
Università degli Studi “G. D’Annunzio”

Dipartimento di Scienze

Solving Weighted Argumentation

Frameworks with Soft Constraints

Stefano Bistarelli Daniele Pirolandi

Francesco Santini

December 2, 2009

Technical Report no. R-2009-003 Research Series

Solving Weighted Argumentation Frameworks with Soft

Constraints

Stefano Bistarelli 1,2,3 Daniele Pirolandi 1 Francesco Santini 2,3

1 Dipartimento di Matematica e Informatica, Università di Perugia
Via Vanvitelli, 1 Italy

bista@dmi.unipg.it, pirolandi@dmi.unipg.it
2 Diparitmento Di Scienze, Università “G. d’Annunzio”

Viale Pindaro, 42 Italy
bista@sci.unich.it, santini@sci.unich.it

3 Istituto di Informatica e Telematica
Via Moruzzi, 1 Italy

stefano.bistarelli@iit.cnr.it,francesco.santini@iit.cnr.it

December 2, 2009

Abstract. We suggest soft constraints as a mean to parametrically represent

and solve “weighted” Argumentation problems: different kinds of preference

levels related to arguments, e.g. a score representing a “fuzziness”, a “cost”

or a probability level of each argument, can be represented by choosing dif-

ferent semiring algebraic structures. The novel idea is to provide a common

computational and quantitative framework where the computation of the clas-

sical Dung’s extensions, e.g. the admissible extension, has an associated score

representing “how much good” the set is. Preference values associated to ar-

guments are clearly more informative and can be used to prefer a given set of

arguments over others with the same characteristics (e.g. admissibility). More-

over, we propose a mapping from weighted Argumentation Frameworks to Soft

Constraint Satisfaction Problems (SCSPs); with this mapping we can compute

Dung semantics (e.g. admissible and stable) by solving the related SCSP. To

implement this mapping we use JaCoP, a Java constraint solver.

Keywords: Soft Constraints, Argumentation Frameworks

Contents

1 Introduction 3

2 Dung Argumentation 4

3 Soft Constraints 6

4 Weighted Argumentation 7

5 Mapping AFs to SCSPs 10

6 Related Work 13

7 Conclusions and Future Work 14

Technical Report no. R-2009-003 Research Series

1 Introduction

Argumentation [12] is based on the exchange and the evaluation of interacting argu-
ments which may represent information of various kinds, especially beliefs or goals.
Argumentation can be used for modeling some aspects of reasoning, decision mak-
ing, and dialogue [10]. For instance, when an agent has conflicting beliefs (viewed
as arguments), a (nontrivial) set of plausible consequences can be derived through
argumentation from the most acceptable arguments for the agent. Argumentation
has become an important subject of research in Artificial Intelligence and it is also
of interest in several disciplines, such as Logic, Philosophy and Communication The-
ory [20].

Many theoretical and practical developments build on Dung’s seminal theory
of argumentation. A Dung Argumentation Framework (AF) is a directed graph
consisting of a set of arguments and a binary conflict based attack relation among
them. The sets of arguments to be considered are then defined under different
semantics, where the choice of semantics equates with varying degrees of scepticism
or credulousness.

The other ingredient in our research is Constraint Programming [21], which is
a powerful paradigm for solving combinatorial search problems that draws on a
wide range of techniques from artificial intelligence, computer science, databases,
programming languages, and operations research. The idea of the semiring-based
formalism [7, 5] was to further extend the classical constraint notion by adding
the concept of a structure representing the levels of satisfiability of the constraints.
Such a structure (see Sec. 3 for further details) is a set with two operations: one + is
used to generate an ordering over the preference levels, while × is used to combine
these levels. Because of the properties required on such operations, this structure is
similar to a semiring (see Sec. 3). Problems defined according to this semiring-based
framework are called Soft Constraint Satisfaction Problems (SCSPs).

In this paper we show that different weighted AFs based on fuzziness, probability
or a preference in general (and already studied in literature, e.g. in [20, 3]), can be
modeled and solved with the same soft constraint framework by only changing the
related semiring in order to optimize the different criteria. Also classical AFs can
be represented inside the soft framework by adopting the Boolean semiring. We
provide a mapping from AFs to (S)CSPs in a way that the solution of the SCSP
consists in the “best” desired extension, where “best” is computed by aggregating
(with ×) the preference scores of all the chosen arguments, and comparing the final
values (with +). The classical extensions of Dung can be found with our mapping,
i.e. admissible, preferred, complete, stable and grounded ones. At last, we show an
implementation of a CSP with JaCoP [19], a Java Constraint Programming solver.

Clearly, the classical attack relationship is not enough informative to deal with
problems where we however need to take a decision: suppose a judge must decide

3

between the arguments of two parties, and often no conclusive demonstration of
the rightness of one side is possible. The arguments will not have equal value for
the judge and the case will be decided by the judge preferring one argument over
the other [20]. Moreover, having a quantitative framework permits us to quantify
the aggregation of chosen arguments and to prefer a set of arguments over another.
Examples in the real world are represented by scores given to comments in Youtube
or news in Slashdot, or topics in Discussion Fora in general [16]. As the set of argu-
ments gets wider, the search of the best solutions becomes a demanding task, and
constraint-based frameworks come with many and powerful solving techniques: no-
tice that deciding if a set is a preferred extension is a CO-NP -complete problem [4].
Moreover, preference score can be used to cut not promising solutions during the
search and, however, to refine it by finding the only the best solutions. In this
paper we start from qualitative argumentation [20, 3, 2] and we move towards a
quantitative solution.

