
Universit̀a degli Studi “G. D’Annunzio”
Dipartimento di Scienze

Constraint-based Languages to
Model the Blood Coagulation

Cascade

Stefano Bistarelli Marco Bottalico
Francesco Santini

November 12, 2009

Technical Report no. R-2009-002 Research Series

Constraint-based Languages to Model the Blood
Coagulation Cascade

Stefano Bistarelli1 Marco Bottalico2 Francesco Santini1

1Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
Istituto di Informatica e Telematica (CNR), Pisa, Italy

ipartimento di Matematica e Informatica, Università di Perugia, Italy
bista@sci.unich.it

2Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
bottalic@sci.unich.it

2Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
Istituto di Informatica e Telematica (CNR), Pisa, Italy

santini@sci.unich.it

November 12, 2009

Abstract. In this paper, we use different formal languages based on constraints to
model biological reactions and use the blood coagulation cascade as a running exam-
ple to analyze similarities and differences. Moreover we compare the results of the
simulation with in vitro experiments in the medical scientific literature by also con-
sidering an hepatic inhibitor drug. Our study show how assets obtained with in vitro
experiments could be modeled in silico using constraint languages.

Keywords: Biochemical Reactions, Blood Coagulation, Concurrent Constraint Pro-
gramming

Contents

1 Introduction 3

2 Constraint-based Languages for Biology 3
2.1 Stochastic Concurrent Constraint Programming 4
2.2 Non Deterministic Temporal Concurrent Constraint Programming 4
2.3 Hybrid Concurrent Constraint Programming 5

3 Biochemical Reactions and Blood Coagulation 6

4 Modeling Blood Coagulation with sCCP, ntCC and HCC 8
4.1 sCCP . 8
4.2 ntCC . 8
4.3 HCC . 17

5 Results and Comparison of the Frameworks 18

6 Related Works 20

7 Conclusions and Future Works 20

Technical Report no. R-2009-002 Research Series

1 Introduction

System biology is an interdisciplinary science, integrating experimental activity and ma-
thematical modeling, which studies the dynamical behaviors of biological systems. While
current genome projects provide a huge amount of data on genes or proteins, lot of re-
search is still necessary to understand how the different parts of a biological system interact.
Mathematical and computational techniques are central in this approach to biology, as they
provide the capability of formally describing living systems and studying their proprieties.

A variety of formalisms for modeling biological systems has been proposed in literature.
In [4], the author distinguishes three basic approaches: discrete, stochastic and continuous.
Discrete models are based on discrete variables and discrete state changes; continuous mod-
els are based on differential equations that typically model biochemical reactions; finally in
the stochastic ones the probabilities are introduced through random variables, which are
usually defined by taking into account the kinetics laws. In the latest approach there is a
simplified representation of the processes and an integration of the stochastic noise in order
to get more realistic models.

In [16] it is shown that there are two formalisms for mathematically describing thetime
behavior of a spatially homogeneous chemical systems: the deterministic approach and the
stochastic one. The first regards the time evolution as a continuous and predictable process
which is governed by a set of ordinary differential equations (the “reaction-rate equations”),
while the seconds regard the time evolution as a kind of random-walk processwhich is go-
verned by a single differential-difference equation (the “master equation”).

The goal of this paper is to show how different kinds of constraint-based languages can
model biochemical reactions and to compare and to use their features. The languages stud-
ied are theStochastic Concurrent Constraint Programming(sCCP) [8], thenon-Deterministic
Temporal Concurrent Constraint Programming(ntCC) [18] and theHybrid Concurrent
Constraint Programming(HCC) [24].

We want to show that these formalisms can be used to simulate in vitro reactions, and
can be then adopted to save time and costs by using an automated simulation in silico.The
obtained in silico results have been produced by using the in vitro parametersin medical
literature (i.e. the six reaction definitions, the stoichiometric coefficients and thefactor’s
concentration). In vitro and in silico results are the same in terms of reduction of the throm-
bin formations.

2 Constraint-based Languages for Biology

Concurrent Constraint Programming (CCP) languages [22] concern the behaviour of a set
of concurrent agents with a shared store, which is a conjunction of constraints. Each com-
putation step possibly adds new constraints to the store. Thus information is monotonically
added to the store until all agents have evolved. The final store is a refinement of the ini-
tial one and it is the result of the computation. The concurrent agents do not communicate

3

directly with each other, but only through the shared store, by either checking if it entails a
given constraint (askoperation) or adding a new constraint to it (tell operation).

We use languages based onConcurrent Constraint Programming[22], because we want
a powerful framework which provides the fine grained concurrency desirable for composi-
tionality. For example, the blood cascade coagulation is modelled by composing (parallel
execution) programs representing each step of the cascade. In this context we use composi-
tionality with the meaning of ”compositionality of biochemical reactions”.
The languages based onConcurrent Constraint Programming[22] are very expressive, be-
ing built on top of arbitrary constraint systems, and are also declarative.Each program is
a logical formula, that make easy the reasoning about the models. The matching between
the logic programming and the real behavior is given by the notion of competitionto obtain
the shared resources (i.e. therace competition). In nature, if we have a reaction which
involves many components, these components compete to reach the single necessities; for
example, the species less suited to compete for limited resources should either adapt or face
extinction.

