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Abstract. Portfolios belonging to the Mean-Variance Efficient set are Pareto-

Efficient. In this work we outline a procedure to understand if this assertion

is always true in practical sense, or if some portfolios belonging to the frontier

can be considered as dominated in a probabilistic way.
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Introduction: The Mean Variance Portfolio Selection

Portfolio selection is one of the most studied topics in finance: the problem (referred
to as PSP), in its basic formulation, is concerned with selecting the portfolio of
assets that minimizes the risk, given a certain level of returns. The basic model is
formulated in the seminal work by Markowitz [13], in which the problem is stated
as the minimisation of the variance (as a risk measure) for a given level of return rp:

min

n
∑

i=1

n
∑

j=1

σijxixj (1)

n
∑

i=1

rixi ≥ rp

n
∑

i=1

xi = 1 xi ∈ [0, 1] i, j = 1 . . . n (2)

where xi is the quantity invested in asset i, σij represents covariance between assets
i and j, rp is the minimum desired return rate and ri is the (actual or forecasted)
return rate of asset i. Note that portfolios are modeled as sets of assets whose
weights sum up to one and can assume any value in the range [0, 1]. This means
that short selling is not allowed.

In this formulation, the problem is solvable with exact methods. By solving the
problem for each level of return, we obtain a Pareto Efficient Frontier composed of
non dominated points. This means that a rational investor should use an external
criterion in order to choose a portfolio out of the set at hand. The goal of this work
is to define a basic methodology in order to understand if portfolios over the pareto
frontier are trully non dominated, and if there exists some mechanism in order to
drive the investor choice amongst such portfolios: Our purpose is to check whether
some of the point in the frontier are dominated by others in a probabilistic sense.
The need for this control arises as the two objectives we are taking into account are
not unrelated quantities, but rather the mean and the variance of the same random
variable: Asset returns. In this sense, it is easy to devise a procedure able to show
that two points are not non-dominated. Please notice that in the following we try
to devise a method just relying on statistical and analytical procedures, so we do
not take into account more complex portfolio theory such as utility analysis and
statistical dominance [17, 2].

1 An analytical approach to Mean Variance

In a bi-dimensional space of risk and return, a solution s is said to be efficient
(Pareto-optimal) if there is no other solution s1 such that return(s1) > return(s)
and risk(s1) ≤ risk(s) or return(s1) ≥ return(s) and risk(s1) < risk(s); further-
more, as seen before, minimizing the variance for several levels of return leads us
obtain a frontier composed of (purportedly) non dominated points.
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Let us take two portfolios (points) over this frontier and let us denote the first
point as h and the second as l. We must be aware that these points are computed
from hystorical data, but we can conceive them as the state representing the future
outcome of a portfolio: This outcome could be described as a normal distribution
with a given mean (expected return) and a given standard deviation (risk), so we
can describe the two points as follows1:

h ∼ N(µh, σ2

h) (3)

l ∼ N(µl, σ
2

l ) (4)

Applying the basic distribution properties (see tab 1), we can draw that the true
return of portfolio l is supposed to be in the interval

[µl − k · σl, µl + k · σl] (5)

with Confidence(k) likelihood. For example, the true return of the portfolio has
99.9% likelihood to stay in the interval

[µl − 3 · σl, µl + 3 · σl] (6)

Given that, we can introduce a new normally distributed variable d, defined as
the difference between the two portfolios and represented as follows:

d ∼ N(µh − µl, σ
2

h + σ2

l ) (7)

K Confidence(k)

1 84.2 %
2 97.6 %
3 99.7 %

Table 1. Basic Distribution Properties

And we can state that portfolio h statistically dominates portfolio l at confidence
level Confidence(k) if

µd − k · σd ≥ 0 =⇒ µd ≥ k · σd (8)

This becomes

µh − µl ≥ k ·

√

σ2

h
+ σ2

l
(9)

1It is not necessary to assume normality of return distribution in order to carry on with our

discussion, as the Chebyshev inequality holds for any distribution. Anyhow, following the well

established assumption, we will think of returns as normally distributed.
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µh ≥ µl + k ·

√

σ2

h
+ σ2

l
(10)

and eventually

µh − µl ≥ k ·

√

σ2

h + σ2

l (11)

This means that, picking two portfolios h and l over the Mean Variance Space,
we can state that portfolio h probabilistically dominates l iif equation 11 holds.