The remainder of this paper is organized as follows. In Sec. 2 we report the
theory behind Dung Argumentation, while in Sec. 3 we summarize the background
about soft constraints. Section 4 shows the basic idea of weighted AF based on
semirings; in Sec. 5 we propose the mapping from AFs to SCSPs, the proofs of their
solution equivalence and we show a practical encoding in JaCoP. A comparison with
related work is given in Sec. 6. Finally, Sec. 7 presents our conclusions.

2 Dung Argumentation

In [12], the author has proposed an abstract framework for argumentation in which
he focuses on the definition of the status of arguments. For that purpose, it can be
assumed that a set of arguments is given, as well as the different conflicts among
them. An argument is an abstract entity whose role is solely determined by its
relations to other arguments.

Definition 1 An Argumentation Framework (AF) is a pair 〈Args, R〉 of a set Args

of arguments and a binary relation R on Args called the attack relation. ∀ai, aj ∈ A,
aiR aj means that ai attacks aj . An AF may be represented by a directed graph
(the interaction graph) whose nodes are arguments and edges represent the attack
relation. A set of arguments B attacks an argument a if a is attacked by an argument
of B. A set of arguments B attacks a set of arguments C if there is an argument
b ∈ B which attacks an argument c ∈ C.

In Fig. 1 we show an example of AF represented as an interaction graph: the
nodes represent the arguments and the directed arrow from c to d represents the
attack of c towards d, that is cR d. Dung [12] gave several semantics to acceptability.
These various semantics produce none, one or several acceptable sets of arguments,

4

a

b

c d

Figure 1. An example of Dung Argumentation Framework; e.g. c attacks d.

called extensions. One of these semantics, the stable semantics, is only defined via
the notion of attacks:

Definition 2 A set B ⊆ Args is conflict-free iff it does not exist two arguments a

and b in B such that a attacks b. A conflict-free set B ⊆ Args is a stable extension
iff for each argument which is not in B, there exists an argument in B that attacks
it.

The other semantics for acceptability rely upon the concept of defense:

Definition 3 An argument b is defended by a set B ⊆ Args (or B defends b) iff for
any argument a ∈ Args, if a attacks b then B attacks a.

An admissible set of arguments according to Dung must be a conflict-free set
which defends all its elements. Formally:

Definition 4 A conflict-free set B ⊆ Args is admissible iff each argument in B is
defended by B.

Besides the stable semantics, three semantics refining admissibility have been
introduced by Dung [12]:

Definition 5 A preferred extension is a maximal (w.r.t. set inclusion) admissible
subset of Args. An admissible B ⊆ Args is a complete extension iff each argument
which is defended by B is in B. The least (w.r.t. set inclusion) complete extension
is the grounded extension.

Notice that deciding if a set is a stable extension or an admissible set can be
computed in polynomial time, but deciding if a set is a preferred extension is a
CO-NP -complete problem [4].

5

3 Soft Constraints

A c-semiring [7, 5] S (or simply semiring in the following) is a tuple 〈A,+,×,0,1〉
where A is a set with two special elements (0,1 ∈ A) and with two operations +
and × that satisfy certain properties: + is defined over (possibly infinite) sets of
elements of A and thus is commutative, associative, idempotent, it is closed and 0 is
its unit element and 1 is its absorbing element; × is closed, associative, commutative,
distributes over +, 1 is its unit element, and 0 is its absorbing element (for the
exhaustive definition, please refer to [7]). The + operation defines a partial order
≤S over A such that a ≤S b iff a + b = b; we say that a ≤S b if b represents a value
better than a. Other properties related to the two operations are that + and × are
monotone on ≤S, 0 is its minimum and 1 its maximum, 〈A,≤S〉 is a complete lattice
and + is its lub. Finally, if × is idempotent, then + distributes over ×, 〈A,≤S〉 is
a complete distributive lattice and × its glb.

A soft constraint [7, 5] may be seen as a constraint where each instantiation of its
variables has an associated preference. Given S = 〈A,+,×,0,1〉 and an ordered set
of variables V over a finite domain D, a soft constraint is a function which, given an
assignment η : V → D of the variables, returns a value of the semiring. Using this
notation C = η → A is the set of all possible constraints that can be built starting
from S, D and V . Any function in C involves all the variables in V , but we impose
that it depends on the assignment of only a finite subset of them. So, for instance,
a binary constraint cx,y over variables x and y, is a function cx,y : V → D → A,
but it depends only on the assignment of variables {x, y} ⊆ V (the support of the
constraint, or scope). Note that cη[v := d1] means cη′ where η′ is η modified with
the assignment v := d1. Note also that cη is the application of a constraint function
c : V → D → A to a function η : V → D; what we obtain, is a semiring value
cη = a. 0̄ and 1̄ respectively represent the constraint functions associating 0 and 1
to all assignments of domain values (i.e. the ā function returns the semiring value
a).

Given the set C, the combination function ⊗ : C × C → C is defined as (c1 ⊗
c2)η = c1η × c2η (see also [7, 5]). Informally, performing the ⊗ or between two
constraints means building a new constraint whose support involves all the variables
of the original ones, and which associates with each tuple of domain values for
such variables a semiring element which is obtained by multiplying the elements
associated by the original constraints to the appropriate sub-tuples.

Given a constraint c ∈ C and a variable v ∈ V , the projection [7, 5, 6] of c over
V − {v}, written c ⇓(V \{v}) is the constraint c′ such that c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support.

A SCSP [5] defined as P = 〈C, con〉 (C is the set of constraints and con ⊆ V , i.e.
a subset the problem variables). A problem P is α-consistent if blevel(P) = α [5]; P

is instead simply “consistent” iff there exists α >S 0 such that P is α-consistent [5].

6

X Y

c1 c3

c2

<a> 1

 9

<a> 5

 5
<a,a> 5

<a,b> 1

<b,a> 2

<b,b> 2

Figure 2. A soft CSP based on a Weighted semiring.

P is inconsistent if it is not consistent. The best level of consistency notion defined
as blevel(P) = Sol(P) ⇓∅, where Sol(P) = (

⊗
C) ⇓con [5].

A SCSP Example. Figure 2 shows a weighted CSP as a graph: the semiring used
for this problem is the Weighted semiring, i.e. 〈R+,min, +̂,∞, 0〉 (+̂ is the arithmetic
plus operation). Variables and constraints are represented respectively by nodes and
by undirected arcs (unary for c1 and c3, and binary for c2), and semiring values are
written to the right of each tuple. The variables of interest (that is the set con)
are represented with a double circle (i.e. variable X). Here we assume that the
domain of the variables contains only elements a and b. For example, the solution
of the weighted CSP of Fig. 2 associates a semiring element to every domain value
of variable X. Such an element is obtained by first combining all the constraints
together. For instance, for the tuple 〈a, a〉 (that is, X = Y = a), we have to compute
the sum of 1 (which is the value assigned to X = a in constraint c1), 5 (which is the
value assigned to 〈X = a, Y = a〉 in c2) and 5 (which is the value for Y = a in c3).
Hence, the resulting value for this tuple is 11. We can do the same work for tuple
〈a, b〉 → 7, 〈b, a〉 → 16 and 〈b, b〉 → 16. The obtained tuples are then projected over
variable x, obtaining the solution 〈a〉 → 7 and 〈b〉 → 16. The blevel for the example
in Fig. 2 is 7 (related to the solution X = a, Y = b).

4 Weighted Argumentation

To illustrate the need to extend the classical AF with preferences, we consider two
individuals P and Q exchanging arguments A and B about the weather forecast
(the example is taken from [20]):

P: Today will be dry in London since BBC forecast sunshine = A

Q: Today will be wet in London since CNN forecast rain = B

A and B claim contradictory conclusions and so attack each other. Under Dung’s
preferred semantics, there are two different admissible extensions represented by the
sets {A} and {B}, but neither argument is sceptically justified. One solution is to

7

provide some means for preferring one argument to another in order to find a more
informative answer, for example, the most trustworthy extension. For example,
one might reason that A is preferred to B because the BBC are deemed more
trustworthy than CNN. Suppose to have a fuzzy trust score associated with each
argument, as shown in Fig. 3. This score, (between 0 and 1 that is between low and
high trustworthiness) can be then used to prefer {A} with a score of 0.9 over {B}
with a score of 0.7, i.e. forecast from BBC than from CCN.

BBC
sunshine

CNN
rain

0.9 0.7

Figure 3. The CNN/BBC example with trust scores.

In some works [15] the preference score is associated with the attack relation-
ship instead of with the argument itself and, thus, it models the “strength” of the
attack, e.g. a fuzzy attack. This model can be cast in ours by composing these
strengths in a value representing the preference of the argument, as in Fig. 4, where
the trustworthiness of argument CNN-rain can be computed as the mathematical
mean (or in general a function ◦, as defined also in [8] for computing the trust
of a group of individuals) of the values associated with the attack towards it, i.e.
(0.9+0.5)\2 = 0.7. Computing a trust evaluation of a node by considering a function
of the links ending in it is a well-known solution, e.g. the PageRank of Google [16].
By composing attack and support values, it is also possible to quantitatively study
bipolar argumentation frameworks [1].

BBC
sunshine

CNN
rain

0.9 FOX
sunshine

0.5

Figure 4. A fuzzy Argumentation Framework with fuzzy scores modeling the attack
strength.

Notice that in [20, 3, 2] the preference among arguments is given in a qualitative
way, that is argument a is better than argument b, which is better than argument c;
in this section we study the problem from a quantitative point of view, with scores
associated with arguments. We suggest the algebraic semiring structure (see Sec. 3)
as a mean to parametrically represent and solve all the “weighted” AFs presented in
literature (see Sec. 6), i.e. to represent the scores; in the following we provide some
examples on how semirings fulfil these different tasks.

8

An argument can be seen as a chain of possible events that makes the hypothesis
true. The credibility of a hypothesis can then be measured by the total probabil-
ity that it is supported by arguments. The proper semiring to solve this problem
consists in the Probabilistic semiring [5]: 〈[0..1],max, ×̂, 0, 1〉, where the arithmetic
multiplication (i.e. ×̂) is used to compose the probability values together.

The Fuzzy Argumentation [23] approach enriches the expressive power of the
classical argumentation model by allowing to represent the relative strength of the
attack relationships between arguments, as well as the degree to which arguments
are accepted. In this case, the Fuzzy semiring 〈[0..1],min,max, 0, 1〉 can be used.

In addition, the Weighted semiring 〈R+,min, +̂, 0, 1〉, where +̂ is the arithmetic
plus, can model the (e.g. money) cost of the attack: for example, during an electoral
campaign, a candidate could be interested in how many efforts or resources he should
spend to counteract an argument of the opposing party.