2.1 Stochastic Concurrent Constraint Programming

sCCP [8] derives from classical CCP [22] by adding a stochastic duration to the instructions
interacting with the constraint storeC, i.e. ask andtell by means of stream variables.
ask andtell are identified by a rate functionλ: tellλ(c) andaskλ(c), with the meaning that
the reaction occurs in a stochastic time T, following the probability lawf (τ) = λe−λτ; tell∞
stay instead for an instantaneous execution whiletell0 never occurs.

The stream variables are time-varying variables, they can be easily modeledin sCCP
as growing lists with a unbounded tail:X = [a1, ..., an|Y]. When the quantity changes, we
simply need to add the new value, sayb, at the end of the list by replacing the old tail vari-
able with a list containingb and a new tail variable:Y = [b|Y′]. When we need to know the
current value of the variableX, we need to extract from the list, the value immediately pre-
ceding the unbounded tail. These variables are connected to the non-monotonic behaviour
in sCCP.

With the sCCP the author in [5] models some biochemical reactions: an enzymatic
reaction and a MAP-kinase cascade; in [8] a gene regulatory networksand in particular a
bistable circuit, a repressilator and a circadian clock; in [6] models the dealing with protein
complexes: a agent-based protein structure prediction and a protein folding simulation.
in [7] describes and models a molecular interaction maps.

In the sCCP the author provides a model checker implemented by PRISM [5],a work
on bisimulation and Temporal logic in [5].

2.2 Non Deterministic Temporal Concurrent Constraint Programming

In ntCC [18], time is conceptually divided into discrete intervals. In a time unit, a processP
gets an inputc (a constraint) from the environment; it executes with this input as the initial

4

store and it outputs the resulting stored to the environment, when it reaches its resting
point. The resting point determines a residual processQ, which is then executed in the next
time unit. With the “next” operator we can transfer information from one time unit tothe
following one.

The constructs different from classical cc are the following:

• when c do P is equivalent toask(c) → P. Its function is asking information about
the state of the system;

• next(P) represents the activation ofP in the next time interval;

• unless c next (P): P will be activated only ifc cannot be inferred from the current
store (it is connected to the non-monotonic behaviour in the ntCC);

• ⋆ P allow us to express partial information on the time units where processes are
executed. Process⋆ P represents an arbitrary long but finite delay for the activation
of P. ⋆ P[n,m] = nextn (P) + nextn+1 (P) + ... + nextm−1 (P) + nextm (P) ;

• ! P representsP || next (P) || next2 (P) || ..., many copies ofP but one at a time unit.

In the implementation we used thenext(P) operator encoded with the symbolnext([[P]]),
the⋆P operator encoded with the symbolrep([[P]]) and the!P operator encoded with the
symbolstar([[P]]).
With thentCC in [18] the author models a SP-pump and an interaction between genes.
In ntCC we have a Model checking for a finite time interval [14], a Weak bisimulation [25]
and a Linear temporal logic.

2.3 Hybrid Concurrent Constraint Programming

HCC is a powerful framework for modeling, analyzing and simulating hybrid systems, i.e.,
systems that exhibit both discrete and continuous change. It is an extension ofTimed Default
CCP[23] over continuous time. One of the major problems in the original CCP framework
is that CCP programs can detect only the presence of information, not the absence. Timed
Default CCP extends CCP by a negativeask combinator (i f a else A) which imposes the
constrainta at the programA.

The CCP paradigm has no concept of timed execution. For modeling discrete, reactive
systems, it was introduced the idea (from synchronous programming) thatthe environment
reacts with a system (program) at discrete time ticks. At each time tick, the program ex-
ecutes a CCP program, outputs the resulting constraint, and sets up anotherprogram for
execution at the next clock tick. Concretely, this lead to the addition of two control con-
structs to the languagenext A (executeA at the next time instant), andalways A (execute
A at every time instant). Thus, intuitively, the discrete timed language was obtained by uni-
formly extending the not-timed language (CCP or Default CCP) across (integer) time [17].
Next Aandalways Aare connected to the non-monotonic behaviour in HCC.

5

The authors of [17] allow constraints expressing initial value (integration)problem, e.g.
constraints of the forminit(X = 0); cont(dot(X) = 1) read as follows: the initial value of
X is 0, the first derivative ofX is 1 and from these we can infer thatX = t at timet.
In HCC a new temporal control construct has been added to the not-timed Default CCP:
hence A. Declaratively,hence A imposes the constraints ofA at every time instant after the
current one. Operationally, ifhence A is invoked at timet, a new copy ofA is invoked at
each instant in(t; 1).
With theHCC [24] we have two running examples: the cell differentiation and the interac-
tion between 2genes.
Concerning HCC we can find a model checker providing a simulation of hybrid automata,
the HyTech model checker [26] that performs a bisimulation with Labeled Markow processes
and a linear Temporal logic verification [24].

