Universita degli Studi “G. D’Annunzio”
Dipartimento di Scienze

Constraint-based Languages to
Model the Blood Coagulation
Cascade

Stefano Bistarelli Marco Bottalico
Francesco Santini

November 12, 2009

Technical Report no. R-2009-002 Research Series






Constraint-based Languages to Model the Blood
Coagulation Cascade

Stefano Bistarelli Marco Bottalicd Francesco Santifi

I Dipartimento di Scienze, UniveraitG. d’Annunzio”, Pescara, Italy
Istituto di Informatica e Telematica (CNR), Pisa, Italy
ipartimento di Matematica e Informatica, Univegsidi Perugia, Italy
bi sta@ci.unich.it
2Dipartimento di Scienze, UniveraitG. d’Annunzio”, Pescara, Italy
bottalic@ci.unich.it
2Dipartimento di Scienze, UniveraitG. d’Annunzio”, Pescara, Italy
Istituto di Informatica e Telematica (CNR), Pisa, Italy
santini @ci.unich.it

November 12, 2009

Abstract. In this paper, we use different formal languages based ostints to
model biological reactions and use the blood coagulatieeade as a running exam-
ple to analyze similarities and differences. Moreover wmpare the results of the
simulation with in vitro experiments in the medical sciéintiiterature by also con-
sidering an hepatic inhibitor drug. Our study show how &sebtained with in vitro
experiments could be modeled in silico using constrairglages.

Keywords: Biochemical Reactions, Blood Coagulation, Concurrent €k@int Pro-
gramming



Contents
1 Introduction 3

2 Constraint-based Languages for Biology 3
2.1 Stochastic Concurrent Constraint Programming . . . . . . ... .. .. ..
2.2 Non Deterministic Temporal Concurrent Constraint Programming . . . . .
2.3 Hybrid Concurrent Constraint Programming . . . . . . . . ... ... ...

3 Biochemical Reactions and Blood Coagulation 6

4 Modeling Blood Coagulation with sSCCP, ntCC and HCC 8
4.1 SCCP . . . e 8
42 ntCC . . . . e 8
4.3 HCC . . . e e 17

5 Resultsand Comparison of the Frameworks 18

6 Related Works 20

7 Conclusionsand Future Works 20

Technical Report no. R-2009-002 Research Series



1 Introduction

System biology is an interdisciplinary science, integrating experimentalitgciind ma-
thematical modeling, which studies the dynamical behaviors of biologicalragsté/hile
current genome projects provide a huge amount of data on genesteinprdot of re-
search is still necessary to understand how the different parts of gjlmaleystem interact.
Mathematical and computational techniques are central in this approachdgybias they
provide the capability of formally describing living systems and studying threprieties.

A variety of formalisms for modeling biological systems has been proposedritiite.
In [4], the author distinguishes three basic approaches: discrethastarand continuous.
Discrete models are based on discrete variables and discrete states;lcantjauous mod-
els are based on differential equations that typically model biochemiczlons; finally in
the stochastic ones the probabilities are introduced through randomleariahich are
usually defined by taking into account the kinetics laws. In the latest agipibeare is a
simplified representation of the processes and an integration of the dtocimase in order
to get more realistic models.

In [16] it is shown that there are two formalisms for mathematically describingrttes
behavior of a spatially homogeneous chemical systems: the deterministi@aalp@ed the
stochastic one. The first regards the time evolution as a continuous atict@iée process
which is governed by a set of ordinary differential equations (thectiea-rate equations”),
while the seconds regard the time evolution as a kind of random-walk pratéds is go-
verned by a single differential-difference equation (the “master equation

The goal of this paper is to show how different kinds of constraint-dbéssguages can
model biochemical reactions and to compare and to use their features.ngnadges stud-
ied are thestochastic Concurrent Constraint Programm{is@CB [8], thenon-Deterministic
Temporal Concurrent Constraint ProgrammirfgtCC) [18] and theHybrid Concurrent
Constraint ProgrammingHCC) [24].

We want to show that these formalisms can be used to simulate in vitro reactiohs, a
can be then adopted to save time and costs by using an automated simulation ifTk#ico.
obtained in silico results have been produced by using the in vitro paranieteedical
literature (i.e. the six reaction definitions, the stoichiometric coefficients anthtter’s
concentration). In vitro and in silico results are the same in terms of redudttbe throm-
bin formations.

2 Constraint-based Languages for Biology

Concurrent Constraint Programming@P) languages [22] concern the behaviour of a set
of concurrent agents with a shared store, which is a conjunction ofreams. Each com-
putation step possibly adds new constraints to the store. Thus information aonmally
added to the store until all agents have evolved. The final store is amgfinieof the ini-
tial one and it is the result of the computation. The concurrent agentstamnonunicate

3



directly with each other, but only through the shared store, by eithekiteif it entails a
given constraintgskoperation) or adding a new constraint totél( operation).

