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Abstract

We prove the existence and uniqueness of bounded solutions to backward stochastic equations driven
by two independent Poisson martingales in the case of locally Lipschitz generator having a certain
monotonicity property. This result allows us to solve utility maximization problems with exponential
preferences in an incomplete market where the risky asset dynamics is described by a pure jump process
driven by two independent Poisson processes. This includes results on portfolio optimization under
an additional European claim. Value processes of the optimal investment problems, optimal hedging
strategies and the indifference price are represented in terms of solutions to BSDEs with generators
satisfying the upper mentioned assumptions. Via a duality result, the solution to the dual problems
are derived. In particular an explicit expression for the density of the minimal martingale measure is
provided. The Markovian case is also discussed. This includes either asset dynamics dependent on a
pure jump stochastic factor or claims written on a correlated non-tradable asset.
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1. Introduction

In this paper we study utility maximization problems with exponential preferences in an incomplete market
where the dynamics of the underlying asset price S is described by a pure jump process driven by two inde-
pendent Poisson processes, describing upwards and downwards jumps . This includes portfolio optimization
in presence of a stochastic factor and under an additional liability. The case where the claim is written on
a nontraded asset X, described by a pure jump process correlated to the trading asset S is also covered.

Intraday information on financial asset price quotes and the increasing amount of studies on market mi-
crostructure show that prices are piecewise constant and jump at irregularly spaced random times in reaction
to trades or to significant new information. This is the reason why many authors believe that pure jump
processes may be more suitable for modeling the observed price or quantities related to the price. Several
models in which the price process is a marked point process are available in the literature, we only quote
Rydberg and Shephard [32], Frey [18], Frey and Runggaldier [19], and the references therein.

Optimal investment problems, hedging and derivative pricing are fundamental problems in Mathematical
Finance and they are closely related to each other. Different approaches have been proposed in literature to
deal with these problems. By using convex duality the solution to the utility maximization problem can be
obtained by solving the dual problem ([3, 4, 33] and the references therein). In a Markovian setting the clas-
sical dynamic programming approach leads to characterizing the value function of the utility maximization
problem as a solution to the Hamilton-Jacobi-Bellman equation ([29, 30, 9, 11]).

In this note, we choose an alternative approach based on the Bellman principle (without the Markovianity
assumption) which studies directly the primal problem and leads to characterizing the value process in terms
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of a backward differential equation (BSDE). BSDEs are generally known to be useful for studying problems
in mathematical finance (see [15]), but have been mainly used in continuous setting thus far.
Among previous studies of utility maximization we refer to [2, 16, 24, 27, 26, 28]. Becherer ([2]) considers a
discontinuous filtration but a continuous price dynamics whereas the others authors consider both continuous
filtrations and continuous price dynamics. Our contribution consists in solving the optimization problem in
a discontinuous setting by using the tool of BSDEs. This approach allows to cover non-Markovian situations
and in the Markovian case to improve same results obtained by classical stochastic control techniques ([9, 11]).

In Section 2, we prove existence and uniqueness of bounded solutions to backward stochastic equations
driven by two independent Poisson martingales when the generator is locally Lipschitz and possesses a
certain monotonicity property.

By an application of this result, in Section 3, we solve the exponential utility optimization problems with an
additional claim, where the price dynamics S is described by a geometric marked point process driven by two
independent Poisson processes. We give a representation of the value process and provide an optimal strategy
in terms of the bounded solution to a BSDE whose generator satisfies the upper mentioned assumptions.

The solution to the dual problem and an explicit representation of the density of the minimal entropy measure
(MEMM) for the model considered is provided in Section 4.

Section 5 deals with indifference valuation. The utility price is proved to be the unique bounded solution
to a BSDE under the MEMM. This representation allows us to obtain the asymptotic behavior of the
indifference price and hedging strategy for vanishing risk aversion. As in [2] and [27], the limit corresponds
to risk minimization under the MEMM.

Finally, Section 6 is devoted to the study of Markovian cases. This includes both price dynamics in presence
of a stochastic factor and valuation of claims written on a nontraded asset correlated to S, where the
stochastic factor (or the level of the non tradable asset) is described by a marked point process driven by
the same independent Poisson processes driving the dynamic of S. A relation between the HJB-equation
and BSDE is also discussed.

2. Backward stochastic differential equations driven by Poisson martingales

We consider a filtered probability space (Ω,F , {Ft}, P ) carrying two independent Poisson processes, N i
t ,

i = 1, 2. Here Ft = σ{N i
u, i = 1, 2, u ≤ t} and the {P,Ft}-intensities ofN i

t , i = 1, 2, are positive deterministic
bounded functions denoted by λi(t), i = 1, 2, respectively. We will denote by λ(t) = λ1(t)+λ2(t) the intensity
of Nt = N1

t +N2
t , and we assume 0 < λ ≤ λ(t) ≤ λ, for λ, λ positive constants.

Denote by mi
t = N i

t −
∫ t

0
λi(s)ds, i = 1, 2, the (P,Ft)-martingales associated to the two Poisson processes,

respectively.

We want to study a backward stochastic differential equation of the form

Yt = B −
∫ T

t

Z1
s dN

1
s +

∫ T

t

Z2
s dN

2
s −

∫ T

t

f(s, Ys− , Z
1
s , Z

2
s ) ds (2.1)

where T is a fixed time horizon, B is a FT -random variable and f(ω, t, y, z1, z2) is locally Lipschitz uniformly
in (ω, t), verifying some suitable inequalities given in Theorem 2.5 below. In what follows we will say that
(B, f) are the coefficients of equation (2.1). We are interested in finding a triple (Y, Z1, Z2) solution to (2.1).
Later on we show how the value processes of exponential utility optimization problems in a market where the
risky asset is described by a geometric pure-jump process driven by N i

t ,i = 1, 2, can be described explicitly
in terms of these BSDE solutions.

The equation (2.1) can be also written as

Yt = B −
∫ T

t

Z1
sdm

1
s +

∫ T

t

Z2
sdm

2
s −

∫ T

t

f̃(s, Ys− , Z
1
s , Z

2
s )ds (2.2)

with generator

f̃(s, y, z1, z2) = f(s, y, z1, z2) + λ1(s)z1 − λ2(s)z2. (2.3)
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Remark 2.1 By introducing the following integer-valued random measure on [0, T ]× U , with U = {1, 2}

µ(dt, dx) :=
∑

s∈(0,T ]

{
1I{∆N1

s 6=0}δ(s,{1})(ds, dx) + 1I{∆N2
s 6=0}δ(s,{2})(ds, dx)

}
where δ(s,{i})(ds, dx) denotes the Dirac measure in (s, {i}), i = 1, 2, the BSDE (2.1) can be written as

Yt = B −
∫ T

t

∫
U

Zs(x)µ(ds, dx)−
∫ T

t

F (s, Ys− , Zs) ds.

Here Zt(x) = Z1
t 1I{x=1} + Z2

t 1I{x=2} and F (t, Yt− , Zt(x)) = f
(
t, Yt− , Zt(x)1I{x=1}, Zt(x)1I{x=2}

)
.

This last equation is a particular case of that studied in [2].

Let us fix some notations:

• Let P denotes the predictable σ-algebra on Ω× [0, T ].

• Sp, 1 ≤ p ≤ ∞, denotes the space of IR-valued Ft-adapted stochastic processes {Yt}t∈[0.T ] with
‖Y ‖Sp = ‖ supt∈[0.T ] | Yt | ‖Lp <∞.

• L2 denotes the space of IR-valued predictable processes {Zt}t∈[0.T ] with ‖Z‖L2 = IE
( ∫ T

0
| Zt |2 dt

) 1
2
.

When the coefficients (B, f) are standard it is straightforward to generalize a classical fixed point method
to the present setting (see [31, 15, 7, 2]).

Theorem 2.2 Let B ∈ L2(Ω,FT , P ) and assume that

f̃ : Ω× [0, T ]× IR3 → IR

is a P ⊗ B(IR3)-measurable mapping such that f̃(t, 0, 0, 0) ∈ L2 and f̃ is uniformly Lipschitz:

∃L > 0 : | f̃(ω, t, y, z1, z2)− f̃(ω, t, ỹ, z̃1, z̃2) |≤ L(| y − ỹ | + | z1 − z̃1 | + | z2 − z̃2 |) P × dt− a.e. (2.4)

for all (y, z1, z2), (ỹ, z̃1, z̃2) ∈ IR3. Then there exists a unique (Y, Z1, Z2) ∈ S2 × L2 × L2 which solves the
BSDE (2.2) (or equivalently (2.1)).