3 Biochemical Reactions and Blood Coagulation

The blood coagulation process can be defined by a set of biochemical reactions among
proteins. In general, all the interactions that take place in a cell, can be arranged into a
diagram, thus obtaining a biochemical network. Biochemical networks can berepresented
using equations, usually described as follows:

m1R1 + ... +mkRk −→ n1P1 + ... + nhPh. (1)

In the equation (1)Ri are the reactants,Pi the products,mi and ni are the stoichiomet-
ric coefficients1. Along with this expression, there is a real number representing its basic
expected “frequency”; this number is related to the adopted kinetic model [5]: the most
important kinetic laws that we consider are Michaelis-Menten (MM), Hill’s kinetics (HK)
and Mass Action (MA) [5]. According to how we want to describe a reaction, we can use
one or another kinetic law, and in this way we can model different behaviors.
This is the scheme to represent the Michaelis-Menten kinetics [12]:

E + S⇋k1

k−1
ES⇀k2 E + P. (2)

In the equation (2) the enzymeE does not magically convertS into P, it must first come
into a physical contact with it, i.e.E bindsS to form an enzyme-substrate complexES.
The termsk1, k−1 andk2 are rate constants for, respectively, the association of substrate
and enzyme, the dissociation of unaltered substrate from the enzyme and thedissociation
of product from the enzyme.
At this point there are two important hypotheses in order to safely use the Michaelis-Menten
kinetics:

1The stoichiometric coefficients of a chemical equation represent the molar ratio among material quantities
(expressed in nanomolars).

6

Figure 1: Coagulation Cascade.

1. [S] >> [E] i.e. the quantity of the substrate S is significatively bigger than the quan-
tity of the enzyme E.

2. The system is in a quasi steady-state i.e. theES complex is being formed and broken
down at the same rate, so overall[ES] is constant.

Under these hypotheses, the most important equations in the Michaelis-Menten kinetics are:
KM =

k−1+k2

k1
Michaelis constant. It measures the affinity of the enzyme for the substrate:if

KM is small there is a high affinity, and viceversa.
VMAX = V0 = k2[E0]. This is the maximum rate, would be achieved when all of the enzyme
molecules have substrate bound (Hp1).[E0] is the starting quantity of enzymeE. k2 is also
calledkcat.

In the following of the paper we will use blood coagulation phenomenon as a running
example for our study. The blood coagulation is part of an important host defense mech-
anism termedhemostasis, that is the cessation of blood loss from a damaged vessel [27].
Blood clotting is a very delicately balanced system; when hemostatic functions fail, hemor-
rhage or thromboembolic phenomena may result. The chemical reactions that constitute the
whole process can be seen as a decomposition of many kinds of enzymatic reactions, involv-
ing reactants, products, enzymes, substrates, stoichiometric coefficients, proteins, inhibitors
and chemical accelerators.

In our work we use an exemplification model, given in Fig. 1. In the intrinsic and the
extrinsic pathways (see Fig. 1), the chain of events leading to coagulation isthe set in motion
merely by the exposure of plasma to non endothelial surfaces such as a glass in vitro, or a
collagen fibres in basement membranes in vivo [2].

The downward sequence of reactions in Fig. 1 justifies the term “cascade”. In the ex-
trinsic pathway, coagulation is achieved as a result of an injury to the vessel wall from the
“outside”. This pathway is initiated when the tissue factor becomes mixed with factors II ,
VII, X, XII and calcium of the blood plasma. In the extrinsic pathway we have a sequence

7

react(S,P,KM,V0) : −

askrMM(KM,V0,S)(S > 0). (tell∞(S $= S − 1)||tell∞(P $= P + 1)). react(S,P,KM,V0)

Figure 2: Blood coagulation in sCCP

of reactions leading to fibrin formation, beginning with the contact activation of factor XII,
and resulting in the activation of factorX to initiate the common pathway of coagulation.
The extrinsic pathway merges with the intrinsic one after the activation of factor X.

We have both pathways and all the interactions to get to the thrombin formation (Factor
IIa). We have labeled each reaction, in order to make every steps of our analysis as clear as
possible.

4 Modeling Blood Coagulation with sCCP, ntCC and HCC

In this section we show how the simplified cascade in Fig. 1 can be properly modeled with
the three languages. For sake of brevity we only show the piece of codesused to model the
fist reaction in Fig. 1 (XI+XIIa = XIa) labeled with the number 1. However all the code is
available in [10].

4.1 sCCP

The first biochemical equation given in (2), can be modelled in sCCP with the following
recursively defined method [8] in Fig. 2.
The rateλ of theask, is computed by the Michaelis-Menten kineticsrMM(KM,V0, S) =

V0 S
S+KM

in Fig. 2. Roughly the program inserts in the store the current value for thevariables, it
checks the value of the factorS, then, with an immediate effect, it updates the values for
the factorsS (reagent) andP (product) with the new values. Subsequently it executes a new
instance of the program.