2 Experimental Analysis

We used five instances in order to see if the aforementioned formula holds over some
efficient portfolios. As instance set we used a group of five instances taken from the
repository ORlib2. These instances have been used by [3, 1, 14, 15] and are referring
to five well-known stock exchange indices. The following table shows our benchmark
size.

Inst. Origin assets

1 Hong Kong 31
2 Germany 85
3 UK 89
4 USA 98
5 Japan 225

Table 2. The benchmark instances.

For each instance we have the Unconstraint Efficient Frontier, as provided by
the very same repository, showing, for each portfolio, its mean return and its return
variance. So we have firstly applied this test to the Unconstraint Case over the 5
instances at hand. Then, we added constraints to the formulation in order to analyse
the behaviour of different efficient frontiers. To this goal, two cases were taken into
account:

• Loose Cardinality Constraint: Introducing a binary variable zi (equal to 1 if
asset i is in the portfolio and 0 otherwise) the constraint can be expressed as
follows:

n
∑

i=1

zi ≤ k (12)

being imposed to facilitate the portfolio management and to reduce its man-
agement costs. Most works on Portfolio Selection Problems introduce this

2available at the URL http://mscmga.ms.ai.ac.uk/∼jeb/orlib/portfolio.html
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constraint [7, 9, 16, 6, 11]. It has been experimentally shown that when the
cardinality constraint is imposed the ACEF tends to tightly approximate the
UEF for high values of k [10, 4], so we took into account several values of k,
starting from 2 up to the maximum possible number3;

• Strict Cardinality Constraint: The same constraint as before, but imposing a
fixed number of stocks rather than a maximum

n
∑

i=1

zi = k (13)

This latter formulation can be introduced to investigate the effect of the
marginal cardinality increase[12, 8]

Quantity constraint has been added in top of the cardinality, imposing minimum
and maximum proportions (εi and δi respectively) to be held for each asset, so that

εizi ≤ xi ≤ δizi (14)

Ceiling constraints (i.e., upper bound constraints) are introduced to avoid excessive
exposure to a specific asset and in some case are imposed by law; Floor constraint
(i.e., lower bound) is used to avoid the cost of administrating very small portions of
assets. In our case, we set εi = 0.01 and δi = 1 ∀i. Please notice that this constraint
impose implicitly a loose cardinality constraint, as the maximum achievable asset
number k will happen to be 1

ε
. In our case, the maximum k number will be 100

(= 1

0.01
) The computation was made through a Quadratic Programming solver4

already used by [8]. Test implementation has been developed with Matlab and for

each frontier compares the highest return - highest risk and lowest return - lowest
risk points ,i.e. point with maximum non-dominance likelihood.

3 Results Achieved

As stated so far, we performed our test over three classes of instances:

• Unconstraint Efficient Frontier;

• Loose Cardinality Efficient Frontier

• Strict Cardinality Efficient Frontier

3W.r.t. the quantity constraint, see afterwards.
4Publicly available at http://www.diegm.uniud.it/digaspero/index.php?page=software.
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As result of the test, we found out that the hypothesis

H0 = h dominates l (15)

cannot be accepted even with k values lower than 1.

This simple test provide us with evidence about the Markowitz model skill in
capturing the basic properties of the problem: It gives evidence to Mean Variance
Portfolios being not dominated and encourages investors in defining their strategies
to develop their preferences. But it is worthwile to notice here that Mean Variance
theory suffers from several drawbacks:

1. The estimation of return and covariance (used for defining the risk) from his-
torical data is very sensitive to measurement errors[5];

2. The model is nowadays considered too simplistic for practical purposes, be-
cause it does not incorporate non-negligible aspects of real-world trading, such
as maximum size of portfolio, minimum lots, transaction costs, preferences over
assets, management costs, etc

This two considerations suggest two further developments of our testing-approach:
First, we should introduce more uncertainty about the model: So far, we introduced
uncertainty only over the space of return (i.e., just over one of the two dimensions)
stating that the actual return could be considered as belonging to an interval rather
than being a point. Next step will be the introduction of uncertainty over the
remaining dimension;
Latter, more experiments embedding other risk measures, constraint settings and
temporal horizon are needed. In principle, different observations over years can be
witnessing different financial-economic cycles and conditions. It is not clear if these
different conditions have impact over our test or not.
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