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Abstract

Optimal investment problems in an incomplete financial market with pure jump stock dynamics are
studied. An investor with Constant Relative Risk Aversion (CRRA) preferences, including the logarithmic
utility, wants to maximize her/his expected utility of terminal wealth by investing in a bond and in a risky
asset. The risky asset price is modeled as a geometric marked point process, whose dynamics is driven
by two independent doubly stochastic Poisson processes, describing upwards and downwards jumps. A
stochastic control approach allows us to provide optimal investment strategies and closed formulas for
the value functions associated to the utility optimization problems. Moreover, the solution to the dual
problems associated to the utility maximization problems are derived. The case when intermediate
consumption is allowed is also discussed.
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1. Introduction

In this paper we deal with the dynamic optimization problem of a portfolio in an incomplete financial market
with respect to Constant Relative Risk Aversion (CRRA) utility functions.

The fundamental stochastic model of optimal investment and consumption was first introduced by Merton
([?]) who exhibited closed form solutions under the assumption that the stock price follows a geometric
Brownian motion and for special utility functions, in particular of CCRA type. A general diffusion case,
where the coefficients of the underlying stock price are non-linear functions of the current stock level, has
been analyzed in [?]. In [?] and [?] a correlated stochastic factor has been considered. In [?] and in [?]
the wealth optimization problem has been studied in incomplete markets driven by asset prices which may
exhibit a jumping behaviour.

The contribution of this paper is to provide explicit solutions in an incomplete market model with a general
pure jump stock dynamics. More precisely, a pure jump unidimensional market driven by doubly stochastic
independent Poisson processes with coefficients depending on time and on the current stock level is studied.
An agent with Constant Relative Risk Aversion (CRRA) preferences, including the logarithmic utility, wants
to maximize her/his expected utility of terminal wealth by investing in a bond and in a risky asset which
is modeled as a geometric point process. In [?] a similar pure jump model with stochastic factor has been
treated for an agent with exponential utility function. In [?] optimal portfolio problems have been studied in
a pure jump multidimensional market driven by independent Poisson processes and in [?] for unidimensional
jump-diffusion stock prices. In both these papers, the assumption of constant coefficients of the underlying
stock prices has been made. In the present note, a non-linear pure jump stock dynamics is considered and to
the author’s knowledge it is the first time that the utility maximization problem is explicitly solved in such
a model.

We work in a Markovian setting and we treat the utility maximization problems by stochastic control methods
([?], [?], [?], [?], [?]). Other approaches are proposed in literature by using the convex duality theory ([?],
[?], [?], [?] and references therein).

The paper is organized as follows. The model is described in Section 2. In Section 3, we define the opti-
mization problems and we write down the associated Hamilton-Jacobi-Bellman (HJB) equation. The aim is
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to apply Verification Theorems in order to find the value functions and optimal investment strategies. In
the case of a logarithmic utility function, the portfolio optimization problem can be solved (as usual) easier
than in the case of a power law utility. In fact, in the logarithmic utility case, making an ansatz for the value
function we reduce the associated HJB-equation to a linear equation whose solution can be obtained by the
Feymnan-Kac formula. Closed form solutions for the value function and an optimal investment policy are
obtained. Whereas, in the case of a power utility, we are able to derive explicit forms for the value function
and an optimal strategy only when the coefficients of the underlying stock price are deterministic functions on
time (linear stock dynamics). For the non-linear stock dynamics we give a verification result which requires
additional assumptions. In both the cases, the optimal investment rules obtained by Verification Theorems,
are Markovian and linear in the wealth variable. This is fulfilled also in the diffusion model studied in [?]
and in the jump-diffusion model analysed in [?] in the case of CRRA preferences. In particular, when the
coefficients of the underlying stock price and the intensities of the point processes which drive its dynamics
are constant, the optimal strategy dictates to keep a fixed proportion of the current total wealth as in the
Merton’s original problem with CRRA preferences.

Section 4 is devoted to derive the solutions of the dual problems associated to the wealth optimization
problems. We consider non-linear stock dynamics for the logarithmic utility and linear for the power utility.
The solutions to the utility maximization problems, obtained in Section 4 by stochastic control techniques,
allow us to obtain explicit solutions to the associated dual problems.

Section 5 studies the case when intermediate consumption is allowed. The object of the agent is to choose a
portfolio-consumption strategy in a such way as to maximize his total utility over a finite time interval. We
consider the instantaneous utility function for consumption of the same type of the utility function for the
final wealth. Explicit solutions are obtained in the logarithmic case for the non-linear stock dynamics and in
the power utility case for the simplified linear stock dynamics. In both the cases, the optimal consumption
rules are Markovian and linear in the wealth variable. In particular, for the logarithmic utility the optimal
consumption rules as the same form as in the Merton’s original problem.