4.2 ntCC

In the following we encode in ntCC the first reaction in Fig. 1, we show only theenzyme
formation (DEe). E (DEe), S (DEs), ES (DEes) andP (DEp) can combined to show the
collaborative function.

% Title : Blood Coagulation
% Authors : Marco Bottalico
% Created : September 1 / 2009
% Last Modified : September 1 / 2009
% Description : Sixth Reaction

8

% functor import
% Application System
% RI at ’./../../ntccSim/ri/RI.ozf’
% NTCC at’./../../ntccSim/ntccSim.ozf’
% Open define

DEVars = vars(e: s: es: p: s1: es1: p1: s2: es2: p2: s3:
es3: p3: s4: es4: p4: es5: t:)
T = vars(tntcc:)
SVars = Record.adjoin T DEVars
Resolution = 10.0
Dt = 0.1 / Resolution
MaxTime = 200
K1 = 1.0
Km1 = 0.0908
K2 = 0.0092
K3 = 1.0
Km3 = 2.09
K4 = 2.4
K5 = 1.0
Km5 = 0.267
K6 = 0.223
K7 = 1.0
Km7 = 0.0325
K8 = 0.0075
K9 = 1.0
Km9 = 0.02
K10 = 0.22
K11 = 1.0
Km11 = 0.0325
K12 = 0.04

T:::0#1000000
Record.forAll DEVars proc{$ Xi}
Xi = {RI.var.exp "[-10000.0,10000.0]"} end

%Time Process (discrete and continuous)
TimeS = par(tell(proc{$ Root} Root.current.tntcc =: 0 end)
tell(proc{$ Root} {RI.eq Root.current.t 0.0} end)
rep(par(next(tell(proc{$ Root}
Root.current.tntcc =: Root.residual.tntcc + 1 end))
next(tell(proc{$ Root}

9

{RI.eq Root.current.t {RI.plus Root.residual.t Dt}} end)))))

Start = par(
tell(proc{$ Root} {RI.eq Root.current.e 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.s 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.es 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.p 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.s1 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.es1 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.p1 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.s2 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.es2 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.p2 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.s3 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.es3 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.p3 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.s4 10.0} end)
tell(proc{$ Root} {RI.eq Root.current.es4 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.p4 0.0} end)
tell(proc{$ Root} {RI.eq Root.current.es5 0.0} end)
)

DEe = rep(
next(
tell(
proc{$ Root}
Ec Er Ed DeE Sr ESr in
Ec = Root.current.e
Er = Root.residual.e
Sr = Root.residual.s
ESr = Root.residual.es
Ed = sub(times(ESr plus(Km1 K2)) (times(Sr times(K1 Er))))
DeE = eq(Ec plus(Er times(Ed Dt)))
{RI.hc4 DeE}
end)))

DEs = rep(
next(
tell(
proc{$ Root}
Sc Sr Sd DeS Er ESr in

10

Sc = Root.current.s
Sr = Root.residual.s
Er = Root.residual.e
ESr = Root.residual.es
Sd = sub(times(Km1 ESr) times(Sr times(K1 Er)))
DeS = eq(Sc plus(Sr times(Sd Dt)))
RI.hc4 DeS end)))

DEes = rep(
next(
tell(
proc{$ Root}
ESc ESr Er Sr ESd DeES in
ESc = Root.current.es
ESr = Root.residual.es
Er = Root.residual.e
Sr = Root.residual.s
ESd = sub(times(K1 times(Er Sr)) times(ESr plus(Km1 K2)))
DeES = eq(ESc plus(ESr times(ESd Dt)))
{RI.hc4 DeES}
end)))

DEp = rep(
next(
tell(
proc{$ Root}
Pc Pr ESr ES1c Pr S1c ALFA1 ALFA2 ALFA3 Pd DeP in
Pc = Root.current.p
Pr = Root.residual.p
ESr = Root.residual.es
ES1c = Root.current.es1
Pr = Root.residual.p
S1c = Root.current.s1
ALFA1 = times(K3 times(Pr S1c))
ALFA2 = times(ES1c plus(Km3 K4))
ALFA3 = times(K2 ESr)
Pd = sub(plus(ALFA3 ALFA2) ALFA1)
DeP = eq(Pc plus(Pr times(Pd Dt)))
{RI.hc4 DeP}
end)))

11

DEs1 = rep(
next(
tell(
proc{$ Root}
S1c S1r E1r ES1r S1d DeS1 in
S1c = Root.current.s1
S1r = Root.residual.s1
E1r = Root.residual.p
ES1r = Root.residual.es1
S1d = sub(times(Km3 ES1r) times(S1r times(K3 E1r)))
DeS1 = eq(S1c plus(S1r times(S1d Dt)))
{RI.hc4 DeS1}
end)))