We use languages based@oncurrent Constraint Programmirjg2], because we want
a powerful framework which provides the fine grained concurremsyrdble for composi-
tionality. For example, the blood cascade coagulation is modelled by compgsirajl€!
execution) programs representing each step of the cascade. In ttégtawa use composi-
tionality with the meaning of "compositionality of biochemical reactions”.
The languages based @oncurrent Constraint Programmir[@2] are very expressive, be-
ing built on top of arbitrary constraint systems, and are also declardfizeh program is
a logical formula, that make easy the reasoning about the models. The rgabetiveen
the logic programming and the real behavior is given by the notion of competitioltain
the shared resources (i.e. ttece competition In nature, if we have a reaction which
involves many components, these components compete to reach the singlaties;dor
example, the species less suited to compete for limited resources should @gthieoaface
extinction.

2.1 Stochastic Concurrent Constraint Programming

sCCP [8] derives from classical CCP [22] by adding a stochastididart the instructions
interacting with the constraint sto€g i.e. ask andtell by means of stream variables.

ask andtell are identified by a rate functiom: tell,(c) andask,(c), with the meaning that
the reaction occurs in a stochastic time T, following the probability féwy = Ae="7; tello,
stay instead for an instantaneous execution wiallg never occurs.

The stream variables are time-varying variables, they can be easily maded€CP
as growing lists with a unbounded taX = [aq, ..., 4,|Y]. When the quantity changes, we
simply need to add the new value, dgyat the end of the list by replacing the old tail vari-
able with a list containing and a new tail variableY = [b|Y’]. When we need to know the
current value of the variablg, we need to extract from the list, the value immediately pre-
ceding the unbounded tail. These variables are connected to the nomemicrizehaviour
in sCCP.

With the sCCPthe author in [5] models some biochemical reactions: an enzymatic
reaction and a MAP-kinase cascade; in [8] a gene regulatory networken particular a
bistable circuit, a repressilator and a circadian clock; in [6] models the dealth protein
complexes: a agent-based protein structure prediction and a proteingfaitimulation.
in [7] describes and models a molecular interaction maps.

In the sCCP the author provides a model checker implemented by PRISI \\&jrk
on bisimulation and Temporal logic in [5].

2.2 Non Deterministic Temporal Concurrent Constraint Programming

In ntCC [18], time is conceptually divided into discrete intervals. In a time unitpagss
gets an input (a constraint) from the environment; it executes with this input as the initial

4



store and it outputs the resulting statdo the environment, when it reaches its resting
point. The resting point determines a residual pro¢gsshich is then executed in the next
time unit. With the “next” operator we can transfer information from one time uniéo
following one.

The constructs different from classical cc are the following:

when ¢ do P is equivalent taisk(c) — P. Its function is asking information about
the state of the system;

o next(P) represents the activation Bfin the next time interval;

e unless ¢ next (P): P will be activated only ifc cannot be inferred from the current
store (it is connected to the non-monotonic behaviour in the ntCC);

e *x P allow us to express partial information on the time units where processes are
executed. Procese P represents an arbitrary long but finite delay for the activation
of P. % Py = next” (P) + next™! (P) + ... + next"™™1 (P) + next™ (P);

e ! P represent® || next (P) || next> (P) || ..., many copies oP but one at a time unit.

In the implementation we used thext(P) operator encoded with the symbadxt([[P]]),
the xP operator encoded with the symbep([[P]]) and the!P operator encoded with the
symbolstar([[P]]).

With thentCCin [18] the author models a SP-pump and an interaction between genes.
In ntCC we have a Model checking for a finite time interval [14], a Weak bikitian [25]
and a Linear temporal logic.

2.3 Hybrid Concurrent Constraint Programming

HCC is a powerful framework for modeling, analyzing and simulating hybrsdesns, i.e.,
systems that exhibit both discrete and continuous change. Itis an extef$imed Default
CCP[23] over continuous time. One of the major problems in the original CCP framew
is that CCP programs can detect only the presence of information, ndb¢kece. Timed
Default CCP extends CCP by a negatasé combinator {f a else A) which imposes the
constraintz at the progranA.

The CCP paradigm has no concept of timed execution. For modeling diseattive
systems, it was introduced the idea (from synchronous programminghthativironment
reacts with a system (program) at discrete time ticks. At each time tick, theapnogx-
ecutes a CCP program, outputs the resulting constraint, and sets up gmoirm for
execution at the next clock tick. Concretely, this lead to the addition of twer@oron-
structs to the languageext A (executeA at the next time instant), andways A (execute
A at every time instant). Thus, intuitively, the discrete timed language was othiayneni-
formly extending the not-timed language (CCP or Default CCP) across €inttime [17].
Next Aandalways Aare connected to the non-monotonic behaviour in HCC.

5



The authors of [17] allow constraints expressing initial value (integrapoolem, e.g.
constraints of the fornmit(X = 0); cont(dot(X) = 1) read as follows: the initial value of
X is 0, the first derivative oKX is 1 and from these we can infer th&t= ¢ at timet.

In HCC a new temporal control construct has been added to the not-timfadlDECP:
hence A. Declarativelylience A imposes the constraints df at every time instant after the
current one. Operationally, enice A is invoked at time, a new copy ofA is invoked at
each instant irit; 1).

With the HCC [24] we have two running examples: the cell differentiation and the interac-
tion between 2genes.

Concerning HCC we can find a model checker providing a simulation ofidigntomata,

the HyTech model checker [26] that performs a bisimulation with Labelediaprocesses
and a linear Temporal logic verification [24].