2. The Model

We consider a finite time horizon investment model on [0, T ] with one riskless money market account and a
risky asset. The price of the bond or cash account, B, solves

dBt = rBtdt, B0 ∈ IR+

where r ≥ 0 is the risk-free interest rate. The stock price, S, satisfies the following non-linear equation

dSt = St−

(
K1(t, St−)dN1

t −K2(t, St−)dN2
t

)
, S0 ∈ IR+ (2.1)

where Ki(t, y), i = 1, 2, are positive jointly measurable functions and N i
t , i = 1, 2, are independent doubly

stochastic Poisson processes defined on a probability space (Ω,F , P ) equipped with the filtration

Ft = σ{N i
u, i = 1, 2, u ≤ t}.

The process N1
t counts the number of upwards jumps and N2

t of downwards jumps, occurred in [0, t].

The {P,Ft}-intensities of N i
t , i = 1, 2, are denoted by λi(t), i = 1, 2, and λ(t) = λ1(t)+λ2(t) is the intensity

of the point process, Nt = N1
t + N2

t , which counts the total number of changes occurred in [0, t].

We assume that
K2(t, y) < 1, t ∈ [0, T ], y > 0.

By the Doléans-Dade exponential formula we get that

St = S0e
Yt , (2.2)

where the logreturn process Y is given by

Yt =
∫ t

0

log (1 + K1(r, Sr−))dN1
r +

∫ t

0

log
(
1−K2(r, Sr−)

)
dN2

r . (2.3)
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From now on, we shall assume the existence of positive constants A1, A2 such that, ∀t ∈ [0, T ], y > 0

A1 ≤ λi(t) ≤ A2, A1 ≤ Ki(t, y) ≤ A2 i = 1, 2. (2.4)

Notice that these conditions ensure that the coefficients of the stochastic differential equation (??) satisfy a
Lipschitz and a sublinear growth condition on y, uniformly in t. Hence, both strong existence and uniqueness
to the equation (??) hold.

In the next proposition we will give the semimartingale structure for the risky asset St.

Proposition 2.1 St is a special locally bounded semimartingale with the decomposition

St = S0 + Mt + At

where

At =
∫ t

0

Sr−

(
K1(r, Sr−)λ1(r)−K2(r, Sr−)λ2(r)

)
dr

is a predictable process with bounded variation paths,

Mt =
∫ t

0

Sr−K1(r, Sr−)(dN1
r − λ1(r)dr)−

∫ t

0

Sr−K2(r, Sr−)(dN2
r − λ2(r)dr)

is a square-integrable martingale whose angle process is given by

< M >t=
∫ t

0

S2
r−

(
K1(r, Sr−)2λ1(r) + K2(r, Sr−)2λ2(r)

)
dr.

Proof.
Let us denote by {Tn} the sequence of jump times of Nt. By assumption (??) there exists a constant C > 0
such that, ∀n ≥ 1, STn

≤ S0e
nC P − a.s., hence St is locally bounded.

Again by assumption (??) the process

Rt =
∫ t

0

(
K1(r, Sr−)dN1

r −K2(r, Sr−)dN2
r

)
is a semimartingale and since

dSt = St−dRt

St is a semimartingale being the stochastic exponential of a semimartingale.

Finally, by assumption (??), there exists a constant C > 0 such that

S2
t = S2

0e2Yt ≤ S2
0eCNt P − a.s.

and, taking into account that

IE[eCNt ] = e
(eC−1)

∫ t

0
λ(s)ds (2.5)

the square integrability of St is proved.
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Proposition 2.2 The stock price St is a Markov process whose generator is given by

LSf(t, y) =
∂f

∂t
(t, y) + LS

t f(t, y) = (2.6)

∂f

∂t
(t, y) +

(
f
(
t, y(1 + K1(t, y))

)
− f(t, y)

)
λ1(t) +

(
f
(
t, y(1−K2(t, y))

)
− f(t, y)

)
λ2(t).

More precisely, for bounded measurable functions f(t, y) absolutely continuous w.r.t. t

f(t, St)− f(0, S0)−
∫ t

0

LSf(r, Sr)dr

is a {P,Ft}-martingale.