At last, with the Boolean semiring 〈{true, false},∨,∧, false, true〉 we can cast
the classic AFs originally defined by Dung [12] in the same semiring-based frame-
work.

Moreover, notice that the cartesian product of two semirings is still a semiring [7,
5], and this can be fruitfully used to describe multi-criteria constraint satisfaction
and optimization problems. For example, we can have both a probability and a
fuzzy score given by a couple 〈t, f〉; we can optimize both costs at the same time.

We can extend the definitions provided in Sec. 3 in order to express all these
weights of the attack relations with a semiring based environment. The following
definitions model the semiring-based problem.

Definition 6 A semiring-based Argumentation Framework (AFS) is a quadruple
〈Args, R,W,S〉 of a semiring S = 〈A,+,×,0,1〉, a set Args of arguments, the attack
binary relation R on Args, and a unary function R : Args −→ A called the weight
function. ∀a ∈ Args, W (a) = s means that a has a preference level s ∈ A.

Therefore, the weight function W associates each argument with a semiring value
(s ∈ A) that represents the preference expressed for that argument in terms of cost,
fuzziness and so on. For example, using the Fuzzy semiring 〈[0..1],min,max, 0, 1〉
semiring for the problem represented in Fig. 3 allows us to state that the admissible
extension {A} (with a score of 0.9) is better than the other admissible extension
{B} (with a s.core of 0.7) since 0.9 > 0.7. Therefore, with an AFS our goal is to
find the extensions proposed by Dung (e.g. the admissible extensions), but with an
associated preference value.

Example Concerning the interaction graph in Fig. 5, it represents the Weighted
AFS W = (Args, R) with S = 〈R+,min, +̂,∞, 0〉 and such that Args = {a, b, c, d, e},
R(a, b) = 0.7, R(c, b) = 0.8, R(c, d) = 0.9, R(d, c) = 0.8, R(d, e) = 0.5, R(e, e) = 0.6
and W (a) = 7,W (b) = 20,W (c) = 6,W (d) = 10,W (e) = 12. Notice that e attacks

9

a b c

de

7 20

1012

6

Figure 5. An example of a weighted interaction graph.

itself, that is in contrast with itself, e.g. “We have sunshine and it’s raining” (it
may be possible).

5 Mapping AFs to SCSPs

Our second result is a mapping from AF (and AFS) to (S)CSPs. Given an AFS =
〈Args, R,W,S〉, we define a variable for each argument ai ∈ Args, i.e. V = {a1, a2,

. . . , an} and each of these argument can be taken or not, i.e. the domain of each
variable is D = {1, 0}, and if it is taken, a cost in the semiring can be assigned,
mapping the level of preference of this argument.

To represent the quantitative preference over arguments, in this mapping we need
only unary soft constraints on each variable, while the other constraints modeling,
for example, the conflict-free relationship (see Sec. 2) are crisp even if represented
in the soft framework. We plan to extend also these constraints to properly-said
soft ones as suggested in Sec. 7. In the following explanation, notice that b attacks
a meas that b is a father of a in the interaction graph, and c attacks b attacks a

means that c is a grandfather of a. To compute the (weighted) extensions of Dung
we need to define specific sets of constraints:

1. Preference constraints. The weight function W (ai) = s (s ∈ A) of an AFS

can be modeled with the unary constraints cai
(ai = 1) = s, otherwise, when

ai is assigned to 0), the argument is not taken in the considered extension an
so its cost must not be computed.

2. Conflict-free constraints. Since we want to find the conflict-free sets, if
R(ai, aj) is in the graph we need to prevent the solution to include both ai

and aj in the considered extension: cai,aj
(ai = 1, aj = 1) = 0. For the

other possible assignment of the variables ((a = 0, b = 1)(a = 1, b = 0) and
(a = 0, b = 0)), cai,aj

= 1, since these assignments are permitted: in these

10

cases we are choosing only one argument between the two (or none of the two)
and thus, we have no conflict.

3. Admissible constraints. For the admissibility, we need that, if son argument
ai has a father node af but ai has no grandfather node ag, then we must avoid
to take af in the extension because it is attacked and cannot be defended by
any ancestor: expressed with a binary constraint, cai,af

(ai = 1, af = 0) = 0.

Moreover, if ai has several grandfathers ag1, ag2, . . . , agk and only one fathers
af , we need to add a k+1-ary constraint cai,ag1,...,agk

(ai = 1, ag1 = 0, . . . , agk =
0) = 0. The explanation is that at least a a grandfather must be taken in the
admissible set, in order to defend ai from one of his fathers af . Notice that, if
a node is not attacked (i.e. he has no fathers), he can be taken or not in the
admissible set.

4. Complete constraints. To compute a complete extension B, we need that
each argument ai which is defended by B is in B (see Sec. 2). This is already
enforced with the admissible constraints, except for the nodes without a father.
For these ai nodes we need to add the constraint cai

(ai = 0) = 0.

5. Stable constraints. If we have a son node ai with multiple fathers af1, af2,

. . . , afk, we need to add the constraint cai,af1,...,afk
(ai = 0, af1 = 0, . . . , afk =

0) = 0. In words, if a node is not taken in the extension (i.e. ai = 0), then it
must be attacked by at least one of the taken nodes, that is at least a father
of ai needs to be taken in the stable extension (that is, afj = 1).

Moreover, if a node ai has no father in the graph, it has to be included in the
stable extension (notice ai cannot be attacked by nodes inside the extension,
since he has no father). The corresponding unary constraint is cai

(ai = 0) = 0.