3 Biochemical Reactions and Blood Coagulation

The blood coagulation process can be defined by a set of biochemédiores among
proteins. In general, all the interactions that take place in a cell, can &egad into a
diagram, thus obtaining a biochemical network. Biochemical networks caspbesented
using equations, usually described as follows:

miRq + ... + Ry — n1P1 + ... + ny, Py, (l)

In the equation (1R; are the reactantd}; the productsyn; and n; are the stoichiomet-

ric coefficients. Along with this expression, there is a real number representing its basic
expected “frequency”; this number is related to the adopted kinetic mofietH& most
important kinetic laws that we consider are Michaelis-Menten (MM), Hill's kiocse(HK)

and Mass Action (MA) [5]. According to how we want to describe a reactiee can use
one or another kinetic law, and in this way we can model different betsavior

This is the scheme to represent the Michaelis-Menten kinetics [12]:

E+s$j1 ES =R E+P )

In the equation (2) the enzyntédoes not magically conveff into P, it must first come

into a physical contact with it, i.eE binds S to form an enzyme-substrate complES.

The termsky, k-1 andk, are rate constants for, respectively, the association of substrate
and enzyme, the dissociation of unaltered substrate from the enzyme atdidgbeiation

of product from the enzyme.

At this point there are two important hypotheses in order to safely use theaklis-Menten
kinetics:

1The stoichiometric coefficients of a chemical equation represent the nati among material quantities
(expressed in nanomolars).



Contact activation (intrinsic) pathway Tissue factor
Damaged
surface

Trauma
lTissuz factor

XIIa /‘3\
1 VIIa VII
XI XIG l

/\/\

PruThr‘cmbmg. Thrombin
(IT) (IIa) pathway

(extrinsic) pathway

Common

Figure 1: Coagulation Cascade.

1. [S] >> [E] i.e. the quantity of the substrate S is significatively bigger than the quan-
tity of the enzyme E.

2. The system is in a quasi steady-state i.e Bheomplex is being formed and broken
down at the same rate, so ovelfdb] is constant.

Under these hypotheses, the most important equations in the MichaelisrMéamatics are:

Ky = }:kz Michaelis constant. It measures the affinity of the enzyme for the subsfrate:
Ky is small there is a high affinity, and viceversa.

Vmax = Vo = ko[ Ep]. This is the maximum rate, would be achieved when all of the enzyme
molecules have substrate bound (HAEy] is the starting quantity of enzynie k; is also
calledk.;.

In the following of the paper we will use blood coagulation phenomenon aararmng
example for our study. The blood coagulation is part of an important ledshde mech-
anism termechemostasisthat is the cessation of blood loss from a damaged vessel [27].
Blood clotting is a very delicately balanced system; when hemostatic functibrssiaor-
rhage or thromboembolic phenomena may result. The chemical reactionerikttude the
whole process can be seen as a decomposition of many kinds of enzyraeticns, involv-
ing reactants, products, enzymes, substrates, stoichiometric coeffipiené&ins, inhibitors
and chemical accelerators.

In our work we use an exemplification model, given in Fig. 1. In the intrinsit the
extrinsic pathways (see Fig. 1), the chain of events leading to coagulatiangst in motion
merely by the exposure of plasma to non endothelial surfaces such assarglatro, or a
collagen fibres in basement membranes in vivo [2].

The downward sequence of reactions in Fig. 1 justifies the term “cdschudthe ex-
trinsic pathway, coagulation is achieved as a result of an injury to the lwgadrom the
“outside”. This pathway is initiated when the tissue factor becomes mixed witbr&dt,

VII, X, Xll and calcium of the blood plasma. In the extrinsic pathway we have a sefjuenc

7



react(S, P, Ky, Vo) : —
sk (K, Vo,5)(S > 0). (telloo(S $= S — 1)||telloo(P $= P + 1)). react(S, P, Kp, Vo)

Figure 2: Blood coagulation in SCCP

of reactions leading to fibrin formation, beginning with the contact activatidaator XII,
and resulting in the activation of factdt to initiate the common pathway of coagulation.
The extrinsic pathway merges with the intrinsic one after the activation ofrfxcto

We have both pathways and all the interactions to get to the thrombin formatoto(F
lla). We have labeled each reaction, in order to make every steps of dysiares clear as
possible.

4 Modeling Blood Coagulation with sSCCP, ntCC and HCC

In this section we show how the simplified cascade in Fig. 1 can be properlglatbaith
the three languages. For sake of brevity we only show the piece of csdd€o model the
fist reaction in Fig. 1XI + XIla = XlIa) labeled with the number 1. However all the code is
available in [10].

41 sCCP

The first biochemical equation given in (2), can be modelled in sCCP witholleving
recursively defined method [8] in Fig. 2.

The rate) of theask, is computed by the Michaelis-Menten kinetiGg(x,,,v,, s) = %

in Fig. 2. Roughly the program inserts in the store the current value fovahables, it
checks the value of the factér, then, with an immediate effect, it updates the values for
the factorsS (reagent) an@ (product) with the new values. Subsequently it executes a new
instance of the program.