Taking into account the representation given in Remark 2.1 we can apply Proposition 3.3 in [2], that in our
framework is given by

Proposition 2.3 Let (B, f) and (B′, f ′) be data satisfying the assumptions of Theorem 2.2. Let (Yt, Z
1
t , Z

2
t ) ∈

S2 × L2 × L2 and (Y ′t , Z
′,1
t , Z ′,2t ) ∈ S2 × L2 × L2 the solutions to BSDE (2.2) with coefficients (B, f) and

(B′, f ′), respectively.
Let δB = B − B′, δf̃ = f̃ − f̃ ′ (see (2.3) for the definition of f̃) δYt = Yt − Y ′t , δZ

i
t = Zi

t − Z ′,it , i = 1, 2.
Then there exists a constant C > 0 such that

IE[ sup
t∈[0,T ]

|δYt|2 +
∫ T

0

|δZ1
t |2dt+

∫ T

0

|δZ2
t |2dt] ≤ CIE[|δB|2 +

∫ T

0

|δf̃(Yt− , Z
1
t , Z

2
t )|2dt]. (2.5)

In our later applications of BSDEs the Lipschitz condition on the generator will not be satisfied. In Theorem
2.5 we will prove the existence and uniqueness of bounded solutions to (2.1) in the case of locally Lipschitz
generator and bounded terminal data B.

Lemma 2.4 If (Y,Z1, Z2) is a solution to the BSDE (2.1), belonging to S2×L2×L2, then the pair (Z1, Z2)
is uniquely determined by the knowledge of Y . In fact,

Zi
t 1I∆Ni

t =/0 = (Yt − Yt−) 1I∆Ni
t =/0 i = 1, 2 (2.6)

and if (Z̃1, Z̃2) is another pair of predictable processes in L2 × L2 verifying (2.6), then Zi = Z̃i i = 1, 2
P -a.s. and for a.a. t.

3



Proof.
For i = 1, 2

0 = IE

 ∑
r∈(0,T ]

(
Zi

r − Z̃i
r

)2 1I∆Ni
r=/0

 = IE

[∫
(0,T ]

(
Zi

r − Z̃i
r

)2
dN i

r

]
= IE

[∫ T

0

(
Zi

r − Z̃i
r

)2
λi(r) dr

]

and the thesis, since λi(r) are supposed to be positive, for i = 1, 2.

Theorem 2.5 Assume that B is a bounded FT -random variable and that

f : Ω× [0, T ]× IR3 → IR

is a P ⊗ B(IR3)-measurable mapping such that f(t, y, 0, 0) ∈ S∞, for any y ∈ IR, and f is locally uniformly
Lipschitz:

∀C > 0, ∃LC > 0 : ∀ (y, z1, z2), (ỹ, z̃1, z̃2) ∈ IR3 with ‖(y, z1, z2)‖ ≤ C, ‖(ỹ, z̃1, z̃2)‖ ≤ C,

| f(ω, t, y, z1, z2)− f(ω, t, ỹ, z̃1, z̃2) |≤ LC(| y − ỹ | + | z1 − z̃1 | + | z2 − z̃2 |) P × dt− a.e.. (2.7)

Assume furthermore that, ∀t ∈ [0, T ] y ∈ IR,

f(t, y, ·, z2) non increasing ∀ z2 ∈ IR, and f(t, y, z1, ·) non decreasing ∀ z1 ∈ IR. (2.8)

Then there exists a unique solution (Y,Z1, Z2) ∈ S∞ ×L2 ×L2 to the BSDE (2.1) where Y , Z1 and Z2 are
bounded P -a.s..
Moreover, if the pair (B′, f ′) satisfies the assumption of this theorem, denoting by (Y ′t , Z

′,1
t , Z ′,2t ) the bounded

solution to BSDE (2.2) with coefficients (B′, f ′), then estimate (2.5) still hold.

Proof.
First, let us observe that, since f(t, y, 0, 0) ∈ S∞ and f is locally uniformly Lipschitz then f is locally
bounded:

∀C > 0 | f(ω, t, y, z1, z2) |≤| f(ω, t, y, 0, 0) | +2CLC ≤ sup
y∈IR

‖f(ω, t, y, 0, 0)‖S∞+2CLC P×dt−a.e. (2.9)

for all (y, z1, z2) such that ‖(y, z1, z2)‖ ≤ C.

By hypothesis, there exists C1 such that | B |≤ C1 and define

b(t) = C1 + C2(T − t),

with C2 ≥ supy∈IR ‖f(t, y, 0, 0)‖S∞ . We note that b(t) is a decreasing function such that

b(T ) = C1 ≤ b(t) ≤ C1 + C2T = b(0).

We consider the same truncation function as in Theorem 3.5 of [2]. More precisely, let k(t, y) the following
truncation function

k(t, y) =

−b(t) for y ≤ −b(t)
y for −b(t) < y < b(t)
b(t) for y ≥ b(t)

which is bounded and Lipschitz in y uniformly in t.
Setting

f̃k(ω, t, y, z1, z2) = f
(
ω, t, k(t, y), k(t, y + z1)− k(t, y),−

(
k(t, y − z2)− k(t, y)

))
+ (2.10)

λ1(t)
(
k(t, y+z1)−k(t, y)

)
+λ2(t)

(
k(t, y−z2)−k(t, y)

)
= f̃

(
ω, t, k(t, y), k(t, y+z1)−k(t, y),−

(
k(t, y−z2)−k(t, y)

))
,

we consider the following BSDE with generator f̃k
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Yt = B −
∫ T

t

Z1
sdm

1
s +

∫ T

t

Z2
sdm

2
s −

∫ T

t

f̃k(s, Ys−Z
1
s , Z

2
s )ds (2.11)

Since | k(t, y) |≤ b(0), ∀(t, y) ∈ [0, T ] × IR, and λi(t), i = 1, 2, are bounded functions, by (2.7) follows that
fk satisfies the hypotheses of Theorem 2.2.

Let (Y, Z1, Z2) ∈ S2 × L2 × L2 the unique solution to (2.11) and define

Ỹt = k(t, Yt) Z̃1
t = k(t, Yt− + Z1

t )− k(t, Yt−) Z̃2
t = −

(
k(t, Yt− − Z2

t )− k(t, Yt−)
)
. (2.12)

If we will prove that Yt and Ỹt are indistinguishable, as a consequence of Lemma 2.4, Zi
t and Z̃i

t , i = 1, 2,
will be indistinguishable, then

f̃k(ω, t, Yt− , Z
1
t , Z

2
t ) = f̃(ω, t, Ỹt− , Z̃

1
t , Z̃

2
t ) = f̃(ω, t, Yt− , Z

1
t , Z

2
t )

and (Y, Z1, Z2) solves the BSDE (2.2) or equivalently (2.1).

In order to prove that Yt and Ỹt are indistinguishable, we will show that | Yt |≤ b(t) for all t ∈ [0, T ].

First, we consider the upper bound. Fix t ∈ [0, T ] and let

τ = inf{s ∈ [t, T ] : Ys ≤ b(s)} (2.13)

Since | YT |=| B |≤ b(T ) = C1 and Yt is cadlag, Yτ ≤ b(τ) and Ys > b(s) for (ω, s) ∈ [t, τ).

Equations (2.11) implies that for all t < τ , by the optional sampling theorem,

Yt = IE[Yτ −
∫ τ

t

f̃k(s, Ys− , Z
1
s , Z

2
s )ds | Ft] =

= IE[Yτ −
∫ τ

t

[
f
(
ω, s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
+

+λ1(s)
(
k(s, Ys− + Z1

s )− k(s, Ys−)
)

+ λ2(s)
(
k(s, Ys− − Z2

s )− k(s, Ys−)
)]
ds | Ft].

By definition of intensity of point process we get that

IE[
∫ τ

t

λ1(s)
(
k(s, Ys− + Z1

s )− k(s, Ys−)
)
ds | Ft] = IE[

∫ T

t

(
k(s, Ys− + Z1

s )− k(s, Ys−)
)
dN1

s | Ft] =

= IE[
∑

t<s≤τ

(
k(s, Ys)− k(s, Ys−)

)
1I{∆N1

s 6=0} | Ft] = E[
(
k(τ, Yτ )− k(τ, Yτ−)

)
1I{∆N1

τ 6=0} | Ft] =

= IE[(Yτ − b(τ))1I{∆N1
τ 6=0} | Ft].

Similarly we get that

IE[
∫ τ

t

λ2(s)
(
k(s, Ys− − Z2

s )− k(s, Ys−)
)
ds | Ft] = IE[(Yτ − b(τ))1I{∆N2

τ 6=0} | Ft].

Moreover, noting that the integrand is predictable and bounded (see (2.14)), and that the intensities are
strictly positive,

IE
[ ∫ τ

t

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
ds | Ft

]
=

= IE
[ ∫ τ

t

1
λ(s)

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
dNs | Ft

]
=

= IE
[ ∫ τ

t

1
λ(s)

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
dN1

s | Ft

]
+

+IE
[ ∫ τ

t

1
λ(s)

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
dN2

s | Ft

]
=
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and, by (2.8), (2.13)

IE
[ ∫ τ

t

1
λ(s)

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
dN1

s | Ft

]
=

= E
[ ∑

t<s<τ

1
λ(s)

f
(
s, k(s, Ys−), 0,−k(s, Ys− − Z2

s ) + k(s, Ys−)
)

1I{∆N1
s =/0} | Ft

]
+

+E
[ 1
λ(τ)

f
(
τ, b(τ), Yτ − b(τ),−k(τ, Yτ− − Z2

τ ) + k(τ, Yτ−)
)

1I{∆N1
τ 6=0} | Ft

]
≥

≥ E
[ ∫ τ

t

λ1(s)
λ(s)

f
(
s, k(s, Ys−), 0,−k(s, Ys− − Z2

s ) + k(s, Ys−)
)
ds | Ft

]
=

(recalling again that the integrand is predictable and bounded),

= E
[ ∫ τ

t

λ1(s)
λ2(s) λ(s)

f
(
s, k(s, Ys−), 0,−k(s, Ys− − Z2

s ) + k(s, Ys−)
)
dN2

s | Ft

]
=

= E
[ ∑

t<s<τ

λ1(s)
λ2(s) λ(s)

f
(
s, k(s, Ys−), 0, 0

)
1I{∆N2

s 6=0} | Ft

]
+

+E
[ λ1(τ)
λ2(τ) λ(τ)

f
(
τ, k(τ, Yτ−), 0,−Yτ + b(τ)

)
1I{∆N2

τ 6=0} | Ft

]
≥

≥ E
[ ∫ τ

t

λ1(s)
λ(s)

f
(
s, k(s, Ys−), 0, 0

)
ds | Ft

]
.

Analogously

IE
[ ∫ τ

t

1
λ(s)

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
dN2

s | Ft

]
≥

= E
[ ∫ τ

t

λ2(s)
λ(s)

f
(
s, k(s, Ys−), 0, 0

)
ds | Ft

]
.

Thus

IE
[ ∫ τ

t

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
ds | Ft

]
≥

= E
[ ∫ τ

t

f
(
s, k(s, Ys−), 0, 0

)
ds | Ft

]
≥ −C2(τ − t).

Since
Yτ − (Yτ − b(τ))1I{∆N1

τ 6=0} − (Yτ − b(τ))1I{∆N2
τ 6=0} = b(τ),

finally, as a conclusion,

Yt = IE[b(τ)−
∫ τ

t

f
(
s, k(s, Ys−), k(s, Ys− + Z1

s )− k(s, Ys−),−k(s, Ys− − Z2
s ) + k(s, Ys−)

)
ds | Ft] ≤

≤ IE[b(τ) + C2(τ − t) | Ft] = IE[C1 + C2(T − τ) + C2(τ − t) | Ft] = b(t).

Similarly we can prove the lower bound Yt ≥ −b(t) ∀t ∈ [0.T ], by introducing τ̃ = inf{s ∈ [t, T ] : Ys ≥ −b(s)}.
Moreover we get, by (2.12), that

| Yt |≤ b(0) and | Zi
t |≤ 2b(0), i = 1, 2. (2.14)

To show uniqueness we proceed as in [2]. Let (Ŷ , Ẑ1, Ẑ2) be another solution to the BSDE with Ŷ bounded.
Taking b(0) ≥ 2‖Ŷ ‖S∞ we get that (Ŷ , Ẑ1, Ẑ2) solves the BSDE also with generator f̃k, and by Theorem
2.2 the two solutions must coincide.
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The validity of estimate (2.5) follow from the observation that the BSDE solutions to (B, f) and (B′, f ′) also
solve the BSDEs with the corresponding truncated generators, which satisfy the Lipschitz condition (2.4).

3. The model and the hedging problem

We consider a finite time horizon investment model on [0, T ] with one riskless money market account and
one risky asset. The price of the risk-free asset is taken equal to 1 (that is we suppose the riskless interest
rate to be equal zero). The price S of the stock is modeled as a pure jump process verifying, on [0, T ]

dSt = St−

(
K1

t dN
1
t −K2

t dN
2
t

)
, (3.1)

with S0 = s0 ∈ IR+.

The IR-valued stochastic processes Ki
t , i = 1, 2 are supposed to be positive and {P,Ft}-predictable, K2

t < 1
and, setting Kt = K1

t +K2
t , we assume 0 < K ≤ Kt ≤ K, for K, K positive constants.

By the Doléans-Dade exponential formula we get that

St = S0e
Yt ,

where the logreturn process Y is given by

Yt =
∫ t

0

log (1 +K1
r )dN1

r +
∫ t

0

log
(
1−K2

r

)
dN2

r .

Let us consider a European contingent claim with maturity T , whose payoff is given by B, FT -measurable
bounded random variable such that, as in the previous section, |B| ≤ C1.
The hedging problem consists in finding an investment strategy to trade in the available assets in the time
window [0, T ] in order to reduce (or avoid) potential losses arising from having to honor the contract B.

The goal of this section is to study and solving an hedging problem. Since in the model we are studying the
market is incomplete, perfect replication is not possible. Thus, we have to use an hedging criterion under
incompleteness. Many methods are possible. In particular a stochastic control approach can be chosen.
Among others, we quote [9, 11, 22] and the references therein. In this frame we will use a method which is
along the lines of that proposed by [24, 2, 26].

For a predictable, S-integrable, self-financing strategy πt

St−
and initial capital x0 ≥ 0, the associated wealth

process is defined as

Xt = x0 +
∫ t

0

πr

Sr−
dSr = x0 +

∫ t

0

πr

(
K1

r dN
1
r −K2

r dN
2
r

)
. (3.2)

For an agent with exponential preferences and risk aversion parameter α ∈ IR+, the objective is to maximize
the expected utility of his terminal wealth, which is given by

IE
[
− exp

{
− α(XT −B)

}]
= IE

[
− exp

{
− α(x0 +

∫ T

0

πr

Sr−
dSr −B)

}]
(3.3)

for a suitable class Π of admissible strategies which we characterize later on.

In the frame of the stochastic control approach, we introduce the associated value process

V B
t (x) = ess sup

π∈Πt

IE
[
− exp

{
− α(x+

∫ T

t

πr

Sr−
dSr −B)

}
| Ft

]
= −e−αx WB

t (3.4)

where x denotes the amount of capital at time t, and

WB
t = ess inf

π∈Πt

IE
[
exp

{
− α(

∫ T

t

πr

Sr−
dSr −B)

})
| Ft

]
. (3.5)
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Here Πt denotes the set of the admissible strategies on the interval [t, T ].

Let us observe that setting, for any π ∈ Π

Jt(π) = exp
{
− α

∫ t

0

πr

Sr−
dSr

}
(3.6)

we get

WB
t = ess inf

π∈Π
IE
[
eαB JT (π)

Jt(π)
| Ft

]
. (3.7)

Proposition 3.1 Assume the existence of a family of {Ft}-adapted stochastic processes {Rπ
t }π∈Π such that

(i) ∀π ∈ Π, Rπ
t is a {P,Ft} − submartingale, Rπ

T = JT (π) eαB .

(ii) ∃πB ∈ Π such that RπB

t is a {P,Ft} −martingale.

Then the process

Ht =
Rπ

t

Jt(π)

verifies
Ht = WB

t and HT = eαB .

Proof.
The submartingale property of the process Rπ

t implies that, ∀π ∈ Π

Ht =
Rπ

t

Jt(π)
≤ IE[Rπ

T |Ft]
Jt(π)

= IE
[JT (π) eαB

Jt(π)
| Ft

]
which in turn implies that Ht ≤WB

t . On the other hand, for π = πB for the martingale property we have

Ht =
RπB

t

Jt(πB)
=
IE[RπB

T |Ft]
Jt(πB)

= IE
[JT (πB) eαB

Jt(πB)
| Ft

]
and then Ht ≥WB

t .

Remark 3.2 Thus we obtain that the strategy πB
t

St−
, with πB mentioned in the previous proposition is an

optimal control for the problem (3.7), and, as a consequence, for the problem (3.3).

In what follows we make the following assumption on the set of admissible strategies.

Definition 3.3 Let us denote by Π0 the set of processes πt such that πt

St−
is predictable, self-financing and

S-integrable.

Hypothesis 3.4 The set Π consists of processes πt ∈ Π0, taking value in a compact set. This means that
there exists a positive real number π and any π ∈ Π verifies |πt| ≤ π, P -a.s. for all t ∈ [0, T ].

Let us remark that the class Π will not be modified for an absolutely continuous change of probability
measure.

Proposition 3.5 The following inequalities hold true

e−αC1 exp
{(
e−απK) − 1

)
λ(T − t)

}
≤WB

t ≤ eαC1 exp
{(
eαπK) − 1

)
λ(T − t)

}
. (3.8)
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Proof.
Recalling (3.1) and (3.5) the inequalities (3.8) are easily obtained by a direct computation taking into account
the assumption 3.4.

WB
t ≤ eαC1 IE

[
eαπK (NT−Nt)|Ft

]
= eαC1 exp

{∫ T

t

(
eαπK−1

)
λ(s) ds

}
≤ eαC1 exp

{(
eαπK−1

)
λ (T −t)

}

WB
t ≥ e−αC1 IE

[
e−απK (NT−Nt)|Ft

]
= e−αC1 exp

{∫ T

t

(
e−απK−1

)
λ(s) ds

}
≥ e−αC1 exp

{(
e−απK−1

)
λ (T−t)

}
.

The construction of a family {Rπ
t }π∈Π with the properties required by Proposition 3.1 is strictly related with

the existence of bounded solution to a suitable BSDE.

Theorem 3.6 Let (Y B , ZB,1, ZB,2) be a bounded solution to the BSDE

Y B
t = B −

∫ T

t

ZB,1
s dN1

s +
∫ T

t

ZB,2
s dN2

s −
∫ T

t

fα(s, ZB,1
s , ZB,2

s ) ds (3.9)

where the function fα(t, z1, z2) is defined as

fα(t, z1, z2) =
λ(t)
α

− λ1(t)
α

Kt

K2
t

(
λ1(t)K1

t

λ2(t)K2
t

)−K1
t /Kt

exp
{
−α K1

t z2 −K2
t z1

Kt

}
. (3.10)

An optimal control for the problem (3.7), and, as a consequence, for the problem (3.3) is given by

πB
t =

1
Kt

{
1
α

log
(
λ1(t)K1

t

λ2(t)K2
t

)
+ ZB,1

t + ZB,2
t

}
, (3.11)

and the value process is
V B

t (x) = −eα(Y B
t −x). (3.12)

Proof.
First we observe that the equation (3.9) with the generator defined with (3.10) verifies the assumptions of
Theorem 2.5. Thus there exists a bounded solution (Y B , ZB,1, ZB,2) to (3.9).

Let us set, for any π ∈ Π
Rπ

t = Jt(π) eαY B
t (3.13)

with Jt(π) defined in (3.6). In order to prove that the family {Rπ
t }π∈Π verifies the properties required by

Proposition 3.1, we introduce the following processes.

Then we claim that the process

Mπ
t = eαY B

0 exp

{
2∑

i=1

(∫ t

0

log(1 + U i
s(π)) dN i

s −
∫ t

0

λi(s) U i
s(π) ds

)}
(3.14)

with, for π ∈ Π.

U1
s (π) = exp

{
− α

(
πsK

1
s − ZB,1

s

)}
− 1 U2

s (π) = exp
{
α
(
πsK

2
s − ZB,2

s

)}
− 1

is a positive {P,Ft}-martingale, as a consequence of the assumption made on λi(t) and Ki
t , i = 1, 2. More,

we set

Aπ
t = exp

{∫ t

0

vα(s, πs, Z
B,1
s , ZB,2

s ) ds
}

with
vα(s, πs, Z

B,1
s , ZB,2

s ) = αfα(s, ZB,1
s , ZB,2

s ) + λ1(s)U1
s (π) + λ2(s)U2

s (π) (3.15)
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and we get that

∀π ∈ Π, vα(s, πs, Z
B,1
s , ZB,2

s ) ≥ 0 and for π = πB , vα(s, πB
s , Z

B,1
s , ZB,2

s ) = 0 (3.16)

being πB given in (3.11). The assertion in (3.16) can be seen by noting that vα(s, πB
s , Z

B,1
s , ZB,2

s ) = 0 and
that this is its minimum value.

Next we compute

Mπ
t A

π
t = eαY B

0 exp
{
−α

∫ t

0

πs

(
K1

s dN
1
s −K2

s dN
2
s

)
+ α

∫ t

0

(
ZB,1

s dN1
s − ZB,2

s dN2
s

)
+ α

∫ t

0

fα(s, ZB,1
s , ZB,2

s ) ds
}
.

On the other hand, by (3.9) we can write

Y B
t = Y B

0 +
∫ t

0

ZB,1
s dN1

s −
∫ t

0

ZB,2
s dN2

s +
∫ t

0

fα(s, ZB,1
s , ZB,2

s ) ds

and recalling (3.6) we get Mπ
t A

π
t = Rπ

t , for any π ∈ Π.

As a consequence, we obtain that Rπ
t can be written as the product of a nondecreasing process and a positive

martingale, which implies that it is a {P,Ft}-submartingale that turns to be a martingale if the optimal
control is chosen.

Finally by Proposition 3.1 and Remark 3.2, we have that WB
t = eαY B

t and the thesis.

Remark 3.7 It turns out to be that, if (Y B
t , ZB,1

t , ZB,2
t ) is any bounded solution to (3.9) then

Y B
t =

1
α

logWB
t .

Thus, recalling Lemma 2.4, we get that uniqueness holds for the solutions to the equation (3.9). Moreover,
recalling inequalities (3.8), we have

|Y B
t | ≤ C1 +

λ

α
D(T − t)

with D = max
{
1− e−απK , eαπK − 1

}
.

Moreover let us observe that our generator does not satisfy the condition required in Theorem 3.5 in [2].

Proposition 3.8 With the same assumption of Theorem 3.6, if (Y B
t , ZB,1

t , ZB,2
t ) is the bounded solution to

(3.9) (with coefficient (B, fα)) then

Y B
t =

Ŷ B
t

α
, ZB,i

t =
ẐB,i

t

α
, i = 1, 2 P × dt− a.e. (3.17)

where (Ŷ B
t ẐB,1

t , ẐB,2
t ) is the unique bounded solution to (3.9) with coefficient (αB, f1), that is

Ŷ B
t = αB −

∫ T

t

ẐB,1
s dN1

s +
∫ T

t

ẐB,2
s dN2

s −
∫ T

t

f1(s, ẐB,1
s , ẐB,2

s )ds. (3.18)

Proof.
Let (Ŷ B

t ẐB,1
t , ẐB,2

t ) be the unique bounded solution to (3.18), dividing by α, since f1(t, z1, z2) = αfα(t, z1
α ,

z2
α )

we get that ( Ŷ B
t

α ,
ẐB,1

t

α ,
ẐB,2

t

α ) solves (3.9).

In what follows, it will be usefull to consider the case of an investor who seeks to maximize the expected
utility of his terminal wealth without taking into account the claim, that is to maximize

IE
[
− exp

{
− α XT

}]
= IE

[
− exp

{
− α(x0 +

∫ T

0

πr

Sr−
dSr)

}]
. (3.19)
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In this case the associated value process is

V 0
t (x) = ess sup

π∈Πt

IE
[
− exp

{
− α(x+

∫ T

t

πr

Sr−
dSr)

}
| Ft

]
= −e−αx W 0

t (3.20)

where

W 0
t = ess inf

π∈Πt

IE
[
exp

{
− α

(∫ T

t

πr

Sr−
dSr −B

})
| Ft

]
. (3.21)

It is a particular case of the problem discussed in this section, but we want to emphasize the final result.

Theorem 3.9 Let (Y 0, Z0,1, Z0,2) the bounded solution to the BSDE

Y 0
t = −

∫ T

t

Z0,1
s dN1

s +
∫ T

t

Z0,2
s dN2

s −
∫ T

t

fα(s, Z0,1
s , Z0,2

s ) ds (3.22)

where the function fα(t, y, z1, z2) is defined in (3.10). An optimal control for the problem (3.19) is given by

π0
t =

1
Kt

{
1
α

log
(
λ1(t)K1

t

λ2(t)K2
t

)
+ Z0,1

t + Z0,2
t

}
, (3.23)

and the value process is
V 0

t (x) = −eα(Y 0
t −x). (3.24)

4. Dual problems

The dual problem related to the primal utility maximization problem discussed in Section 3 consists in
finding, in the class Mf of martingale measures equivalent to P with finite entropy, a measure QB solution
to the problem

max
Q∈Mf

(
IEQ[αB]−H(Q|P )

)
,

where H(Q|P ), the relative entropy of a probability measure Q w.r.t. P is defined by

H(Q|P ) =

{
IEP

[dQ
dP

log
(dQ
dP

)]
Q� P

+∞ otherwise
(4.1)

The link between the utility maximization problem and the dual problem is provided by the duality principle
discussed, among others, in [12]. We will prove that a duality relation for the model studied in this note can
be written as

inf
Π
IE

[
exp

{
αB − α

∫ T

0

πt

St−
dSt

}]
= exp

{
sup

Q∈Mf

(
IEQ[αB]−H(Q|P )

)}
. (4.2)

Thus, for π = πB , with πB defined in (3.11), by Theorem 3.6 the l.h.s. of (4.2) takes the value eαY B
0 .

Lemma 4.1 The probability measure P̃ defined by the density

dP̃

dP
= exp

{
2∑

i=1

(∫ t

0

log(1 + Ũ i
s) dN

i
s −

∫ t

0

λi(s)Ũ i
s ds

)}

with, Ũ1
s = exp

{
− θ̃sK

1
s

}
− 1, Ũ2

s = exp
{
θ̃sK

2
s

}
− 1, and θ̃s = 1

Kt
log

λ1(s)K1
s

λ2(s)K2
s

, is a risk-neutral measure

equivalent to P with finite entropy w.r.t. P .
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Proof.
As a consequence of a Girsanov Theorem, under P̃ , for i = 1, 2, the intensity of N i

t is given by

λ̃i(t) = λi(t)
(
1 + Ũ i

t

)
, (4.3)

thus a sufficient condition of risk neutrality (see for instance [11]) can be obtained by computing

λ1(t) K1
t (1 + Ũ1

t )− λ2(t) K2
t (1 + Ũ2

t ) = 0

where

(1 + Ũ1
t ) =

(
λ1(t) K1

t

λ2(t) K2
t

)−K1
t

Kt

(1 + Ũ2
t ) =

(
λ1(t) K1

t

λ2(t) K2
t

)K2
t

Kt

.

Furthermore, denoting by ĨE the mean value under P̃ we get

H(P̃ |P ) = ĨE
[
log

dP̃

dP

]
= ĨE

[ 2∑
i=1

∫ T

0

λi(t)
(
(1 + Ũ i

t ) log(1 + Ũ i
t )− Ũ i

t

)
dt
]
< +∞

since the integrand is bounded under the assumptions made in this note.

Remark 4.2 Setting λ̃(t) = λ̃1(t) + λ̃2(t), which is the intensity of Nt under P̃ , the function fα defined in
(3.10) can be also written as

fα(t, z1, z2) =
λ(t)
α

− λ̃(t)
α

exp
{
−α K1

t z2 −K2
t z1

Kt

}
. (4.4)

Theorem 4.3 The duality principle (4.2) holds true. Furthermore, the measure QB solution to the dual
problem has the density

dQB

dP

∣∣∣∣
Ft

= exp

{
2∑

i=1

(∫ t

0

log(1 + U i
s(π

B)) dN i
s −

∫ t

0

λi(s) U i
s(π

B) ds
)}

(4.5)

with, U1
s (πB) = exp

{
− α

(
πB

s K
1
s − ZB,1

s

)}
− 1, U2

s (πB) = exp
{
α
(
πB

s K
2
s − ZB,2

s

)}
− 1.

Proof.
Since, for i = 1, 2

1 + U i
t (π

B) = (1 + Ũ i
t ) exp

{
−K

1
t Z

B,2
t −K2

t Z
B,1
t

Kt

}
it is easy to verify that QB is a risk-neutral measure equivalent to P .

Next, following a method described in [12], we introduce the probability measure PB equivalent to P defined
by

dPB

dP
= CB eαB with CB =

1
IE[eαB ]

and the duality relation (4.2) becomes

inf
Π
IEB

[
exp

{
−
∫ T

0

α πt

St−
dSt

}]
= exp

{
− inf

Q∈Mf

H(Q|PB).
}

(4.6)

Let us note that we did not change the class Mf because the boundedness of B implies that

H(Q|P ) < +∞ ⇐⇒ H(Q|PB) < +∞

12



being
H(Q|P ) = H(Q|PB) + IEQ[αB]− log IE[eαB ]. (4.7)

The solution to the problem (4.6) is the minimal entropy martingale measure under PB , whose existence
and uniqueness is assured by Lemma 4.1 and by a result provided in [20], being the price process St locally
bounded. We will prove that QB is the solution by using Proposition 3.2 in [23]. To this end, recalling (3.14)
and (3.16) we have

dQB

dP
= e−αY B

0 MπB

t = e−αY B
0 RπB

t = e−αY B
0 eαBexp

{
−
∫ T

0

α πB
t

St−
dSt

}
(4.8)

and
dQB

dPB
=
dQB

dP

dP

dPB
= e−αY B

0 IE[eαB ]exp

{
−
∫ T

0

α πB
t

St−
dSt

}
.

Hence, H(QB |PB) = log IE[eαB ] − αY B
0 , and by (4.7), H(QB |P ) = IEQB

[αB] − αY B
0 . Inserting this value

in (4.2), we realize the equality and this in turn implies the validity of duality relation (4.2).

Remark 4.4 A different version of the Duality Principle is given in [4]. There the relation (4.6) is provided
by introducing a set ΠB defined by means of loss random variables. Let us denote by D the set of loss random
variables D ≥ 1, P − a.s. verifying

(i) ∃π : πt 6= 0, P − a.s. ∀t ∈ [0, T ] ;
πt

St−
∈ Π0 , and |

∫ t

0

πr

Sr−
dSr |≤ D

(ii) IE[ecD] < +∞ ∀c > 0,

and let us consider the following class of admissible strategies

ΠB =
{
π ∈ Π0 such that exist D ∈ D, c ≥ 0 :

∫ T

0

πr

Sr−
dSr ≥ −cD

}
.

It easy to see that Π ⊆ ΠB. In fact setting D = πK NT + 1 we have, for any π ∈ Π∣∣∣∣∣
∫ T

0

πr

Sr−
dSr

∣∣∣∣∣ ≤ D.

The result given in the Theorem 4.3 allows us to claim that the infimum over Π and that one over ΠB in
the l.h.s. of (4.6) coincide.

As a consequence we find the density of the minimal entropy martingale measure under P . This result can
be seen as the dual problem of the utility maximization one presented in (3.19), with α = 1.

Corollary 4.5 The minimal entropy martingale measure for the model discussed in this note is defined by
the density

dQ∗

dP
= e−Ŷ 0

0 exp

{
−
∫ T

0

π∗t
St−

dSt

}
. (4.9)

where

π∗t = π0
t

∣∣∣
α=1

=
1
Kt

{
log
(
λ1(t)K1

t

λ2(t)K2
t

)
+ Ẑ0,1

t + Ẑ0,2
t

}
(4.10)
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and (Ŷ 0
t , Ẑ

0,1
t , Ẑ0,2

t ) is the solution to (3.22) for α = 1. Moreover H(Q∗|P ) = −Ŷ 0
0 and the intensities of

N i
t , i = 1, 2 under Q∗, are given by λ∗i (t) = (1 + U i

t (π
∗)) λi(t) for α = 1, that is

λ∗1(t) = exp
{
−
(
π∗tK

1
t − Ẑ0,1

t

)}
λ1(t) = λ1(t)

(
λ1(t)K1

t

λ2(t)K2
t

)−K1
t

Kt

exp

{
K2

t Ẑ0,1
t −K1

t Ẑ0,2
t

Kt

}
(4.11)

λ∗2(t) = exp
{(
π∗tK

2
t − Ẑ0,2

t

)}
λ2(t) = λ2(t)

(
λ1(t)K1

t

λ2(t)K2
t

)K2
t

Kt

exp

{
K2

t Ẑ0,1
t −K1

t Ẑ0,2
t

Kt

}
.

Proof.
By (4.8), for α = 1 and B = 0, (4.9) follows. The last assertion is a standard consequence of the Girsanov
Theorem.

Remark 4.6 In a particular case, similar to that studied in [9, 10], a restrictive hypothesis on the model
consists in assuming the existence of a deterministic function Γ(t) such that

K1
t

K2
t

= Γ(t). (4.12)

In this case we are able to give an explicit expression of the value process (3.24).

First, we observe that, as a consequence of (4.12), the intensity λ̃ is a deterministic function of t, and the
function fα given in (4.4),

fα(t, z1, z2) =
λ(t)
α

− λ̃(t)
α

exp
{
α
z1 − Γ(t)z2
1 + Γ(t)

}
,

is a deterministic function of (t, z1, z2). This allows us to claim that the unique bounded solution to the
equation (3.22) is given by (Y 0, 0, 0), with

Y 0
t = − 1

α

∫ T

t

(
λ(s)− λ̃(s)

)
ds.

Thus, the optimal control (see (3.23)) is

π0
t =

1
αKt

log
(
λ1(t)
λ2(t)

Γ(t)
)

and the value process is a deterministic function given by

V 0
t (x) = e−αx exp

{
−
∫ T

t

(
λ(s)− λ̃(s)

)
ds

}
.

More, by Corollary 4.9 the probability measure P̃ coincides with the MEMM.
If in addition λ1(t), λ2(t) and Ki

t , i = 1, 2, are constant we get that π0
t does not depend on time, hence the

optimal cash amount invested in the stock is constant as in the Merton model for exponential utility.

5. Indifference valuation

In this section we introduce the notion of the utility indifference price and hedging strategy for the contingent
claim B. The utility indifference value pα

t process for B is defined at any time t ∈ [0, T ] as the implicit solution
to the equation

V 0
t (x) = V B

t (x+ pα
t ).
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This means that starting with the capital x one has the same maximal utility from solely trading on (t, T ],
as from selling the claim at time t for pα

t again trading and then paying out B at time T .
The utility indifference hedging strategy Ψα

t is defined as the difference of the respective optimal investment
strategies

Ψα
t = πB

t − π0
t .

By Theorem (3.6) and Theorem (3.9), V B
t (x) = −eα(Y B

t −x) and V 0
t (x) − eα(Y 0

t −x) where (Y B , ZB,1, ZB,2)
and (Y 0, Z0,1, Z0,2) are the bounded solutions of the BSDE (3.9) and (3.22), respectively. Then pα

t does not
depend on x and

pα
t = Y B

t − Y 0
t , Ψα

t =
1
Kt

(ZB,1
t − Z0,1

t + ZB,2
t − Z0,2

t ). (5.1)

In the next Proposition we will prove that pα
t is the unique solution to a BSDE under the MEMM Q∗. By

this BSDE description we will able to prove that pα
t converges to IE∗[B|Ft] as the risk aversion parameter α

goes to zero and that the hedging strategies Ψα
t converge to the strategy Ψ∗t which is risk-minimizing in the

sense of Follerman and Sondermann, [17], under the MEMM.
These results have been proved for a Brownian filtration in [16], for a general underlying continuous filtration
in [27] and in [2] for a noncontinuous filtration (generated by a Brownian motion and an integer-valued
random measure) but always for continuous underlying assets.

Proposition 5.1 Let (Ỹ α
t , Z̃

α,1
t , Z̃α,2

t ) be the unique bounded solution to the following BSDE under Q∗

Ỹ α
t = B −

∫ T

t

Z̃α,1
s dN1

s +
∫ T

t

Z̃α,2
s dN2

s +
∫ T

t

λ∗(s)
α

(
exp

{
− α

K1
s Z̃

α,2
s −K2

s Z̃
α,1
s

Ks

}
− 1
)
ds (5.2)

where λ∗(s) = λ∗1(s) + λ∗2(s) is the intensity of Nt under Q∗ (see (4.11)).
Thus, the exponential utility indifference value process pα

t coincides with Ỹ α
t , and |pα

t | ≤ |B|. Moreover the
indifference hedging strategy is given by

Ψα
t =

1
Kt

(
Z̃α,1

t + Z̃α,2
t

)
(5.3)

and Z̃i
t = ZB,i

t − Z0,i
t , i=1,2.

Proof.
By Proposition 3.8, pα

t = Y B
t − Y 0

t = 1
α (Ŷ B

t − Ŷ 0
t ), where (Ŷ B

t , ẐB,1
t , ẐB,2

t ) and (Ŷ 0
t , Ẑ

0,1
t , Ẑ0,2

t ) are the
solutions to the BSDE (3.18) with terminal data αB and 0, respectively.
Denote by δŶt = Ŷ B

t − Ŷ 0
t and δẐi

t = ẐB,i
t − Ẑ0,i

t , i = 1, 2. Since, by (4.11)

f1(t, Ẑ
B,1
t , ẐB,2

t )− f1(t, Ẑ
0,1
t , Ẑ0,2

t ) =

= −λ1(t)
Kt

K2
t

(
λ1(t)K1

t

λ2(t)K2
t

)−K1
t

Kt

exp
{K2

t Ẑ
0,1
t −K1

t Ẑ
0,2
t

Kt

}(
exp

{K2
t δẐ

1
t −K1

t δẐ
2
t

Kt

}
− 1

)
=

−Kt

K2
t

λ∗1(t)

(
exp

{K2
t δẐ

1
t −K1

t δẐ
2
t

Kt

}
− 1

)
= −λ∗(t)

(
exp

{K2
t δẐ

1
t −K1

t δẐ
2
t

Kt

}
− 1

)
,

where the last equality is a consequence of the risk neutrality of Q∗

λ∗1(t) K
1
t − λ∗2(t) K

2
t = 0 P × dt− a.e. (5.4)

we get that

1
α

(
f1(t, Ẑ

B,1
t , ẐB,2

t )− f1(t, Ẑ
0,1
t , Ẑ0,2

t )
)

= −λ
∗(t)
α

(
exp

{
− α

K1
t

δẐ2
t

α t
−K2

t
δẐ1

t

α

Kt

}
− 1
)
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and

pα
t = B −

∫ T

t

δẐ1
s

α
dN1

s +
∫ T

t

δẐ2
s

α
dN2

s +
∫ T

t

λ∗(s)
α

(
exp

{
− α

K1
s

δẐ1
s

α −K2
s

δẐ2
s

α

Ks

}
− 1
)
ds. (5.5)

Taking into account that δZi
t = ZB,i

t − Z0,i
t = 1

αδẐ
i
t we have that

pα
t = B −

∫ T

t

δZ1
s dN

1
s +

∫ T

t

δZ2
sdN

2
s +

∫ T

t

λ∗(s)
α

(
exp

{
− α

K1
s δZ

1
s −K2

s δZ
2
s

Ks

}
− 1
)
ds. (5.6)

Remark 5.2 Comparing the result given in the previous Proposition with that one given in Theorem 3.6 we
get that

eαpα
t = ess inf

π∈Πt

IE∗

[
exp

{
−α

(∫ T

t

πr

Sr−
dSr −B

)}∣∣∣∣∣ Ft

]
. (5.7)

Here and in what follows IE∗ denotes the expectation w.r.t. the minimal entropy martingale measure. Fur-
thermore the optimal control of this exponential utility optimization problem with respect to the MEMM,
coincides with the indifference hedging ψα

t given in (5.3).

Always in order to prove the mentioned convergence results we need some additional preliminaries.
Since St is a locally bounded (Q∗,Ft)-martingale we can apply the Kunita-Watanabe decomposition

B = IE∗(B) +
∫ T

0

Ψ∗rdSr + LT (5.8)

where Ψ∗t is a (Q∗,Ft)-predictable process such that IE∗(
∫ T

0
(Ψ∗r)

2d
〈
S
〉

r
) < +∞ and LT is a square-integrable

(Q∗,Ft)-martingale orthogonal to St. The integrand, Ψ∗t , in the Kunita-Watanabe decomposition is risk-
minimizing in the sense of Follerman and Sondermann [17] with respect to Q∗. The next Lemma provides a
representation of the process Ψ∗t .

Lemma 5.3 Let (Y ∗t , Z
∗,1
t , Z∗,2t ) be the unique bounded solution to the BSDE

Y ∗t = B −
∫ T

t

Z∗,1s (dN1
s − λ∗1(s)ds) +

∫ T

t

Z∗,2s (dN2
s − λ∗2(s)ds). (5.9)

Then

Ψ∗t =
1
St−

Z∗,1t + Z∗,2t

Kt
P × dt− a.s. (5.10)

Proof.
By (5.8) we deduce that

IE∗[B|Ft] = IE∗(B) +
∫ t

0

Ψ∗rdSr + Lt = B −
∫ T

t

Ψ∗rdSr − (LT − Lt). (5.11)

Let us now observe that in our framework Lt can be written as

Lt =
∫ t

0

L1
s (dN1

s − λ∗1(s)ds) +
∫ t

0

L2
s (dN2

s − λ∗2(s)ds)

where Li
t are (Q∗,Ft)-predictable processes such that IE∗(

∫ T

0
(Li

r)
2dr) < +∞. Moreover, since Lt is orthog-

onal to St, and since the MEMM is a risk-neutral probability measure, we get that for any t ∈ (0, T ]

dSt = St−

(
K1

t (dN1
t − λ∗1(t) dt)−K2

t (dN2
t − λ∗2(t) dt)

)
,
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0 =
〈
L, S

〉
t
=
∫ t

0

Sr−
(
L1

rK
1
rλ
∗
1(r)− L2

rK
2
rλ
∗
2(r)

)
dr

which implies together with the risk neutrality condition (5.4) that P × dt− a.e.

L1
t = L2

t =
1
Kt

(
K2

t Z
∗,1
t −K1

t Z
∗,2
t

)
and

Lt =
∫ t

0

1
Kr

(
K2

rZ
∗,1
r −K1

rZ
∗,2
r

)
(dNr − λ∗(r) dr).

Replacing in (5.11) we obtain

IE∗[B|Ft] = B −
∫ T

t

{Ψ∗rSr−K
1
r + L1

r}(dN1
r − λ∗1(r)dr) +

∫ T

t

{Ψ∗rSr−K
2
r − L1

r}(dN2
r − λ∗2(r)dr). (5.12)

On the other hand, the unique bounded solution to (5.9) is such that Y ∗t = IE∗[B|Ft].
By a comparison between (5.9) and (5.12) we finally obtain (5.10).

In the next Proposition we will prove the convergence, for vanishing risk aversion, of the exponential utility
indifference value to the MEMM price and of the exponential utility indifference hedging strategy to the
Q∗-risk-minimizing strategy. This means, loosely speaking that, in small risk aversion limit, exponential
indifference hedging converges to risk-minimization under the MEMM.

Lemma 5.4 Let (Ỹ α
t , Z̃

α,1
t , Z̃α,2

t ) be the unique bounded solution to BSDE (5.2) and (Y ∗t , Z
∗,1
t , Z∗,2t ) be the

unique bounded solution to the BSDE (5.9).
Then there is a constant C > 0 such that, for all α ∈ (0, 1]

IE∗[ sup
t∈[0,T ]

|Ỹ α
t − Y ∗t |2 +

∫ T

0

|Z̃α,1
t − Z∗,1t |2dt+

∫ T

0

|Z̃α,1
t − Z∗,1t |2dt] ≤ α2C. (5.13)

Proof.
To prove (5.13) we apply the estimate (2.5)

IE∗[ sup
t∈[0,T ]

|Ỹ α
t − Y ∗t |2 +

∫ T

0

|Z̃α,1
t − Z∗,1t |2dt+

∫ T

0

|Z̃α,2
t − Z∗,2t |2dt] ≤ CIE∗

[ ∫ T

0

|δf(t, Z̃α,1
t , Z̃α,2

t )|2dt
]

where

δf(t, Z̃α,1
t , Z̃α,2

t ) = −λ
∗(t)
α

(
exp

{
− α

K1
t Z̃

α,1
t −K2

s Z̃
α,2
t

Kt

}
− 1
)

+ λ∗1(t)Z̃
α,1
t − λ∗2(t)Z̃

α,2
t .

By the risk neutrality condition (5.4) we have that

λ∗1(t) =
K2

t

Kt
λ∗(t), λ∗2(t) =

K1
t

Kt
λ∗(t).

Since Z̃α,i
t , i = 1, 2 are bounded uniformly in α, more precisely |Z̃α,i

t | ≤ 2C1, i = 1, 2, (see (2.14)), finally we
get that

|δf(t, Zα,1
t , Zα,2

t )|2 ≤ const.α2. (5.14)

and the thesis.

Proposition 5.5 For vanishing risk aversion we get

sup
t∈[0,T ]

|pα
t − IE∗[B|Ft]|2 ≤ α2C α ∈ (0, 1], and lim

α→0
sup

t∈[0,T ]

|pα
t − IE∗[B|Ft]| = 0 in L∞.
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Furthermore

lim
α→0

∫ t

0

Ψα
r

Sr−
dSr =

∫ t

0

Ψ∗rdSr in H2(Q∗).

Here H2(Q∗) denotes the space of (Q∗,Ft)-square integrable martingales.

Proof.
By (5.2) and (5.9) we can write

pα
t − IE∗[B|Ft] = Ỹ α

t − Y ∗t = IE∗

[∫ T

t

δf(r, Z̃α,1
r , Z̃α,2

r ) dr | Ft

]
Thus, by (5.14), ∀t ∈ [0, T ],

|pα
t − IE∗[B|Ft]| ≤ IE∗

[∫ T

t

|δf(r, Z̃α,1
r , Z̃α,2

r )| dr | Ft

]
≤ const.α

and we obtain the first claim. More, ∀t ∈ [0, T ],

|pα
t − IE∗[B|Ft]|2 ≤ T IE∗

[∫ T

t

|δf(r, Z̃α,1
r , Z̃α,2

r )|2 dr | Ft

]
≤ const.α2.

Finally, recalling (5.3)

lim
α→0

∫ t

0

Ψα
r

Sr−
dSr =

∫ t

0

Ψ∗rdSr in H2(Q∗)

is a consequence of the previous Lemma,

IE∗

[∫ t

0

∣∣∣∣ Ψα
r

Sr−
−Ψ∗r

∣∣∣∣2 d〈S〉r
]
≤ IE∗

[∫ t

0

(K1
r )2λ∗1(r) + (K2

r )2λ∗2(r)
K2

r

{∣∣∣Z̃α,1
r − Z∗,1r

∣∣∣2 +
∣∣∣Z̃α,2

r − Z∗,2r

∣∣∣2} dr] ≤ const.α2

since, under Q∗

d
〈
S
〉

r
= S2

r−

{
(K1

r )2λ∗1(r) + (K2
r )2λ∗2(r)

}
dr.

6. Markovian case

In this section we consider a Markovian setting. More precisely we assume that the dynamics of the traded
stock price is given by

dSt = St−

(
K1(t, St− , Zt−)dN1

t −K2(t, St− , Zt−) dN2
t

)
, (6.1)

with S0 = s0 ∈ IR+, Ki(t, y, z), i = 1, 2, jointly measurable and positive functions, K2(t, y, x) < 1.
Here Zt is an Ft-adapted marked point process which may be considered as a stochastic factor as, for
instance, in [34], describing the amount of information received by the traders related to intraday market
activity, the activity of other markets, macroeconomics factors or microstructure rules. Alternatively, it may
represents the level of a nontradable asset as in [11, 30, 1]. In this latter situation the agent expects to
receive or pay out the claim depending on the nontradable asset and trades on the correwlated asset S to
manage his risk. Examples include option on basket of stocks where the basket is illiquid, executive stock
options and weather derivatives.

We assume that the process Zt is the solution to

dZt = H1(t, Zt−)dN1
t −H2(t, Zt−) dN2

t , (6.2)

with Z0 = z0 ∈ IR, and Hi(t, z), i = 1, 2, bounded jointly measurable functions.
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In this model S and Z are correlated since common jump times are allowed. More precisely, the quadratic
variation of S and Z is given by

[S,Z]t =
∫ t

0

Sr−
[
K1(t, St− , Zt−)H1(t, Zt−) +K2(t, St− , Zt−)H2(t, Zt−)

]
dr

and, for H1, H2 both nonnegative, [S,Z]t ≥ 0, while for H1, H2 both nonpositive, [S,Z]t ≤ 0. Both cases
make sense from an economic point of view.

We consider a contingent claim with the payoff at time T of the form B = B(ST , ZT ), where B(y, z) is a
measurable and bounded function. As in Section 3 the agent’s objective is to maximize his expected utility
from terminal wealth given in (3.3)

IE
[
− exp

{
− α(XT −B)

}]
= IE

[
− exp

{
− α(x0 +

∫ T

0

πr

Sr−
dSr −B)

}]
.

Since we are in a markovian setting we introduce the value function

vB(t, x, y, z) = sup
π∈Πt

IE
[
− exp

{
− α(XT −B)

}
| Xt = x, St = y, Zt = z

]
= −e−αx wB(t, y, z) (6.3)

where

wB(t, y, z) = inf
π∈Πt

IE
[
exp

{
− α(

∫ T

t

πr

Sr−
dSr −B)

})
| St = y, Zt = z

]
. (6.4)

Clearly,
vB(t, x, St, Zt) = V B

t (x), wB(t, St, Zt) = WB
t .

Proposition 6.1 Let (Y B , ZB,1, ZB,2) be the unique bounded solution to the BSDE (3.9)

Y B
t = B −

∫ T

t

ZB,1
s dN1

s +
∫ T

t

ZB,2
s dN2

s −
∫ T

t

fα(s, ZB,1
s , ZB,2

s ) ds

with the function fα(t, z1, z2) given by (4.4)

fα(t, z1, z2) =
λ(t)
α

− λ̃(t)
α

exp
{
−α K1(t, St− , Zt−)z2 −K2(t, St− , Zt−)z1

K(t, St− , Zt−)

}
. (6.5)

In the setting of this section we obtain the markovian property of (Y B , ZB,1, ZB,2). This means that there
exist measurable functions uB(t, y, z), dB

1 (t, y, z), dB
2 (t, y, z) such that

Y B
t = uB(t, St, Zt), ZB,1

t = dB
1 (t, St− , Zt−), ZB,2

t = dB
2 (t, St− , Zt−).

The optimal control (3.11) is markovian and given by πB(t, St− , Zt−) where

πB(t, y, z) =
1

K(t, y, z)

{
1
α

log
(
λ1(t)K1(t, y, z)
λ2(t)K2(t, y, z)

)
+ dB

1 (t, y, z) + dB
2 (t, y, z)

}
, (6.6)

and the value function is

vB(t, x, y, z) = −eα(uB(t,y,z)−x). (6.7)

Proof.
By Theorem 3.6 the value process is given by V B

t (x) = −eα(Y B
t −x), hence

Y B
t =

1
α

logWB
t =

1
α

logwB(t, St, Zt) = uB(t, St, Zt),

with
uB(t, y, z) =

1
α

logwB(t, y, z).

19



Moreover, setting

dB
1 (t, y, z) = uB

(
t, y(1 +K1(t, y, z)), z +H1(t, z)

)
− uB(t, y, z)

(6.8)
dB
2 (t, y, z) = −uB

(
t, y(1−K2(t, y, z)), z −H2(t, z)

)
+ uB(t, y, z),

the processes
dB

i (t, St− , Zt−), i = 1, 2,

verify (2.6) in Lemma 2.4 and are predictable, thus

ZB,i
t = dB

i (t, St− , Zt−), i = 1, 2.

Finally (6.6) is a consequence of Theorem 3.6.

The Markov property of the solution to BSDEs with Markovian coefficients has been proved in a Brownian
filtrations setting under standard assumptions in [15] and in the case of generators with quadratic growth in
[1].

Remark 6.2 Let us observe that the BSDE approach allows us to solve the situation described in Remark
3.2 in [11] in the particular case where the diffusive component of the nontradable asset dynamics is equal
to zero.

In what follows, we deal with the control problem we are discussing in this Section by the classical approach
that consists in writing down the Hamilton-Jacobi- Bellman equation. In [11] the assumption on the model
allowed us to deduce a linear equation providing an explicit expression of the value function by Feynman-
Kac formula and of the optimal control. This is not the case of the model described by (6.1) and (6.2).
Nevertheless useful results can be obtained, that is an implicit definition of the function u(t, y, z).

First, let us observe that since λ̃(t) is a markovian process also the function fα(t, z1, z2) in (6.5) is markovian,
that is we can define a measurable deterministic function gα(t, y, z, z1, z2) such that

fα(t, z1, z2) = gα(t, St− , Zt− , z1, z2).

Proposition 6.3 If the function uB(t, y, z) is absolutely continuous w.r.t. t, it is defined implicitly by the
equation

uB(t, y, z) = B(y, z)−
∫ T

t

gα

(
s, y, z, dB

1 (s, y, z), dB
2 (s, y, z)

)
ds (6.9)

where dB
i (s, y, z), i = 1, 2, are defined in (6.8).

Proof.
For a constant π, the process (Xt, St, Zt) is a Markov process with a generator that for a bounded measurable
function f(t, x, y, z) is given by

Lf(t, x, y, z) =
∂

∂t
f(t, x, y, z) + Ltf(t, x, y, z)

Ltf(t, x, y, z) = λ1(t)
[
f
(
t, x+ πK1(t, y, z), y(1 +K1(t, y, z)), z +H1(t, y, z)

)
− f(t, x, y, z)

]
+

+ λ1(t)
[
f
(
t, x− πK2(t, y, z), y(1 +K2(t, y, z)), z −H2(t, y, z)

)
− f(t, x, y, z)

]
thus the Hamilton-Jacobi- Bellman equation that the value function satisfies is

sup
π

{ ∂
∂t
vB(t, x, y, z) + Ltv

B(t, x, y, z)
}

= 0, ∀t ∈ [0, T ), vB(T, x, y, z) = −e−αx eαB(y,z). (6.10)
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Since vB(t, x, y, z) = −e−αx eαuB(t,y,z), replacing this expression in (6.10) we obtain that uB(t, y, z) solves
∀t ∈ [0, T )

inf
π

{
α
∂

∂t
uB(t, y, z) + λ1(t) exp

{
− απK1(t, y, z) + αdB

1 (t, y, z)
}

(6.11)

+ λ2(t) exp
{
απK2(t, y, z)− αdB

2 (t, y, z)
}
− λ(t)

}
= 0

with the final condition uB(T, y, z) = B(y, z).
By the latter equation it is easy to find that the infimum in (6.11) is achieved in πB(t, y, z) defined in (6.6)
(compare with (3.11)). Finally, inserting this expression in (6.11), we get that uB(t, y, z) solves the following
nonlinear equation

∂

∂t
uB(t, y, z)− gα

(
t, y, z, dB

1 (t, y, z), dB
2 (t, y, z)

)
= 0, ∀t ∈ [0, T ), uB(T, x, y, z) = B(y, z). (6.12)

The Hamilton-Jacobi-Bellman approach under a nontrivial assumption could provide the following verifica-
tion result. Moreover the BSDE could be derived by Ito Formula.

Corollary 6.4 If there exists a bounded measurable function uB(t, y, z) verifying (6.9), then the value func-
tion is

vB(t, x, y.z) = −e−αx eαuB(t,y,z) (6.13)

and an optimal feedback control is given by (6.6). The process (uB(t, St, Zt), dB
1 (t, St− , Zt−), dB

2 (t, St− , Zt−)),
with dB

i (t, y, z), i = 1, 2, defined in (6.8), is a bounded solution to the BSDE

uB(t, St, Zt) = B(St, Zt)−
∫ T

t

dB
1 (r, Sr− , Zr−) dN1

r +
∫ T

t

dB
2 (r, Sr− , Zr−) dN2

r

−
∫ T

t

gα

(
r, Sr, Zr, d

B
1 (r, Sr, Zr), dB

2 (r, Sr, Zr)
)
ds.

Proof.
By a verification result, the function defined in (6.13) is a solution to the HJB-equation (6.10), then it
coincides with the value function. Next, by the Ito Formula,

uB(t, St, Zt) = uB(0, S0, Z0) +
∫ t

0

∂

∂r
uB(r, Sr, Zr) dr +

∑
0<r≤t

(
uB(r, Sr, Zr)− uB(r, Sr− , Zr−)

)
1I∆N1

r =/0 +

+
∑

0<r≤t

(
uB(r, Sr, Zr)− uB(r, Sr− , Zr−)

)
1I∆N2

r =/0

taking into account (6.9) and the definition of the functions di, i = 1, 2, the conclusion.

Remark 6.5 Let us observe that the reduced HJB-equation (6.12) can be written as

∂

∂t
uB(t, y, z)−Ltu

B(t, y, z)−g̃α

(
t, y, z, dB

1 (t, y, z), dB
2 (t, y, z)

)
= 0, ∀t ∈ [0, T ), uB(T, x, y, z) = B(y, z),

where Lt denotes the generator of the pair (S,Z) and

g̃α

(
t, y, z, dB

1 (t, y, z), dB
2 (t, y, z)

)
= gα

(
t, y, z, dB

1 (t, y, z), dB
2 (t, y, z)

)
+ λ1(t)dB

1 (t, y, z)− λ2(t)dB
2 (t, y, z).

By the BSDE representation of uB(t, St, Zt) we get the following generalized Feynman-Kac formula

uB(t, y, z) = IE[B(ST , ZT )−
∫ T

t

g̃α

(
r, Sr, Zr, d

B
1 (r, Sr, Zr), dB

2 (r, Sr, Zr)
)
dr | St = y, Zt = z].
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Proposition 6.1 implies, moreover, the Markovian property of the utility indifference price and the indifference
hedging strategy, whose expression has been found in (5.1) that here recall

pα
t = Y B

t − Y 0
t , Ψα

t =
1
Kt

(ZB,1
t − Z0,1

t + ZB,2
t − Z0,2

t ).

Thus, setting, with a little abuse of notations

pα(t, y, z) = uB(t, y, z)−u0(t, y, z), Ψα(t, y, z) =
1

K(t, y, z)
(
dB
1 (t, y, z)−d0

1(t, y, z)+d
B
2 (t, y, z)−d0

2(t, y, z)
)

where K(t, y, z) = K1(t, y, z) +K2(t, y, z), one easily gets

pα
t = pa(t, St, Zt) Ψα

t = Ψα(t, St− , Zt−).

On the other hand we recall two facts. The first one is that pα
t = Ỹ α

t and that the indifference hedging
strategy is given by

Ψα
t =

1
Kt

(
Z̃α,1

t + Z̃α,2
t

)
where (Ỹ α

t , Z̃
α,1
t , Z̃α,2

t ) is the unique bounded solution to the BSDE under Q∗ (5.2).
The second one is that pα

t is involved in the optimization problem defined by (5.7) in Remark 5.2, under Q∗.
Then, following the same procedure adopted in Proposition 6.3 we obtain a result analogous to (6.9) under
an analogous regularity assumption, that is

pα(t, y, z) = B(y, z)−
∫ T

t

λ∗(t, y.z)
α

[
exp

{
− α

(K2(t, y, z)
K(t, y, z)

d̃1(t, y, z)−
K1(t, y, z)
K(t, y, z)

d̃2(t, y, z).
)]

Moreover
Ψα(t, y, z) =

1
K(t, y, z)

(
d̃1(t, y, z) + d̃2(t, y, z)

)
(6.14)

where, the expression of λ∗(t, y, z) can be deduced by (4.11) and d̃i, i = 1, 2, have to be defined in analogy
with (6.8)

d̃1(t, y, z) = pα
(
t, y(1 +K1(t, y, z)), z +H1(t, z)

)
− pα(t, y, z)

(6.15)

d̃2(t, y, z) = −pα
(
t, y(1−K2(t, y, z)), z −H2(t, z)

)
+ pα(t, y, z),

Remark 6.6 In the case where Ki(t, y, z), i = 1, 2, are only function on (t, z) we get that the value functions
vB(t, x, y, z), wB(t, y, z), the optimal strategy πB(t, y, z), the indifference price pα(t, y, z) and the indifference
hedging strategy Ψα(t, y, z) do not depend on the variable y but only on (t, z), that is are functions on time
and on the value of the stochastic factor (or the nontradable level) at time t.
In this situation (6.14) can be compared with the results in [1, 34] in a continuous frame where the hedging
strategy is expressed in terms of the partial derivative of pα(t, z) w.r.t. z.
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