Notice that by using the Boolean semiring, also the class of preference con-
straints becomes crisp and we can consequently model classical Dung AFs, that is
not weighted frameworks. The following proposition states the equivalence between
solving an AFS and its related SCSP.

Proposition 1 (Solution equivalence) Given an AFS = 〈Args, R,W,S〉 and S =
〈A,+,×,0,1〉, the solutions of the related SCSP obtained with the mapping corre-
sponds to find over AFS the best(according to +)

• admissible extensions by using preference and conflict constraint classes.

• complete extensions by using preference, conflict and admissible constraint
classes.

• stable extensions by using preference, conflict and stable constraint classes.

11

By using the Boolean semiring the solutions of the (S)CSP respectively correspond
to all the classical admissible, complete and stable extensions of Dung [12].

Moreover, to find the preferred extension (see Sec. 2) we simply need to find all
the maximal (w.r.t. set inclusion) admissible extensions of Args, that is to find all
the admissible sets (using the first three classes of constraints) and then returning
only those subsets with the highest number of variables assigned to 1. Similar
considerations hold for the grounded extension (see Sec. 2), that is we need to find
all the complete extensions (the first four classes of constraints) and then to return
only those subsets with the lowest number of variables assigned to 1 1.

As suggested in Sec. 4, an AFS can be represented as a weighted interaction
graph as in Fig. 5, where we instead suppose to use a Weighted semiring, i.e.
〈R+,min, +̂,∞, 0〉, e.g. the argument a has received 7 negative comments. The
goal in this case is to choose the extensions of Dung and to minimize the sum of the
negative comments at the same time.

Notice that the presented soft constraint framework can be easily used to solve
argumentation problems with additional constraints, as proposed in [11] only for
boolean constraints. We can find further requirements on the sets of arguments
which are expected as extensions, like “extensions must contain argument a when
they contain b” or “extensions must not contain one of c or d when they contain a

but do not contain b”.

The Java Constraint Programming solver [19], JaCoP in short, is a Java library,
which provides Java user with Finite Domain Constraint Programming paradigm.
It provides different type of constraints: most commonly used primitive constraints,
such as arithmetical constraints, equalities and inequalities, logical, reified and con-
ditional constraints, combinatorial (global) constraints. The last version of JaCoP
proposes many features, such as pruning events, multiple constraint queues, special
data structures to handle efficiently backtracking, iterative constraint processing,
and many more [19]. Moreover, it can run also large examples, e.g. ca. 180000
constraints.

In Fig. 6 we show the definition in JaCoP of all the constraints used to solve the
AFS example in Fig. 5. The full description of the code can be found in Appendix A.
Considering for example the first conflict-free constraint in Fig. 5, v[0], v[1], means
that the constraint is between a and b and (1, 1) that the the constraint is not
satisfied if both variables are taken in the set.

Considering the example in Fig. 5 the admissible sets are: {a}, {c}, {d}, {a, c}, {a,

d}. Dung’s semantics induce the following acceptable sets: stable one extension
{a, d}, two preferred extensions PE1 = {a, c}, PE2 = {a, d}, three complete ex-
tensions CE1 = {a, c}, CE2 = {a, d}, CE3 = {a} and grounded extension ≡ {a}.

1Different interpretations of grounded/preferred extensions can be given by considering their
cost instead of their the cardinality.

12

 // Defining the Variables of the SCSP
v[0] = new BooleanVariable(store, "a");
v[1] = new BooleanVariable(store, "b");
v[2] = new BooleanVariable(store, "c");
v[3] = new BooleanVariable(store, "d");
v[4] = new BooleanVariable(store, "e");

 // conflict-free constraints
public static void imposeConstraintConflictFree(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]}, new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[1]}, new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]}, new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]}, new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]}, new int[][]{{1, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[4], v[4]}, new int[][]{{1, 1}})); }

 // admissible constraints
public static void imposeConstraintAdmissibleSet(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]}, new int[][]{{0, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[1]}, new int[][]{{0, 1}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[4]}, new int[][]{{0, 1}})); }

 // stable constraints
public static void imposeConstraintStableExtensions(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]}, new int[][]{{0}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[2], v[1]}, new int[][]{{0, 0, 0}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]}, new int[][]{{0, 0}}));
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]}, new int[][]{{0, 0}})); }

 // complete constraints
public static void imposeConstraintCompleteExtensions(Store store, BooleanVariable[] v) {
store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]}, new int[][]{{0}})); }

Figure 6. The constraint in JaCoP for the mapping of Fig. 5.

With our quantitative interpretation of AFs with preferences and considering the
Fuzzy semiring 〈R+,min, +̂,∞, 0〉, we can prefer PE1 over PE2 (W (a)+̂W (c)) = 13,
W (a)+̂W (d) = 17 and CE3 over CE1 and CE2, since W (a) = 7. All these best
solutions are obtained by using JaCoP.

6 Related Work

In [23], the authors have developed the notion of fuzzy unification and incorporated
it into a novel fuzzy argumentation framework for extended logic programming: the
attacks are associated to a fuzzy strength value, i.e. a V -attack. As well, a V -
argument A is V -acceptable w.r.t. the set Args of V -arguments if each argument
V -attacked A is V -attacked by an argument in Args.

In [3], AFs have been also extended to Value Based Argumentation Frameworks
(VAF) where V is a generic nonempty set of values and Val is a function which
maps from elements of Args to elements of V .

13

The work in [2] concerns the acceptability of arguments in preference-based argu-
mentation frameworks. Preferences are represented with a preordering relationships
(partial or total) that resembles the ordering defined by the + operator of semirings
(see Sec. 3).

Probabilistic Argumentation [14, 18]. This theory is an alternative approach
for non-monotonic reasoning under uncertainty. It allows to judge open questions
(hypotheses) about the unknown or future world in the light of the given knowledge.
From a qualitative point of view, the problem is to derive arguments in favor and
against the hypothesis of interest.

In [20] the author has extended Dung’s theory of argumentation to integrate
metalevel argumentation about preferences. Dung’s level of abstraction is preserved,
so that arguments expressing preferences are distinguished by being the source of
a second attack relation that abstractly characterizes application of preferences by
attacking attacks between the arguments that are the subject of the preference
claims.

Comparison. The framework proposed in this paper is able to solve all the above
reported AFs (including the classical Dung framework [12]), both from the qualita-
tive and (main novelty) quantitative point of view. Since in this paper we mainly
propose a solving framework, we compare it with other related works.

In [17] crisp constraint have been used to model argumentation as constraint
propagation in Distributed Constraint Satisfaction Problem (DSCP). Different agents
represent the distributed points in the problem. The paper shows the appropriate-
ness of constraints in solving large-scale argumentation systems. However, it seems
to only solve classical problems, (i.e. no qualitative or quantitative extensions).

The are some frameworks based on Logic Programming-like languages. For ex-
ample, the system ASPARTIX [13] is a tool for computing acceptable extensions for
a broad range of formalizations of Dung’s argumentation framework and generaliza-
tions thereof, e.g. value-based AFs [3] or preference-based [2]. ASPARTIX relies
on a fixed disjunctive datalog program which takes an instance of an argumentation
framework as input, and uses the answer-set solver DLV for computing the type of
extension specified by the user. However, ASPARTIX does not solve any quantita-
tive argumentation case, as well as other Answer Set Programming systems [22].

Other papers [9] work directly with algorithms over the interaction graph, and
thus they do not provide a general expressive system as constraints formulation or
logic programming do instead.

7 Conclusions and Future Work

In the paper we have revised the notions provided by Dung [12] in order to asso-
ciate the argument preference with a weight (taken from a semiring structure) that

14

represents the “goodness” of the argument in terms of cost, fuzziness, probability
or else. Further on, we have suggested the Dung’s semantics in their soft version.
Moreover, we have presented a mapping from SCSPs to AFs and solved the ob-
tained SCSP with JaCoP, a Java Constraint Programming solver, thus finding the
solution of the related AF. We have proposed an unifying computational frame-
work with strong mathematical foundations and solving techniques, where by only
parametrically changing the semiring we can deal with different weighted (or not)
AFs.

In the future, we would like to cluster arguments according to their (for example)
coherence, still using soft constraints as the framework to obtain the solution. This
can be useful to check the discrepancies/likeness during a negotiation process, inside
different interviews to the same political candidate or during discussions in general.
As an example, “We do not want immigrants with the right to vote” is clearly closer
to “Immigration must be stopped”, than to “We need a multicultural and open society
in order to enrich the life of everyone and boost our economy”, and should belong
to the same cluster.

Moreover, we would like to solve over-constrained weighted AF problems, where
weights are associated with arcs and represent the cost of the attack between two
arguments. We want to relax the notion of admissibility to α-admissibility (and also
the other notions and semantics of Dung), in order to include in the same admissible
set also attacking arguments, whose attack costs are not worse than a threshold α;
this in case classical admissible sets cannot be found in the given AF.

Acknowledgements

We would like to thank Massimiliano Giacomin for the important suggestions.

References

[1] L. Amgoud, C. C., M.-C. Lagasquie-Schiex, and P. Livet. On bipolarity in
argumentation frameworks. Int. J. Intell. Syst., 23(10):1062–1093, 2008.

[2] L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based
argumentation frameworks. J. Autom. Reasoning, 29(2):125–169, 2002.

[3] T. J. M. Bench-Capon. Persuasion in practical argument using value-based
argumentation frameworks. J. Log. Comput., 13(3):429–448, 2003.

[4] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In
Workshop on Non-Monotonic Reasoning, pages 59–64, 2004.

[5] S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume
2962 of LNCS. Springer, 2004.

15

[6] S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint program-
ming. ACM Trans. Comput. Logic, 7(3):563–589, 2006.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving
and Optimization. Journal of the ACM, 44(2):201–236, March 1997.

[8] S. Bistarelli and F. Santini. Propagating multitrust within trust networks. In
ACM Symposium on Applied Computing, pages 1990–1994. ACM, 2008.

[9] C. Cayrol, S. Doutre, and J. Mengin. On decision problems related to the
preferred semantics for argumentation frameworks. J. Log. Comput., 13(3):377–
403, 2003.

[10] S. Coste-Marquis, C. Devred, S. Konieczny, M. Lagasquie-Schiex, and P. Mar-
quis. On the merging of dung’s argumentation systems. Artif. Intell., 171(10-
15):730–753, 2007.

[11] S. Coste-Marquis, C. Devred, and P. Marquis. Constrained argumentation
frameworks. In Knowledge Representation and Reasoning (KR), pages 112–
122. AAAI Press, 2006.

[12] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.