42 ntCC

In the following we encode in ntCC the first reaction in Fig. 1, we show onlyetieyme
formation OEe). E (DEe), S (DE9), ES(DEeg andP (DEp) can combined to show the
collaborative function.

% Title : Blood Coagul ati on

% Aut hors : Marco Bottalico

% Created : Septenber 1 / 2009

% Last Modified : Septenber 1 / 2009
% Description : Sixth Reaction



% functor inport

% Application System

%R at './../../ntccSinmri/R.ozf’

% NTCC at’./../../ntccSimntccSimozf’
% Open define

DEVars = vars(e:_ s:_es:_ p:_sl:_ esl:_

es3:_ p3:_s4:_es4d:_pd:_es5 _t:)
T = vars(tntcc: )

Svars = Record.adjoin T DEVars
Resol ution = 10.0

Dt = 0.1/ Resolution

MaxTi me = 200

Kl =1.0

Knl = 0.0908

K2 = 0.0092

K3 =1.0

Kn8 = 2.09

K4 =
K5 =
Knb = 0. 267
K6 = 0.2
K7 = 1.0
Knv = 0.0325
K8 = 0.0075
K9 1.0

Knd = 0.02
K10
Ki1 = 1.0
Knmll = 0.0325
K12 = 0.04

=N
o »

I
©
N
N

T:::0#1000000
Record.forAll DEVars proc{$ X }

pl: _

Xi = {Rl.var.exp "[-10000.0, 10000.0]"} end

% me Process (discrete and continuous)
TimeS = par(tell (proc{$ Root} Root.current.tntcc
tell (proc{$ Root} {Rl.eq Root.current.t 0.0} end)

rep(par(next(tell (proc{$ Root}

S2: _

es2: _

Root.current.tntcc =0 Root.residual.tntcc + 1 end))

next (tell (proc{$ Root }

p2: _

0 end)

s3: _



{RlI.eq Root.current.t {R.plus Root.residual.t Dt}} end)))))

Start = par(

tell (proc{$ Root} {Rl.eq Root.current.e 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.s 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.es 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.p 0.0} end)
tell (proc{$ Root} {RI.eq Root.current.sl 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.esl 0.0} end)
tell (proc{$ Root} {RI.eq Root.current.pl 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.s2 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.es2 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.p2 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.s3 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.es3 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.p3 0.0} end)
tell (proc{$ Root} {RI.eq Root.current.s4 10.0} end)
tell (proc{$ Root} {Rl.eq Root.current.es4 0.0} end)
tell (proc{$ Root} {RI.eq Root.current.p4 0.0} end)
tell (proc{$ Root} {Rl.eq Root.current.es5 0.0} end)

)

DEe = rep(

next (

tell(

proc{$ Root }

Ec Er Ed DeE Sr ESr in

Ec = Root.current.e
Er = Root.residual.e
Sr = Root.residual.s

ESr = Root.residual.es

Ed = sub(tines(ESr plus(Kml K2)) (times(Sr times(KL Er))))
DeE = eq(Ec plus(Er tines(Ed Dt)))

{RI'. hc4 DeE}

end )))

DEs = rep(

next (

tell(

proc{$ Root }

Sc Sr Sd DeS Er ESr in

10



Sc Root . current.s

Sr Root . resi dual . s

Er Root . resi dual . e

ESr = Root.residual.es

Sd = sub(times(Knl ESr) tinmes(Sr tinmes(KL Er)))
DeS = eq(Sc plus(Sr tines(Sd Dt)))

Rl . hc4 DeS end )))

DEes = rep(

next (

tell(

proc{$ Root }

ESc ESr Er Sr ESd DeES in

ESc = Root.current. es

ESr = Root.residual.es

Er Root . resi dual . e

Sr Root . resi dual . s

ESd = sub(tinmes(KL tinmes(Er Sr)) tinmes(ESr plus(Knl K2)))
DeES = eq(ESc plus(ESr times(ESd Dt)))
{RI'. hc4 DeES}

end )))

DEp = rep(

next (

tell(

proc{$ Root }

Pc Pr ESr ESlc Pr Slc ALFA1L ALFA2 ALFA3 Pd DeP in
Pc Root . current.p

Pr Root . resi dual . p
ESr = Root.residual.es
ES1c = Root.current.esl
Pr = Root.residual.p
Slc = Root.current. sl

ALFAL = tinmes(K3 tines(Pr Slc))
ALFA2 = tinmes(ESlc plus(KnB K4))
ALFA3 = tinmes(K2 ESr)

Pd = sub(pl us(ALFA3 ALFA2) ALFA1)
DeP = eq(Pc plus(Pr times(Pd Dt)))
{RI . hc4 DeP}

end )))

11



DEs1l = rep(

next (

tell(

proc{$ Root }

Slc S1lr Elr ES1r Si1d DeSl in

Slc = Root.current.sl
Slr = Root.residual.sl
Elr = Root.residual.p

ES1r = Root.residual.esl

S1d = sub(tinmes(Kn8 ES1r) tinmes(Slr tines(K3 Elr)))
DeS1 = eq(Slc plus(Slr tines(S1id Dt)))

{RI. hc4 DeS1}

end )))

DEesl = rep(

next (

tell(

proc{$ Root }

ESlc ES1r Elr Slr ES1d DeESl in

ESlc = Root.current.esl

ES1r = Root.residual.esl

Elr = Root.residual.p

S1r = Root.residual.sl

ES1d = sub(tinmes(K3 tines(Elr Slr)) tinmes(ESLr plus(KnB K4)))
DeES1 = eq(ESlc plus(ES1r times(ES1d Dt)))
{Rl . hc4 DeESl}

end )))

DEpl = rep(

next (

tell(

proc{$ Root }

Plc P1r ES1r ES2c P1r S2c BETA1 BETA2 BETA3 P1ld DePl in
Plc = Root.current.pl

P1lr = Root.residual.pl

ES1r = Root.residual.esl

ES2c = Root.current.es?