DEes1 = rep(
next(
tell(
proc{$ Root}
ES1c ES1r E1r S1r ES1d DeES1 in
ES1c = Root.current.es1
ES1r = Root.residual.es1
E1r = Root.residual.p
S1r = Root.residual.s1
ES1d = sub(times(K3 times(E1r S1r)) times(ES1r plus(Km3 K4)))
DeES1 = eq(ES1c plus(ES1r times(ES1d Dt)))
{RI.hc4 DeES1}
end)))

DEp1 = rep(
next(
tell(
proc{$ Root}
P1c P1r ES1r ES2c P1r S2c BETA1 BETA2 BETA3 P1d DeP1 in
P1c = Root.current.p1
P1r = Root.residual.p1
ES1r = Root.residual.es1
ES2c = Root.current.es2
P1r = Root.residual.p1
S2c = Root.current.s2
BETA1 = times(K5 times(P1r S2c))
BETA2 = times(ES2c plus(Km5 K6))

12

BETA3 = times(K4 ES1r)
P1d = sub(plus(BETA3 BETA2) BETA1)
DeP1 = eq(P1c plus(P1r times(P1d Dt)))
{RI.hc4 DeP1}
end)))

DEs2 = rep(
next(
tell(
proc{$ Root}
ES2r E2r S2r ES5c E5r S2r EPSILON1 EPSILON2 EPSILON3 EPSILON4
EPSILON DeS2 S2c in
ES2r = Root.residual.es2
E2r = Root.residual.p1
S2r = Root.residual.s2
ES5c = Root.current.es5
E5r = Root.residual.p4
S2c = Root.current.s2
EPSILON1 = times(K11 times(E5r S2r))
EPSILON2 = times(Km11 ES5c)
EPSILON3 = times(K5 times(E2r S2r))
EPSILON4 = times(Km5 ES2r)
EPSILON = sub(EPSILON4 plus(EPSILON3 sub(EPSILON2 EPSILON1)))
DeS2 = eq(S2c plus(S2r times(EPSILON Dt)))
{RI.hc4 DeS2}
end)))

DEes2 = rep(
next(
tell(
proc{$ Root}
ES2c ES2r E2r S2r ES2d DeES2 in
ES2c = Root.current.es2
ES2r = Root.residual.es2
E2r = Root.residual.p1
S2r = Root.residual.s2
ES2d = sub(times(K5 times(E2r S2r)) times(ES2r plus(Km5 K6)))
DeES2 = eq(ES2c plus(ES2r times(ES2d Dt)))
{RI.hc4 DeES2}
end)))

13

DEp2 = rep(
next(
tell(
proc{$ Root}
ES2r ES3c ES5c P2c P2r S3c GAMMA1 GAMMA2 GAMMA3 GAMMA4 GAMMA DeP2
in
ES2r = Root.residual.es2
ES3c = Root.current.es3
ES5c = Root.current.es5
P2c = Root.current.p2
P2r = Root.residual.p2
S3c = Root.current.s3
GAMMA1 = times(K6 ES2r)
GAMMA2 = times(Km7 ES3c)
GAMMA3 = plus(times(K8 ES3c) times(K12 ES5c))
GAMMA4 = times(K7 times(P2r S3c))
GAMMA = plus(GAMMA1 plus(GAMMA2 sub(GAMMA3 GAMMA4)))
DeP2 = eq(P2c plus(P2r times(GAMMA Dt)))
{RI.hc4 DeP2}
end)))

DEs3 = rep(
next(
tell(
proc{$ Root}
S3c S3r E3r ES3r S3d DeS3 in
S3c = Root.current.s3
S3r = Root.residual.s3
E3r = Root.residual.p2
ES3r = Root.residual.es3
S3d = sub(times(Km7 ES3r) times(S3r times(K7 E3r)))
DeS3 = eq(S3c plus(S3r times(S3d Dt)))
{RI.hc4 DeS3}
end)))

DEes3 = rep(
next(
tell(
proc{$ Root}
ES3c ES3r E3r S3r ES3d DeES3 in
ES3c = Root.current.es3

14

ES3r = Root.residual.es3
E3r = Root.residual.p2
S3r = Root.residual.s3
ES3d = sub(times(K7 times(E3r S3r)) times(ES3r plus(Km7 K8)))
DeES3 = eq(ES3c plus(ES3r times(ES3d Dt)))
{RI.hc4 DeES3}
end)))

DEp3 = rep(
next(
tell(
proc{$ Root}
P3c P3r ES3r ES4c P3r S4c DELTA1 DELTA2 DELTA3 P3d DeP3 in
P3c = Root.current.p3
P3r = Root.residual.p3
ES3r = Root.residual.es3
ES4c = Root.current.es4
P3r = Root.residual.p3
S4c = Root.current.s4
DELTA1 = times(K9 times(P3r S4c))
DELTA2 = times(ES4c plus(Km9 K10))
DELTA3 = times(K8 ES3r)
P3d = sub(plus(DELTA3 DELTA2) DELTA1)
DeP3 = eq(P3c plus(P3r times(P3d Dt)))
{RI.hc4 DeP3}
end)))