[13] U. Egly, S. Alice Gaggl, and S. Woltran. ASPARTIX: Implementing argumen-
tation frameworks using answer-set programming. In International Conference
on Logic Programming (ICLP), pages 734–738. LNCS, Springer, 2008.

[14] R. Haenni. Probabilistic argumentation. J. Applied Logic, 7(2):155–176, 2009.

[15] J. Janssen, M. De Cock, and D. Vermeir. Fuzzy argumentation frameworks.
In Information Processing and Management of Uncertainty in Knowledge-based
Systems, pages 513–520, 2008.

[16] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decis. Support Syst., 43(2):618–644, 2007.

[17] H. Jung, M. Tambe, and S. Kulkarni. Argumentation as distributed constraint
satisfaction: applications and results. In Conference on Autonomous agents
(AGENTS), pages 324–331, New York, NY, USA, 2001. ACM.

[18] Jürg Kohlas. Probabilistic argumentation systems a new way to combine logic
with probability. J. of Applied Logic, 1(3-4):225–253, 2003.

16

[19] K. Kuchcinski and R. Szymanek. Jacop - java constraint programming solver,
2001. http://jacop.osolpro.com/.

[20] S. Modgil. Reasoning about preferences in argumentation frameworks. Artif.
Intell., 173(9-10):901–934, 2009.

[21] U. Montanari. Networks of constraints: Fundamental properties and applica-
tions to picture processing. Inf. Sci., 7:95–132, 1974.

[22] J. C. Nieves, U. Cortés, and M. Osorio. Possibilistic-based argumentation: An
answer set programming approach. In Mexican International Conference on
Computer Science(ENC), pages 249–260. IEEE Computer Society, 2008.

[23] M. Schroeder and R. Schweimeier. Fuzzy argumentation for negotiating agents.
In AAMAS, pages 942–943. ACM, 2002.

Appendix A

The appendix shows all the JaCoP [19] code written to solve the AFS proposed in
Fig. 5.

package ExamplesJaCoP;

import JaCoP.constraints.ExtensionalConflictVA;

import JaCoP.core.*;

import JaCoP.search.*;

import java.util.ArrayList;

import java.util.Vector;

public class Argumentation {

static Argumentation m = new Argumentation();

static int size = 5; // number of variables

static int[] pesi = {7, 20, 6, 10, 12}; // weights associated with arguments

static String[] etichette = {"Conflict free", "Admissible sets", "Stable extensions",

"Complete extensions", "Preferred Extensions", "Ground extensions"};

static int insieme = 2;

static Store store; // store

static BooleanVariable[] v; // array of variables

public static void main(String[] args) {

// defining the store

store = new Store();

// defining the array of variables

v = new BooleanVariable[size];

// defining the single variable inside the store

v[0] = new BooleanVariable(store, "a");

v[1] = new BooleanVariable(store, "b");

v[2] = new BooleanVariable(store, "c");

v[3] = new BooleanVariable(store, "d");

17

v[4] = new BooleanVariable(store, "e");

/**

* 0 = conflict free

* 1 = admissible set

* 2 = stable extensions

* 3 = complete extensions

* 4 = preferred extensions

* 5 = ground extensions

*/

switch (insieme) {

case 0: // conflict free

imposeConstraintConflictFree(store, v);

break;

case 1: // admissible set

imposeConstraintConflictFree(store, v);

imposeConstraintAdmissibleSet(store, v);

break;

case 2: // stable extensions

imposeConstraintConflictFree(store, v);

imposeConstraintStableExtensions(store, v);

break;

case 3: // complete extensions

imposeConstraintConflictFree(store, v);

imposeConstraintAdmissibleSet(store, v);

imposeConstraintCompleteExtensions(store, v);

break;

case 4: // preferred extensions: admissible + largest set

imposeConstraintConflictFree(store, v);

imposeConstraintAdmissibleSet(store, v);

break;

case 5: // ground extensions: complete + smallest set

imposeConstraintConflictFree(store, v);

imposeConstraintAdmissibleSet(store, v);

imposeConstraintCompleteExtensions(store, v);

break;

}

/*

* returning the solutions

*/

getSolutions(store, v, insieme);

System.out.println("");

}

// conflict-free constraints

public static void imposeConstraintConflictFree(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]},

new int[][]{{1, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[1]},

new int[][]{{1, 1}}));

18

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]},

new int[][]{{1, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]},

new int[][]{{1, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new int[][]{{1, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[4], v[4]},

new int[][]{{1, 1}}));

}

// admissible set constraints

public static void imposeConstraintAdmissibleSet(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[1]},

new int[][]{{0, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[1]},

new int[][]{{0, 1}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[4]},

new int[][]{{0, 1}}));

}

// stable constraints

public static void imposeConstraintStableExtensions(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]},

new int[][]{{0}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0], v[2], v[1]},

new int[][]{{0, 0, 0}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[2], v[3]},

new int[][]{{0, 0}}));

// the constraint below is redundant w.r.t. the one just above

//store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[2]},

new int[][]{{0, 0}}));

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[3], v[4]},

new int[][]{{0, 0}}));

}

// complete constraints

public static void imposeConstraintCompleteExtensions(Store store, BooleanVariable[] v) {

store.impose(new ExtensionalConflictVA(new BooleanVariable[]{v[0]},

new int[][]{{0}}));

}

public static void getSolutions(Store store, BooleanVariable[] v, int insieme) {

// search for a solution and print results

Search label = new DepthFirstSearch();

// ordering the solutions

SelectChoicePoint select = new InputOrderSelect(store, v, new IndomainMax());

label.getSolutionListener().searchAll(true);