P1lr = Root.residual.pl

S2c = Root.current.s2

BETAL times(K5 tinmes(Plr S2c))
BETA2 ti mes(ES2c pl us(Knb K6))

12



BETA3 = tines(K4 ES1r)

P1d = sub(pl us(BETA3 BETA2) BETA1)
DePl = eq(Plc plus(Plr times(P1d Dt)))
{RI. hc4 DeP1}

end )))

DEs2 = rep(

next (

tell(

proc{$ Root }

ES2r E2r S2r ES5c¢ E5r S2r EPSI LON1 EPSI LON2 EPSI LON3 EPSI LON4
EPSI LON DeS2 S2c in

ES2r = Root.residual.es?2
E2r = Root.residual.pl
S2r = Root.residual.s2
ES5¢c = Root.current.esb
E5r = Root.residual.p4
S2¢c = Root.current.s?

EPSI LON1 = tinmes(K11l tinmes(E5r S2r))
EPSI LON2 = times(Kmll ES5c)

EPSI LON3 = tinmes(K5 times(E2r S2r))
EPSI LON4 = tinmes(Knb ES2r)

EPSI LON = sub( EPSI LONA pl us( EPSI LON3 sub( EPSI LON2 EPSI LON1) ))
DeS2 = eq(S2c plus(S2r times(EPSILON Dt)))

{Rl . hc4 DeS2}

end )))

DEes2 = rep(

next (

tell(

proc{$ Root }

ES2c ES2r E2r S2r ES2d DeES2 in

ES2c Root . current. es2

ES2r Root . r esi dual . es2

E2r = Root.residual.pl

S2r = Root.residual.s2

ES2d = sub(tinmes(K5 tinmes(E2r S2r)) tinmes(ES2r plus(Knb K6)))
DeES2 = eq(ES2c plus(ES2r tinmes(ES2d Dt)))
{Rl . hc4 DeES2}

end )))

13



DEp2 = rep(

next (

tell(

proc{$ Root }

ES2r ES3c ES5c P2c P2r S3c GAMVAL GAMVA2 GAMVA3 GAMVA4 GAMVA DeP2
in

ES2r = Root.residual.es?2

ES3c = Root.current. es3

ES5¢c = Root. current. esb

P2c = Root.current.p2

P2r = Root.residual.p2

S3c = Root.current.s3

GAMVAL = times(K6 ES2r)

GAMMA2 = tinmes(Kn¥ ES3c)

GAMMA3 = plus(tines(K8 ES3c) timnmes(Kl2 ES5c))
GAMVAMA = tinmes(K7 tinmes(P2r S3c))

GAMVA = pl us( GAMVAL pl us( GAMVA2 sub( GAMVA3 GAMVA4) ) )
DeP2 = eq(P2c plus(P2r tinmes(GAMVA Dt)))

{Rl . hc4 DeP2}

end )))

DEs3 = rep(

next (

tell(

proc{$ Root }

S3c S3r E3r ES3r S3d DeS3 in

S3c = Root.current.s3

S3r = Root.residual.s3

E3r = Root.residual.p2

ES3r = Root.residual.es3

S3d = sub(tinmes(Knv ES3r) tines(S3r tinmes(K7 E3r)))
DeS3 = eq(S3c plus(S3r times(S3d Dt)))
{Rl . hc4 DeS3}

end )))

DEes3 = rep(

next (

tell(

proc{$ Root }

ES3c ES3r E3r S3r ES3d DeES3 in
ES3c = Root.current.es3

14



ES3r = Root.residual.es3

E3r = Root.residual.p2

S3r = Root.residual.s3

ES3d = sub(tinmes(K7 times(E3r S3r)) tines(ES3r plus(Knv K8)))
DeES3 = eq(ES3c plus(ES3r tinmes(ES3d Dt)))

{Rl. hc4 DeES3}

end )))

DEp3 = rep(

next (

tell(

proc{$ Root }

P3c P3r ES3r ES4c P3r S4c DELTA1L DELTA2 DELTA3 P3d DeP3 in
P3c = Root.current.p3
P3r = Root.residual.p3
ES3r Root . resi dual . es3
ES4c Root . current . es4
P3r = Root.residual.p3
S4c = Root.current. s4

DELTAL = times(K9 tinmes(P3r $S4c))
DELTA2 = tinmes(ES4c plus(Km K10))
DELTA3 = ti nes(K8 ES3r)

P3d = sub(plus(DELTA3 DELTA2) DELTA1)
DeP3 = eq(P3c plus(P3r tinmes(P3d Dt)))
{Rl . hc4 DeP3}

end )))

DEs4 = rep(

next (

tell(

proc{$ Root }

S4c S4r E4r ES4Ar S4d DeS4 in

S4c = Root.current.s4
S4r = Root.residual .s4
E4r = Root.residual.p3

ES4r = Root.residual . es4

S4d = sub(tinmes(KnD ES4r) times(S4r times(K9 E4r)))
DeS4 = eq(S4c plus(S4r times(S4d Dt)))

{RI . hc4 DeS4}

end )))

15



DEes4 = rep(

next (

tell(

proc{$ Root }

ES4Ac ESAr E4r S4Ar ESAd DeES4 in

ES4c = Root.current. es4

ES4r Root . resi dual . es4

E4r = Root.residual.p3

S4r = Root.residual.s4

ES4d = sub(tinmes(KO tines(E4r S4r)) tinmes(ES4r plus(Knd K10)))
DeES4 = eq(ES4c plus(ES4r times(ES4d Dt)))
{RI . hc4 DeES4}

end )))

DEp4 = rep(

next (

tell(

proc{$ Root }

ES4r ES5c P4c P4r S2r ZETA1 ZETA2 ZETA3 ZETA DeP4 in
ES4r = Root.residual . es4

ES5c = Root.current.es5

P4c = Root.current. p4

P4r = Root.residual . p4

S2r = Root.residual .s2

ZETAl1 = times(K10 ES4r)

ZETA2 ti mes(ES5c plus(Kmll K12))
ZETA3 times(K11l times(P4r S2r))

ZETA = pl us(ZETALl sub(ZETA2 ZETA3))
DeP4 = eq(P4c plus(P4r times(ZETA Dt)))
{RI'. hc4 DeP4}

end )))

DEes5 = rep(

next (

tell(

proc{$ Root }

E5r S2r ESH5c ES5r ES5d DeES5 in
E5r = Root.residual.p4

S2r = Root.residual.s2

ES5¢c = Root.current.esb

ES5r Root . resi dual . es5

16



ES5d = sub(tinmes(Kl1l times(E5r S2r))

ti mes(ES5r plus(Knll K12)))

DeES5 = eq(ES5c plus(ES5r tinmes(ES5d Dt)))
{RI . hc4 DeES5}

end )))

DESystem = par(Start Ti meS DEe DEs DEes DEp DEsl DEesl
DEpl DEs2 DeEes2 DEp2 DEs3 DEes3 DEp3 DEs4 DEes4 Dep4
DEesb)

Er, SrandESrrepresent the residual quantity of enzyme, substrate and enzymnteaseibs
while Ec represents the current quantity of enzynied represents the differential equa-
tion for the enzyme formationDeE represents the enzyme quantity changes over time.
The authors uses the Finite-difference methods to approximate the solutidifieten-
tial equations by replacing derivative expressions with approximatelyagut difference
guotients. The finite-difference methods are numerical methods fordpmting the so-
lutions to differential equations using finite difference equations to ajypaie derivatives.
In particular, if we haveu(x + h) = u(x) + v’ (t)dt becomeXc = Xr + XdDt. The row
{Rl.hc4 DeE} impose a propagator on the restrictibeE using the consistency rule hc4
on the extended real interval (XRI [1]). With ti&tartwe can begin the process from the
differential equation process, beginning to the initial vallRsdt.current.value

Finally the result is approximated with thne4 operator. The HC4 propagator is used
to avoid splitting complex constraints into a set of primitive basic constraintsesepted
by XRI.sinXY, XRl.cosXZ andY = Z. Using hc4 instead the user writes this constraint
thus RI.hcdeq(sin(X), cos(X)). Hc4 is useful for constraints with multiple occurrences of
the same variable. The Hc4 propagator was proposed by Benhamolalo@ranvilliers
and Pugetin [3].

43 HCC

In HCC, we have instead the following syntax (for all the reactions in Fig. 1)

e=100, s=100, es=0, p=0, s1=100, es1=0, pl=0, s2=100, es2=0,
p2=0, s3=100, es3=0, p3=0, e4=100, s4=100, es4=0, p4=0, es5=0,

al ways {k1=1, knil=0.0908, k2=0.0092, k3=1,
knB8=2. 09, k4=2.4, k5=1, knb=0.267, k6=0.223,
k7=1, knv=0.0325, k8=0.0075, k9=1, knmB=0.02,
k10=0.22, k11=1, kml1=0.0325, k12=0. 04,

cont(e), cont(s),

17



if (s >= 0.00000000001) then {
e’ ((knl+k2) es) - (kles),

p ; k2es+( (knmB+k4) esl) - (k3p’ s1),
s’ = (kmles)-(kles),
es’' = (kles)-((kml+k2)es),

esl’ = (k3p’ sl)-(knmB+k4)esl,

sl = (knBesl)-(k3p’sl),
pl’ = (kdesl)+((knb+k6)es2)-(kbpls2),
s2’ = (knbes2)+(knlles5)-(kllp4ds2)-(k5pls2),