DEs4 = rep(
next(
tell(
proc{$ Root}
S4c S4r E4r ES4r S4d DeS4 in
S4c = Root.current.s4
S4r = Root.residual.s4
E4r = Root.residual.p3
ES4r = Root.residual.es4
S4d = sub(times(Km9 ES4r) times(S4r times(K9 E4r)))
DeS4 = eq(S4c plus(S4r times(S4d Dt)))
{RI.hc4 DeS4}
end)))

15

DEes4 = rep(
next(
tell(
proc{$ Root}
ES4c ES4r E4r S4r ES4d DeES4 in
ES4c = Root.current.es4
ES4r = Root.residual.es4
E4r = Root.residual.p3
S4r = Root.residual.s4
ES4d = sub(times(K9 times(E4r S4r)) times(ES4r plus(Km9 K10)))
DeES4 = eq(ES4c plus(ES4r times(ES4d Dt)))
{RI.hc4 DeES4}
end)))

DEp4 = rep(
next(
tell(
proc{$ Root}
ES4r ES5c P4c P4r S2r ZETA1 ZETA2 ZETA3 ZETA DeP4 in
ES4r = Root.residual.es4
ES5c = Root.current.es5
P4c = Root.current.p4
P4r = Root.residual.p4
S2r = Root.residual.s2
ZETA1 = times(K10 ES4r)
ZETA2 = times(ES5c plus(Km11 K12))
ZETA3 = times(K11 times(P4r S2r))
ZETA = plus(ZETA1 sub(ZETA2 ZETA3))
DeP4 = eq(P4c plus(P4r times(ZETA Dt)))
{RI.hc4 DeP4}
end)))

DEes5 = rep(
next(
tell(
proc{$ Root}
E5r S2r ES5c ES5r ES5d DeES5 in
E5r = Root.residual.p4
S2r = Root.residual.s2
ES5c = Root.current.es5
ES5r = Root.residual.es5

16

ES5d = sub(times(K11 times(E5r S2r))
times(ES5r plus(Km11 K12)))
DeES5 = eq(ES5c plus(ES5r times(ES5d Dt)))
{RI.hc4 DeES5}
end)))

DESystem = par(Start TimeS DEe DEs DEes DEp DEs1 DEes1
DEp1 DEs2 DEes2 DEp2 DEs3 DEes3 DEp3 DEs4 DEes4 DEp4
DEes5)

Er, Sr andESr represent the residual quantity of enzyme, substrate and enzyme-substrate
while Ec represents the current quantity of enzyme.Ed represents the differential equa-
tion for the enzyme formation.DeE represents the enzyme quantity changes over time.
The authors uses the Finite-difference methods to approximate the solutions todifferen-
tial equations by replacing derivative expressions with approximately equivalent difference
quotients. The finite-difference methods are numerical methods for approximating the so-
lutions to differential equations using finite difference equations to approximate derivatives.
In particular, if we haveu(x + h) = u(x) + u′(t)dt becomeXc = Xr + XdDt. The row
{RI.hc4 DeE} impose a propagator on the restrictionDeE using the consistency rule hc4
on the extended real interval (XRI [1]). With theStart we can begin the process from the
differential equation process, beginning to the initial values (Root.current.value).

Finally the result is approximated with thehc4operator. The HC4 propagator is used
to avoid splitting complex constraints into a set of primitive basic constraints. represented
by XRI.sinXY, XRI.cosXZ andY = Z. Using hc4 instead the user writes this constraint
thusRI.hc4eq(sin(X), cos(X)). Hc4 is useful for constraints with multiple occurrences of
the same variable. The Hc4 propagator was proposed by Benhamou Goualard, Granvilliers
and Puget in [3].

4.3 HCC

In HCC, we have instead the following syntax (for all the reactions in Fig. 1).

e=100, s=100, es=0, p=0, s1=100, es1=0, p1=0, s2=100, es2=0,
p2=0, s3=100, es3=0, p3=0, e4=100, s4=100, es4=0, p4=0, es5=0,

always {k1=1, km1=0.0908, k2=0.0092, k3=1,
km3=2.09, k4=2.4, k5=1, km5=0.267, k6=0.223,
k7=1, km7=0.0325, k8=0.0075, k9=1, km9=0.02,
k10=0.22, k11=1, km11=0.0325, k12=0.04,

cont(e),cont(s),

17

if (s >= 0.00000000001) then {
e’ = ((km1+k2)es)-(k1es),
p’ = k2es+((km3+k4)es1)-(k3p’s1),
s’ = (km1es)-(k1es),
es’= (k1es)-((km1+k2)es),
es1’ = (k3p’s1)-(km3+k4)es1,
s1’ = (km3es1)-(k3p’s1),
p1’ = (k4es1)+((km5+k6)es2)-(k5p1s2),
s2’ = (km5es2)+(km11es5)-(k11p4s2)-(k5p1s2),
es2’ = (k5p1’s2)-((km5+k6)es2),
p2’ = (k6es2)+(km7es3)+((k8es3)+(k12es5))-(k7p2s3),
s3’ = (km7es3)-(k7p2’s3),
es3’ = (k7p2’s3)-((km7+k8)es3),
p3’ = k8es3,
e4’ = ((km9+k10)es4)-(k9e4s4),
s4’ = (km9es4)-(k9e4s4),
es4’ = (k9e4s4)-((km9+k10)es4),
p4’ = (k10es4)+((km11+k12)es5)-(k11p4s2),
es5’ = (k11p4s2)-((km11+k12)es5) }

else { e’=0, p’=0, s’= 0, es’= 0, p1’= 0, s1’= 0, es1’= 0,
s2’=0, es2’=0, p2’=0, s3’=0, es3’=0, p3’=0, e4’=0, s4’=0,
es4’=0, p4’=0, es5’=0 } }, sample(p4)