Proof.
It is a direct consequence of Ito formula and (??), since

f(t, St) = f(0.S0)−
∫ t

0

∂f

∂r
(r, Sr)dr+

∫ t

0

(
f
(
r, Sr−(1 + K1(r, Sr−))

)
− f(r, Sr−)

)
dN1

r +
∫ t

0

(
f
(
t, Sr−(1−K2(r, Sr−))

)
− f(r, Sr−)

)
dN2

r

and

IE
( ∫ t

0

| f
(
r, Sr−(1+K1(r, Sr−))

)
−f(r, Sr−) | λ1(r)+ | f

(
t, Sr−(1−K2(r, Sr−))

)
−f(r, Sr−) | λ2(r)dr

)
≤ 4‖f‖A2.

3. The utility maximization problem. The Hamilton-Jacobi-Bellman approach

In this section we discuss the utility optimization problems. We assume to live in a world where continuous
trading and unlimited short selling are possible. An investor starts with initial capital z0 > 0 and invests at
any time t ∈ [0, T ] the amount θt

St

St−
in the risky asset and his remaining wealth, Zt − θt

St

St−
, in the bond.

Restricting to self-financing investment strategies, the following differential equation describes the dynamics
of the wealth process controlled by the investment process θt.

dZt =
θt

St−
dSt + (Zt − θt

St

St−
)
dBt

Bt
= θt

(
K1(t, St−)dN1

t −K2(t, St−)dN2
t

)
+ (Zt − θt)rdt, Z0 = z0 (3.1)

For a given strategy θt, the solution process Zt to (??) will of course depend on the chosen investment policy
θt. To be precise we should therefore denote the process Zt by Zθ

t , but sometimes we will suppress θ.

A strategy θt is said to be admissible if it is a IR-valued (P,Ft)-predictable process such that the following
integrability condition is satisfied ∫ T

0

|θt|dt < +∞ P − a.s. (3.2)

and there exists a unique solution to equation (??) satisfying IE|Zt| < +∞, t ∈ [0, T ], and the state constraint

Zt > 0 a.e.t ∈ [0, T ].

We denote by Θ the set of admissible policies.

We consider an agent with Constant Relative Risk Aversion (CRRA) utility function
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 Uα(t, x, z) = zα

α 0 < α < 1,

Uα(t, x, z) = log z α = 0.
(3.3)

The investor’s objective is to maximize his expected utility from terminal wealth

IE
[
Uα(ZT )

]
. (3.4)

By considering the utility maximization problem as a stochastic control problem with only final reward, we
introduce the associated value function

Vα(t, z, y) = sup
θ∈Θ

IE
(
Uα(ZT ) | Zt = z, St = y

)
.

In the next Lemma we prove that the class of admissible investment strategies is not empty.

Lemma 3.1 The set of admissible investment strategies Θ contains the following set of Markovian policies

Θ1 =
{

θt = θ̃(t, St−)Zt− : θ̃(t, y) ∈
( −1

K1(t, y)
,

1
K2(t, y)

)}
. (3.5)

Moreover the wealth associated to such strategies is strictly positive and given by

Zt = z0exp{
∫ t

0

r(1−θ̃(s, Ss−))ds+
∫ t

0

[
log

(
1+θ̃(s, Ss−)K1(s, Ss−)

)
dN1

s +log
(
1−θ̃(s, Ss−)K2(s, Ss−)

)
dN2

s

]
}.

(3.6)

Proof.
Let us observe that the wealth associated to Markov control policies of the form θt = θ̃(t, St−)Zt− satisfies

dZt = Zt−dMt

where

Mt =
∫ t

0

θ̃(u, Su−)
(
K1(u, Su−)dN1

u −K2(u, Su−)dN2
u

)
+

∫ t

0

(1− θ̃(u, Su−))rdu.

Hence, by the Doléans-Dade exponential formula, Zt is well defined on t ∈ [0, T ] and given by

Zt = z0e
MtΠs≤t(1 + ∆Ms)e−∆Ms =

= z0e
MtΠs≤t

((
1+ θ̃(s, Ss−)K1(s, Ss−)

)
∆N1

s +
(
1− θ̃(s, Ss−)K2(s, Ss−)

)
∆N2

s +1I{∆N1
s =0,∆N2

s =0}

)
e−∆Ms > 0.

Moreover, Zt can be written as in (??) and since θ̃(t, y) is a bounded function by assumption (??) we get
that there exist constants Ci > 0, i = 1, 2, such that

Zt ≤ z0e
C1(T+NT ) P − a.s.

which in turn implies IE(Zt) < +∞ and∫ T

0

|θt|dt ≤ C2e
C1(T+NT )T < +∞ P − a.s.

A classical approach in stochastic control theory consists in examining the Hamilton-Jacobi-Bellman (HJB)
equation that the value function is expected to satisfy. This equation is given by
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∂u

∂t
(t, z, y) + sup

θ
Lθ

t u(t, z, y) = 0 t ