1)ds)+∫ t

0

(Zθ
s−)α(Js− + Γ2(s)){1− θsK

−
s }α(dN2

s − πs−(λ2)ds)−
∫ t

0

(Zθ
s−)αJs−(dNs − πs−(λs)ds).

Proof.
The claim is a direct consequence of Theorem 4.1. In this particular case, for any fixed (t, ω, y, z1, z2) such
that y + zi > 0, i = 1, 2 (observe that Jt = Jt− + Γi(t) > 0 if ∆N i

t 6= 0) we are able to compute explicitly
θ∗(t, y, z1, z2) which maximizes for 0 < α < 1 (minimize for α < 0) the function

H(θ) = (y + z1)
[
{1 + θK+

t }α − 1
]
πt(λ1) + (y + z2)

[
{1− θK−

t }α − 1
]
πt(λ2)

over θ ∈
(
− 1

K+
t

, 1
K−

t

)
. By a direct computation we get that the maximum for 0 < α < 1 (the minimum for

α < 0) is achieved in θ∗(t, y, z1, z2) given in (7.9).

The analogous of Proposition 4.2 can be stated avoiding compactness of the valued set of admissible strategies,
Aθ, assuming (7.10) below.

Proposition 7.2 Assume the existence of positive constants A1, A2 such that ∀t ∈ [0, T ]

A1 ≤ K+
t ≤ A2 A1 ≤ K−

t ≤ A2 A1 ≤ λi(t) ≤ A2, i = 1, 2 P − a.s.. (7.10)

The process {Jt,Γ1(t),Γ2(t), Rt}t∈[0,T ] is the unique solution in S2 × L2
1 × L2

2 × L2 to the BSDE (7.8).
Moreover Jt is a bounded process.

20



Proof.
Since any admissible strategy θt necessarily satisfies θt ∈

(
− 1

K+
t

, 1
K−

t

)
, P − a.s., we get that

(1 + θtK
+
t )α ≤ C, (1− θtK

−
t )α ≤ C, [(1 + θtK

+
t )α − 1]2 ≤ C, [(1− θtK

−
t )α − 1]2 ≤ C P − a.s.

with C positive constant. By proceeding similarly to the proof of Proposition 4.2 we can prove that

g(t, y, z1, z2) = ess sup
θ∈Θ

[(y + z1)
[
{1 + θtK

+
t }α − 1

]
πt(λ1) + (y + z2)

[
{1− θtK

−
t }α − 1

]
πt(λ2)

is Lipschitz in (y, z1, z2), that is there exists a constant C̃ > 0 such that

|g(t, y, z1, z2)− g(t, ỹ, z̃1, z̃2)| ≤ C̃
(
|y − ỹ|+ |z1 − z̃1|+ |z2 − z̃2|

)
P × dt− a.e.

Remark 7.3 In the case where agents have access only to the flow generated by asset prices, that is Gt = FS
t ,

the KS-equation and the BSDE involved are given by equations (7.6) and (7.8), respectively, without the part
driven by the innovation process, It.
Let us observe that the optimal investment strategies in the case Gt = FS

t and Gt = FS
t ∨F

η
t do not coincide

since both depend on the solution (Jt,Γ1(t),Γ2(t)) of different BSDEs and θ∗(ω, t, y, z1, z2) given in (7.9)
depends on the filter which has different dynamics in the two situations.

Remark 7.4 In the case where K+
t , K−

t and λi(t), i = 1, 2, are deterministic functions on time we are in
a full information setup with Gt = FN1

t ∨ FN2

t . Equation (7.8) becomes

Jt = 1−
∫ T

t

Γ1(s)(dN1
s − πs−(λ1)ds)−

∫ T

t

Γ2(s)(dN2
s − πs−(λ2)ds) +

∫ T

t

g(s, Js,Γ1(s),Γ2(s))ds. (7.11)

Note that the generator g(t, y, z1, z2) is a deterministic function hence the unique solution to equation (7.11)
is given by (Jt, 0, 0), with Jt and the optimal strategy, θ∗t , deterministic processes given by

Jt = e

∫ t

t
(Λ(s)−λ(s))ds

, Λ(t) = {1 + θ∗tK
+
t }αλ1(t) + {1− θ∗tK

−
t }αλ2(t),

θ∗t =
(Gt)

1
α−1 − 1

K−
t + (Gt)

1
α−1K+

t

, Gt =
K+

t λ1(t)
K−

t λ2(t)
,

respectively. This result has been obtained in Theorem 11 of [6] by using Verification results for the Hamilton-
Jacobi-Bellman equation.

8. Appendix

8.1. Proof of Theorem 6.2

In order to deduce equation (6.2) let us consider the semimartingale given in (6.3)

ft = f(t,Xt) = f(0, x0) +
∫ t

0

LXf(s,Xs)ds+mf
t

with

mf
t =

∫ t

0

∂f

∂x
(s,Xs)σ(Xs)dWs +

∫ t

0

∫
Z

{f(s,Xs− +K0(s,Xs− ; ζ))− f(s,Xs−)}
(
N (ds, dζ)− ν(dζ)ds

)
.

Next we perform a projection on Gt. Taking into account that m̂t is a Gt-martingale and that for any

progressively measurable process ht such that IE
∫ T

0
| hs | ds < +∞, ̂∫ t

0
hsds −

∫ t

0
ĥsds is a Gt-martingale,

we get that
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f̂t − f̂0 −
∫ t

0

L̂Xf(s,Xs)ds

is a Gt-martingale. Then by Proposition 5.2 there exist φπ
s (f, x) and ψπ

s (f) such that

f̂t = f̂0 +
∫ t

0

L̂Xf(s,Xs)ds+
∫ t

0

∫
IR

φπ
s (f, x)mπ(ds, dx) +

∫ t

0

ψπ
s (f)dIs.

We assume that φπ
s (f, x) and ψπ

s (f) satisfy (6.8) thus we can find (P,Ft)-martingales, M i
t , i = 1, 2, and

(P,Gt)-martingales, mi
t, i = 1, 2, 3, 4, such the following relations hold true.

First we derive (6.7) by applying the product rule to the processes ft and ηt

d(ftηt) = ft−dηt + ηt−dft + d
〈
fc, η

〉
t
=

{
ηtL

Xf(t,Xt) + ftγ(Xt) +
∂f

∂x
(t,Xt)σ(Xt)ρ

}
dt+ dM1

t

and considering the projection on Gt we get

d(f̂tηt) =
{
ηt

̂LXf(t,Xt) + f̂tγ(Xt) + ρ
̂∂f

∂x
σ(t,Xt)

}
dt

}
dt+ dm1

t . (8.1)

On the other hand let us observe that f̂tηt = f̂tηt, and again by the product rule

d(f̂tηt) = f̂t−dηt + ηt−df̂t +
〈
η, f̂

〉
t
=

{
ηtL̂Xf(t,Xt) + ψπ

s (f)− f̂t
̂γ(Xt)

}
dt+ dm2

t . (8.2)

Since the finite variation parts in (8.1) and (8.2) have to coincide we obtain (6.7).

Next to derive (6.6) we apply the product rule to the processes ft and Ut, where Ut =
∫ t

0

∫
IR

Γ(t, x)m(dt, dx),
for Γ(s, x) any bounded Gt-predictable process. Since

[f, U ]t =
∫ t

0

∫
Z

1ID1
s
(ζ){f(s,Xs− +K0(s,Xs− ; ζ))− f(s,Xs−)}Γ(s,K1(s,Xs− , Ys− ; ζ))N (ds, dζ),

we get that

d(ftUt) = ft−dUt + Ut−dft + d[f, U ]t =
{
UtL

Xf(t,Xt) +
∫

R

ft−Γ(t, x)λtφt(dx) + Vt

}
dt+ dM2

t

where
Vt =

∫
Z

1ID1
t
(ζ){f(t,Xt− +K0(t,Xt− ; ζ))− f(t,Xt−)}Γ(t,K1(t,Xt− , Yt− ; ζ))ν(dζ) (8.3)

and again by performing a Gt-projection

d(f̂tUt) =
{
UtL̂Xf(t,Xt) +

∫
R

Γ(t, x) ̂ft−λtΦt(dx) + V̂t

}
dt+ dm3

t . (8.4)

Again let us observe that Ut is Gt-measurable thus

d(f̂tUt) = f̂t−dUt + Ut−df̂t + d[f̂ , U ]t =
{
UtL̂Xf(t,Xt) +

∫
R

(φπ
s (f) + f̂t)Γ(t, x)λ̂tΦt(dx)

}
dt+ dm4

t . (8.5)

Again we claim that the finite variation parts in (8.4) and (8.5) have to coincide∫
R

φπ
t (f)Γ(t, x)λ̂tΦt(dx) = −

∫
R

f̂t−Γ(t, x)λ̂tΦt(dx) +
∫

R

Γ(t, x) ̂ft−λtφt(dx) + V̂t.

Setting φπ
t (f) = −f̂t− + ξ2(t, x) + ξ3(t, x) with ξi(t, x), i = 2, 3, such that∫

R

ξ2(t, x)Γ(t, x)λ̂tΦt(dx) =
∫

R

Γ(t, x) ̂ft−λtΦt(dx) (8.6)∫
R

ξ3(t, x)Γ(t, x)λ̂tΦt(dx) = V̂t, (8.7)
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and choosing Γ(t, x) = Ct1IA(x), A ∈ B(IR), Ct > 0, (P,Gt)-predictable and bounded, we get that

Vt =
∫

Z

Ct1IDA
t
(ζ){f(t,Xt− +K0(t,Xt− ; ζ))− f(t,Xt−)}ν(dζ) = Ct

∫
A

L̄f(Xt− , Yt− , dx).

Finally equations (8.6) and (8.7) reduce to

∀A ∈ B(IR),
∫

A

ξ2(t, x)λ̂tΦt(dx) =
∫

A

̂ft−λtΦt(dx),
∫

A

ξ3(t, x)λ̂tΦt(dx) =
∫

A

̂̄Lf(Xs− , Ys− , dx)

respectively, which imply (6.6).

8.2. Proof of Theorem 6.5

First, we need some preliminaries

Lemma 8.1 Under the assumption (6.1) and

IE

∫ T

0

ν(Dt)dt < +∞ (8.8)

(Xt, Yt, ηt) is a (P,Ft)-Markov process with generator

Lf(t, x, y, z) =
∂f

∂t
+ b(x)

∂f

∂x
+

1
2
σ2(x)

∂2f

∂x2
+ γ(x)

∂f

∂z
+ ρσ(x)

∂2f

∂x∂z
+

1
2
∂2f

∂z2
+ (8.9)

+
∫

Z

{f(t, x+K0(t, x; ζ), y +K1(t, x, y; ζ), z)− f(t, x, y, z)}ν(dζ).

More precisely, for any any bounded function f(t, x, y, z) ∈ C1,2,0,2
b (IR+ × IR3) the semimartingale decompo-

sition holds

f(t,Xt, Yt, ηt) = f(t,X0, Y0, η0) +
∫ t

0

Lf(s,Xs, Ys, ηs)ds+Mf
t (8.10)

where Mf
t is a (P,Ft)-martingale.

Proof.
From Ito formula we get (8.10) with

Mf
t =

∫ t

0

∂f

∂x
(s,Xs, Ys, ηs)σ(Xs)dWs +

∫ t

0

∂f

∂z
(s,Xs, Ys, ηs)dW 1

s +

∫ t

0

∫
Z

{f(t,Xs− +K0(t,Xs− ; ζ), y +K1(t,Xs− , Ys− ; ζ), ηs)− f(t,Xs− , Ys− , ηs)}(N (ds, dζ)− ν(dζ)ds)

and by assumptions (6.1) and (8.8) Mf
t is (P,Ft)-martingale.

By projecting on Gt we get that (8.10) implies that

πt

(
f(., Yt, ηt)

)
−

∫ t

0

πs

(
Lf(., Ys, ηs)

)
ds

is a (P,Gt)-martingale. This martingale property will allows us to apply the idea proposed in [25] to char-
acterize the distribution of (πt, Yt, ηt) by introducing the notion of Filtered Martingale Problem (FMP).
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Definition 8.2 Let (µt, Ỹt, η̃t) be a process taking values in Π(IR) × IR2 with cadlag sample paths. This
process is a solution of the Filtered Martingale Problem for L, given in (8.9), with initial condition (x0, y0, 0)

(FMP (L, (x0, y0, 0))) if µt is F Ỹ
t ∨ F η̃

t -adapted and for any F ∈ C2,0,2
b (IR3)

µt

(
F (., Ỹt, η̃t)

)
−

∫ t

0

µs

(
LF (., Ỹs, η̃s)

)
ds (8.11)

is an F Ỹ
t ∨ F η̃

t -martingale and IE[µ0(F (., Ỹ0, η̃0)] = F (x0, y0, 0).

Finally we consider the proof of Theorem 6.5. We begin by proving that any weak solution to the KS-
equation solves the FMP (L, (x0, y0, 0)). It is sufficient to prove (8.11) for functions of the form F (x, y, z) =
f(x)g(y, z). Let (µt, Ỹt, η̃t) a weak solution to equation (6.5). By Ito formula we find that

g(Ỹt, η̃t) = g(y0, η0) +
∫ t

0

∂g

∂z
(Ỹs, η̃s)dη̃s +

1
2

∫ t

0

∂2g

∂z2
(Ỹs, η̃s)ds+

∫ t

0

∫
IR

[g(Ỹs− + x, η̃s)− g(Ỹs− , η̃s)]m̃(ds, dx).

By the product rule we get that

d{µt(f)g(Ỹt, η̃t)} = µt(f)
{∂g
∂z
µt(γ) +

1
2
∂2g

∂z2

}
dt+ g(Ỹt, η̃t)µt(LXf)dt+ ψµ

t (f)
∂g

∂z
dt+ (8.12)∫

IR

{µt(f) + φµ
t (f, x)}[g(Ỹt− + x, η̃t)− g(Ỹt− , η̃t)]µt−(λtΦt(dx))dt+ dMf,g

t

where Mf,g
t is given by

Mf,g
t =

∫ t

0

{
µs(f)

∂g

∂z
+ ψµ

s (f)g(Ỹs, η̃s)
}
dIµ

s +
∫ t

0

g(Ỹs− , η̃s)
∫

IR

φµ
s (f, x)mµ(ds, dx)+

∫ t

0

∫
IR

{µs−(f) + φµ
s (f, x)}{g(Ỹs− + x, η̃s)− g(Ỹs− , η̃s)}mµ(ds, dx).

Defining G̃t = F Ỹ
t ∨ F η̃

t , let Q̃ be the probability measure defined by, ∀t ∈ [0, T ], as

L̃t =
dQ̃

dP̃
|G̃t

= E
( ∫ t

0

µs(γs)dη̃s

)
= exp

{∫ t

0

µs(γs)dη̃s −
1
2

∫ t

0

µs(γs)2ds
}
.

From Girsanov Theorem, Iµ
t = η̃t−

∫ t

0
µs(γs)ds is a (Q̃, G̃t)-Brownian motion and by (6.4) Mf,g

t is a (Q̃, G̃t)-
martingale.

Finally taking into account the expressions of φµ
t (f, x), ψµ

t (f) and LX , (8.12) can be written as

d{µt(f)g(Ỹt, η̃t)} = µt(f)
1
2
∂2g

∂z2
dt+ g(Ỹt, η̃t)µt

(
b
∂f

∂x
+

1
2
∂2f

∂x2

)
dt+ µt(γf)

∂g

∂z
+ ρµt(σ

∂f

∂x
)
∂g

∂z
+ (8.13)

µt

( ∫
D1(t,x,Ỹt− )

{
g
(
Ỹt− +K1(t, x, Ỹt− ; ζ), η̃t

)
f(x+K0(t, x; ζ))− g(Ỹt− , η̃t)f(x)

}
ν(dζ)

)
+ dMf,g

t =

µt(Lf(x)g(Ỹt− , η̃t))dt+ dMf,g
t

which proves that (µt, Ỹt, η̃t) solves the FMP.

Next we observe that if uniqueness holds for the FMP (L, (x0, y0, 0)) all weak solutions (µt, Ỹt, η̃t) to the
KS-equation have the same law. The last claim can be achieved, under (i) by applying [25], Theorem 3.2,
while under (ii) by [25], Theorem 3.3.

Furthermore, since µt is F Ỹ
t ∨ F η̃

t -adapted, for each t there exists a measurable function ht from DIR2 [0, T ]
(space of cadlag trajectories from [0, T ] into IR2) to Π(IR) such that µt = ht(Ỹ (. ∧ t), η̃(. ∧ t)), a.s.. Thus
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uniqueness for solutions of the FMP (L, (x0, y0, 0)) implies that (µt, Ỹt, η̃t) has the same distribution as
(πt, Yt, ηt) and hence πt = ht(Y (. ∧ t), η(. ∧ t)), a.s.. Consequently µt has the same law of the filter πt.
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