We can observe that in the first block of code above, we have the initial conditions with
the quantity of enzyme, substrate, enzyme-substrate and product. In the second one we
observe the stoichiometric coefficients, whose values are always valid. In the third block we
check the concentrations ofe ands, to start the computation with the differential equations,
to derive the quantity in the first step. In the fourth block we have the branch else; it is used
if the i f guard results mistaken. Finally in the last block we print only the lastp quantity.

5 Results and Comparison of the Frameworks

Warfarin is an anticoagulant also known with several commercial names as Coumadin, Jan-
toven, Marevan, and Waran. Warfarin inhibits the hepatic secretion of some factors in the
blood clotting. In particular, these factors areII , VII, IX, X [19]. As we can note from the
Fig. 3 it is clearly visible the reduction of the thrombin (FactorIIa) produced.

The graph generated with all the six reactions of the simplified cascade in Fig.1 is
shown in Fig. 3: it represents the concentration of thrombin (in nanomolars on they axis)
as time passes (onx axis). This figure is generated by the HCC framework, and we can
note that, during time, the production of thrombin (FIIa) is increased. The graph in Fig. 3

18

ntCC HCC
time 27.23 sec 9.84 sec

% cpu 71.2 31.5

% memory 7.7 2.7

Table 1: Performance for the simulation of the blood coagulation cascade with ntCC and HCC.

has been obtained by using the same input parameters (i.e. the six reaction definitions, the
stoichiometric coefficients and the factor’s concentration).

Figure 3: Formation of thrombin (factorIIa)
with and without Warfarin, in silico.

Figure 4: Inhibition of factorsII , VII, IX, and
X, in vitro.

In our work, we have reduced the substances concentration in order tostudy the pro-
duction of thrombin (FIIa). As we can see in Fig. 3, we have the same reduction in the
formation of thrombin (FIIa), in all the languages.

The performance in Tab. 1 have been collected by using thetop utility under Ubuntu
Linux, with aPentium 4, 3.00GHZprocessor. It reports the time, %cpu and %memory used
for the simulation of blood coagulation with ntCC and HCC. We cannot compare the results
with sCCP because, so far, this language is not equipped with an implemented interpreter-
tool. As we can see in Tab. 1, our blood coagulation experiment is executedin less time
with HCC.

We think that ntCC offers the best modeling environment: in general it is betterin
usability/features because we can model a set of important configurationslake as the reso-
lution for the continue model (like the granularity), the possibility of set the time differential
(Dt), the domain of each dynamic variable involved in the reactions, the max time ofres-
olution (to generate the ordinary differential equations) and it is also possible to create a
graph directly from this framework; As far as we know, the manual is not available for
ntCC (while it is for HCC). In reverse, the time, the cpu and the memory in use for our
running example in ntCC is greater then HCC, like as we can see to the report inTab. 1.

19

6 Related Works

In [21] the authors suggest to model biomolecular process i.e. protein networks, by us-
ing the pi-Calculus. In the paper the author shows how the pi-calculus can be used to
model biochemical networks as a mobile communication systems and the features of this
process calculus for modeling various molecular systems, including transcriptional circuits,
metabolic pathways, and signal transduction (ST) networks. In [20] we have a stochastic
implementation of pi-Calculus for systems biology.

Biochemical Abstract Machine(Biocham[13]) is a software environment for modeling
complex cell processes. It is characterized by distinct aspects: the analysis and simulation
of boolean, kinetic and stochastic model and the simulation of biological proprieties in
temporal logic.

Bio-PEPA[11] is a process algebra and is a modification of PEPA to deal with some
features of biological models, such as stoichiometry and the use of generickinetic laws. We
have studied blood coagulation with this tool in a master thesis [9].

Even if these languages aren’t based on CCP, they can help us to compare the experi-
mental results obtained in the simulation because by having a different approach, they can
be able to check small differences among the frameworks.

In [15] the authors introduce an approach to detecting inconsistencies in large biological
networks by using Answer Set Programming; they use a non-monotonic handing of the
store.

7 Conclusions and Future Works

The obtained in silico results have been produced by using the in vitro parameters in med-
ical literature (i.e. the six reaction definitions, the stoichiometric coefficients and the factor’s
concentration). In vitro and in silico results are the same in terms of reduction of the throm-
bin formations.