es2’ = (kbpl's2)-((knb+k6)es2),

p2’ (k6es2) +(kmres3) +(( k8es3) +( kl2es5))-(k7p2s3),
s3’ (knves3)-(k7p2’'s3),

es3’ = (k7p2' s3)-((kn7+k8)es3),

p3’ = k8es3,
e4’ = ((knD+k10) es4)- (k9e4s4),
s4’ = (knDes4)-(k9edsq),

es4’ = (k9eds4) - ((knD+k10) es4),
p4’ (k1l0es4) +( (knll+k12) es5) - (kllp4s?2),
es5’ = (k1llp4s2)-((kmll+k12)es5) }

else { =0, pP=0, s'=0, es’=0, pl’=0, s1’= 0, esl = 0,
s2’' =0, es2’'=0, p2’'=0, s3 =0, es3 =0, p3 =0, e4d =0, s4' =0,
es4’ =0, p4’'=0, es5 =0 } }, sanpl e(p4)

We can observe that in the first block of code above, we have the inifiditbans with
the quantity of enzyme, substrate, enzyme-substrate and product. |edbedsone we
observe the stoichiometric coefficients, whose values are always vatioe third block we
check the concentrations efinds, to start the computation with the differential equations,
to derive the quantity in the first step. In the fourth block we have the brdrg it is used
if the i f guard results mistaken. Finally in the last block we print only thegdagiantity.

5 Resultsand Comparison of the Frameworks

Warfarin is an anticoagulant also known with several commercial nameswasdzlin, Jan-
toven, Marevan, and Waran. Warfarin inhibits the hepatic secretionmoé $actors in the
blood clotting. In particular, these factors dreViIl, IX, X [19]. As we can note from the
Fig. 3 itis clearly visible the reduction of the thrombin (Fadtier) produced.

The graph generated with all the six reactions of the simplified cascade il gg.
shown in Fig. 3: it represents the concentration of thrombin (in hanomoteatisey axis)
as time passes (axnaxis). This figure is generated by the HCC framework, and we can
note that, during time, the production of thromb#il@) is increased. The graph in Fig. 3

18



ntCC HCC
time 27.23 sec 9.84 sec
% cpu 71.2 315
% memory 7.7 2.7

Table 1: Performance for the simulation of the blood coatgutecascade with ntCC and HCC.

has been obtained by using the same input parameters (i.e. the six reafitidiods, the
stoichiometric coefficients and the factor’'s concentration).

Without Warfarin

With Warfarin

NanoMolar
Factor's concentration (% of ordinary)

w =
L e Time (hours)
Time (seconds)

Figure 3: Formation of thrombin (factdia) Figure 4: Inhibition of factordl, VII, IX, and
with and without Warfarin, in silico. X, in vitro.

In our work, we have reduced the substances concentration in ordardyp the pro-
duction of thrombin Flla). As we can see in Fig. 3, we have the same reduction in the
formation of thrombin Ella), in all the languages.

The performance in Tab. 1 have been collected by usingapetility under Ubuntu
Linux, with aPentium 4, 3.00GH%rocessor. It reports the time, %cpu and %ememory used
for the simulation of blood coagulation with ntCC and HCC. We cannot comparnegults
with sCCP because, so far, this language is not equipped with an implemeietguigrer-
tool. As we can see in Tab. 1, our blood coagulation experiment is exeitutess time
with HCC.

We think that ntCC offers the best modeling environment: in general it is bietter
usability/features because we can model a set of important configurkianas the reso-
lution for the continue model (like the granularity), the possibility of set the tinferditial
(Dt), the domain of each dynamic variable involved in the reactions, the max times-of
olution (to generate the ordinary differential equations) and it is alsalgess create a
graph directly from this framework; As far as we know, the manual is wmatl@ble for
ntCC (while it is for HCC). In reverse, the time, the cpu and the memory in useuio
running example in ntCC is greater then HCC, like as we can see to the repali.it.

19



6 Reated Works

In [21] the authors suggest to model biomolecular process i.e. proteiroretwby us-

ing the pi-Calculus In the paper the author shows how the pi-calculus can be used to
model biochemical networks as a mobile communication systems and the fedtthiss o
process calculus for modeling various molecular systems, including tiptisieal circuits,
metabolic pathways, and signal transduction (ST) networks. In [20]ave kA stochastic
implementation of pi-Calculus for systems biology.

Biochemical Abstract Machin@iocham[13]) is a software environment for modeling
complex cell processes. It is characterized by distinct aspects: thesiarend simulation
of boolean, kinetic and stochastic model and the simulation of biological iptegs in
temporal logic.

Bio-PEPA[11] is a process algebra and is a modification of PEPA to deal with some
features of biological models, such as stoichiometry and the use of g&imeriic laws. We
have studied blood coagulation with this tool in a master thesis [9].

Even if these languages aren’t based on CCP, they can help us to eotheaxperi-
mental results obtained in the simulation because by having a differentaagbpibey can
be able to check small differences among the frameworks.

In [15] the authors introduce an approach to detecting inconsistenciegétimlogical
networks by using Answer Set Programming; they use a non-monotonéingaaf the
store.

7 Conclusionsand Future Works

The obtained in silico results have been produced by using the in vitro pemanne med-
ical literature (i.e. the six reaction definitions, the stoichiometric coefficiemtsranfactor's
concentration). In vitro and in silico results are the same in terms of redudttbe throm-
bin formations.

These approaches can be used in a silico modeling for drug experimes{ptieeiinic)
area; we aim to use our study for an in silico analysis of other biochemiaatioas and
phenomena beyond the blood coagulation.

We plan to extend our studies to new substances in pharmacological dis(eveymes
like as cytochrome or structure based prediction) and to compare ourwitbria a set of
in vitro test, in order to better estimate the errors of in silico approach.

References

[1] Xri: Extended real interval. AVISPA Research Group, 2004.

[2] S. Avantsa.Kinetic Analysis and Simulation of the In Vitro Blood Coagulation Mech-
anism PhD thesis, Texas Tech University, 1989.

20



[3]

F. Benhamou, F. Goualard, L. Granvilliers, and J.F. Puget. Revisiigand box
consistency. INCLP, pages 230-244, 1999.

[4] A. Bockmayr and A. Courtois. Using hybrid concurrent constrgirdgramming to

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

model dynamic biological systems. In P.J. Stuckey, edli©LP, volume 2401 of
LNCS pages 85-99. Springer, 2002.

L. Bortolussi. Mathematical Modeling of Biological Systenf®hD thesis, Universit
di Udine, 2007.

L. Bortolussi, A. Dovier, and F. Fogolari. Agent-based proteindtite prediction.
Multiagent and Grid System8(2):183-197, 2007.

L. Bortolussi, S. Fonda, and A. Policriti. Constraint-based simulatiohiatogical
systems described by molecular interaction mapsBIBM, pages 288-293. IEEE
Computer Society, 2007.

L. Bortolussi and A. Policriti. Modeling biological systems in stochastinaorent
constraint programmingConstraints 13(1-2):66—90, 2008.

M. Bottalico. Modellazione in silico di pathway biologici: studio della bloochge
ulation tramite bio-pepa. Master’s thesis, Univexdilegli Studi “G. d’Annunzio”,
Pescara, 2008. (In italian).

M. Bottalico. Technical Report R-2009-001, Dipartimento di SceenZniversia
“G. D’Annunzio” Chieti—Pescara, 2009.

F. Ciocchetta and J. Hillston. Bio-pepa: An extension of the proakggbra pepa for
biochemical networksElectr. Notes Theor. Comput. Sci94(3):103-117, 2008.

T. Delvin. Texbook of biochemistry with clinical correlatianglcGraw Hill Book co.,
2001.

F. Fages. Temporal logic constraints in the biochemical abstractingglstocham. In
P.M. Hill, editor, LOPSTRvolume 3901 of NCS pages 1-5. Springer, 2005.

M. Falaschi, A. Policriti, and A. Villanueva. Modeling concurrens®ms specified
in a temporal concurrent constraint languagg&iectr. Notes Theor. Comput. Sci8,
2001.

M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. cigeinconsistencies
in large biological networks with answer set programming. In Maria Garei¢éad
Banda and Enrico Pontelli, editol§LP, volume 5366 of_ecture Notes in Computer
Sciencepages 130-144. Springer, 2008.

D.T. Gillespie. Exact stochastic simulation of coupled chemical reactidnshe
Journal of Physical Chemistrpages 2340-2352, 1977.

21



[17] V. Gupta, R. Jagadeesan, V.A. Saraswat, and D.G. Bobrowgr&roming in hybrid
constraint languages. Hybrid Systemsages 226—-251, 1994.

[18] J. Guterrez, J.A. Brez, C. Rueda, and F.D. Valencia. Timed concurrent constraint
programming for analysing biological systemg&lectr. Notes Theor. Comput. Sci.
171(2):117-137, 2007.

[19] B.K. Katzung.Farmacologia generale e clinicéPiccin, 2003.

[20] C. Kuttler, C. Lhoussaine, and J. Niehren. A stochastic pi calcidugoncurrent
objects. In H. Anai, K. Horimoto, and T. Kutsia, editofs3, volume 4545 of_ecture
Notes in Computer Sciengeages 232—-246. Springer, 2007.

[21] A. Regev, W. Silverman, and E.Y. Shapiro. Representation and diowlaf bio-
chemical processes using the pi-calculus process algebPaotn Pacific Symposium
on Biocomputingpages 459-470, 2001.

[22] V.A. Saraswat. Concurrent Constraint Programming Language¥he MIT Press,
Cambridge, MA, 1993.

[23] V.A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of tomedirrent con-
straint programming. IhICS pages 71-80. IEEE Computer Society, 1994.

[24] V.A. Saraswat, R. Jagadeesan, and V. Gupta. Timed defaulugent constraint
programming.J. Symb. Compyt22(5/6):475-520, 1996.

[25] F.D. Valencia. Reactive constraint programming. Bric report, Dtepent of Computer
Science University of Aarhus, Denmark, 2000.

[26] A. Villanueva.Model Checking for the Concurrent Constraint ParadighhD thesis,
Universi@ di Udine, Udine, Italy, May 2003.

[27] J. Williams. Williams HematologyMcGraw Hill Book co., 2006.

22