// record solutions; if not set false

label.getSolutionListener().recordSolutions(true);

boolean result = label.labeling(store, select);

int[][] soluzioni = label.getSolutionListener().getSolutions();

if (insieme == 0 || insieme == 1 || insieme == 2 || insieme == 3) {

// printing the solutions

System.out.print(etichette[insieme] + ": ");

for (int i = 0; i < label.getSolutionListener().solutionsNo(); i++) {

19

System.out.print("(");

for (int j = 0; j < size; j++) {

if (soluzioni[i][j] == 1) {

System.out.print(v[j].id);

}

}

System.out.print(")");

}

// obtaining the best solutions

Vector<Integer> miglioriSoluzioni = getBestSolutions(soluzioni,

label.getSolutionListener().solutionsNo());

// printing the best solutions

printBestSolutions(miglioriSoluzioni, soluzioni);

} // preferred extensions

else if (insieme == 4) {

// computing the preferred extensions, and then printing

ArrayList<Integer> indice = new ArrayList<Integer>();

int max = 0;

int temp = 0;

for (int i = 0; i < label.getSolutionListener().solutionsNo(); i++) {

temp = 0;

for (int j = 0; j < size; j++) {

if (soluzioni[i][j] == 1) {

temp++;

}

}

if (temp == max) {

indice.add(i);

} else if (temp > max) {

indice.clear();

indice.add(i);

max = temp;

}

}

// printing the solutions

System.out.print(etichette[insieme] + ": ");

for (int i = 0; i < indice.size(); i++) {

System.out.print("(");

for (int j = 0; j < size; j++) {

if (soluzioni[indice.get(i)][j] == 1) {

System.out.print(v[j].id);

}

}

System.out.print(")");

}

int[][] soluzioniBuone = new int[indice.size()][size];

for (int i = 0; i < indice.size(); i++) {

soluzioniBuone[i] = soluzioni[indice.get(i)];

}

// obtaining the best solutions

20

Vector<Integer> miglioriSoluzioni = getBestSolutions(soluzioniBuone,

indice.size());

// printing the best solutions

printBestSolutions(miglioriSoluzioni, soluzioni);

} // ground extensions

else if (insieme == 5) {

// computing ground extensions

ArrayList<Integer> indice = new ArrayList<Integer>();

int min = Integer.MAX_VALUE;

int temp = 0;

for (int i = 0; i < label.getSolutionListener().solutionsNo(); i++) {

temp = 0;

for (int j = 0; j < size; j++) {

if (soluzioni[i][j] == 1) {

temp++;

}

}

if (temp == min) {

indice.add(i);

} else if (temp < min) {

indice.clear();

indice.add(i);

min = temp;

//indice = i;

}

}

// printing the solutions

System.out.print(etichette[insieme] + ": ");

for (int i = 0; i < indice.size(); i++) {

System.out.print("(");

for (int j = 0; j < size; j++) {

if (soluzioni[indice.get(i)][j] == 1) {

System.out.print(v[j].id);

}

}

System.out.print(")");

}

int[][] soluzioniBuone = new int[indice.size()][size];

for (int i = 0; i < indice.size(); i++) {

soluzioniBuone[i] = soluzioni[indice.get(i)];

}

// obtaining the best solutions

Vector<Integer> miglioriSoluzioni = getBestSolutions(soluzioniBuone,

indice.size());

// printing the best solutions

printBestSolutions(miglioriSoluzioni, soluzioniBuone);

}

}

// array as in input and returns the indexes of the best elements

// computing solutions with the best (i.e. lowest) cost

21

public static Vector<Integer> getBestSolutions(int[][] soluzioni, int numerosoluzioni) {

Vector<Integer> indiciSoluzioni = new Vector<Integer>();

Integer[] soluzioneConPeso = new Integer[2];

int min = Integer.MAX_VALUE;

int pesoSoluzione = 0;

for (int j = 0; j < numerosoluzioni; j++) {

pesoSoluzione = 0;

soluzioneConPeso[0] = 0;

soluzioneConPeso[1] = 0;

for (int c = 0; c < size; c++) {

if (soluzioni[j][c] == 1) {

pesoSoluzione = pesoSoluzione + pesi[j];

}

}

if (pesoSoluzione < min) {

indiciSoluzioni.removeAllElements();

min = pesoSoluzione;

indiciSoluzioni.add(j);

//System.out.println("index of the added solution " + j);

} else if (pesoSoluzione == min) {

indiciSoluzioni.add(j);

}

}

//System.out.println("solution index: " + indiciSoluzioni.get(0));

return indiciSoluzioni;

}

public static int getWeigthSolution(int[] soluzione) {

int pesoSoluzione = 0;

for (int i = 0; i < size; i++) {

if (soluzione[i] == 1) {

pesoSoluzione = pesoSoluzione + pesi[i];

}

}

return pesoSoluzione;

}

public static void printBestSolutions(Vector<Integer> miglioriSoluzioni, int[][] soluzioni) {

System.out.println("");

System.out.print("Bests " + etichette[insieme] + ": ");

for (int i = 0; i < miglioriSoluzioni.size(); i++) {

System.out.print("(");

for (int j = 0; j < size; j++) {

if (soluzioni[miglioriSoluzioni.get(i)][j] == 1) {

System.out.print(v[j].id);

}

}

System.out.print(") = " + getWeigthSolution(soluzioni[miglioriSoluzioni.get(i)]));

}

}

}

22