These approaches can be used in a silico modeling for drug experimentations (preclinic)
area; we aim to use our study for an in silico analysis of other biochemical reactions and
phenomena beyond the blood coagulation.

We plan to extend our studies to new substances in pharmacological discovery (enzymes
like as cytochrome or structure based prediction) and to compare our workwith a a set of
in vitro test, in order to better estimate the errors of in silico approach.

References

[1] Xri: Extended real interval. AVISPA Research Group, 2004.

[2] S. Avantsa.Kinetic Analysis and Simulation of the In Vitro Blood Coagulation Mech-
anism. PhD thesis, Texas Tech University, 1989.

20

[3] F. Benhamou, F. Goualard, L. Granvilliers, and J.F. Puget. Revisinghull and box
consistency. InICLP, pages 230–244, 1999.

[4] A. Bockmayr and A. Courtois. Using hybrid concurrent constraintprogramming to
model dynamic biological systems. In P.J. Stuckey, editor,ICLP, volume 2401 of
LNCS, pages 85–99. Springer, 2002.

[5] L. Bortolussi. Mathematical Modeling of Biological Systems. PhD thesis, Universitá
di Udine, 2007.

[6] L. Bortolussi, A. Dovier, and F. Fogolari. Agent-based protein structure prediction.
Multiagent and Grid Systems, 3(2):183–197, 2007.

[7] L. Bortolussi, S. Fonda, and A. Policriti. Constraint-based simulation ofbiological
systems described by molecular interaction maps. InBIBM, pages 288–293. IEEE
Computer Society, 2007.

[8] L. Bortolussi and A. Policriti. Modeling biological systems in stochastic concurrent
constraint programming.Constraints, 13(1-2):66–90, 2008.

[9] M. Bottalico. Modellazione in silico di pathway biologici: studio della blood coag-
ulation tramite bio-pepa. Master’s thesis, Università Degli Studi “G. d’Annunzio”,
Pescara, 2008. (In italian).

[10] M. Bottalico. Technical Report R-2009-001, Dipartimento di Scienze, Universit̀a
“G. D’Annunzio” Chieti–Pescara, 2009.

[11] F. Ciocchetta and J. Hillston. Bio-pepa: An extension of the processalgebra pepa for
biochemical networks.Electr. Notes Theor. Comput. Sci., 194(3):103–117, 2008.

[12] T. Delvin. Texbook of biochemistry with clinical correlations. McGraw Hill Book co.,
2001.

[13] F. Fages. Temporal logic constraints in the biochemical abstract machine biocham. In
P.M. Hill, editor,LOPSTR, volume 3901 ofLNCS, pages 1–5. Springer, 2005.

[14] M. Falaschi, A. Policriti, and A. Villanueva. Modeling concurrent systems specified
in a temporal concurrent constraint language-i.Electr. Notes Theor. Comput. Sci., 48,
2001.

[15] M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. Detecting inconsistencies
in large biological networks with answer set programming. In Maria Garcia de la
Banda and Enrico Pontelli, editors,ICLP, volume 5366 ofLecture Notes in Computer
Science, pages 130–144. Springer, 2008.

[16] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. In The
Journal of Physical Chemistry, pages 2340–2352, 1977.

21

[17] V. Gupta, R. Jagadeesan, V.A. Saraswat, and D.G. Bobrow. Programming in hybrid
constraint languages. InHybrid Systems, pages 226–251, 1994.

[18] J. Gutíerrez, J.A. Ṕerez, C. Rueda, and F.D. Valencia. Timed concurrent constraint
programming for analysing biological systems.Electr. Notes Theor. Comput. Sci.,
171(2):117–137, 2007.

[19] B.K. Katzung.Farmacologia generale e clinica. Piccin, 2003.

[20] C. Kuttler, C. Lhoussaine, and J. Niehren. A stochastic pi calculusfor concurrent
objects. In H. Anai, K. Horimoto, and T. Kutsia, editors,AB, volume 4545 ofLecture
Notes in Computer Science, pages 232–246. Springer, 2007.

[21] A. Regev, W. Silverman, and E.Y. Shapiro. Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. InProc. Pacific Symposium
on Biocomputing, pages 459–470, 2001.

[22] V.A. Saraswat. Concurrent Constraint Programming Languages. The MIT Press,
Cambridge, MA, 1993.

[23] V.A. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timedconcurrent con-
straint programming. InLICS, pages 71–80. IEEE Computer Society, 1994.

[24] V.A. Saraswat, R. Jagadeesan, and V. Gupta. Timed default concurrent constraint
programming.J. Symb. Comput., 22(5/6):475–520, 1996.

[25] F.D. Valencia. Reactive constraint programming. Bric report, Department of Computer
Science University of Aarhus, Denmark, 2000.

[26] A. Villanueva.Model Checking for the Concurrent Constraint Paradigm. PhD thesis,
Universit̀a di Udine, Udine, Italy, May 2003.

[27] J. Williams.Williams Hematology. McGraw Hill Book co., 2006.

22

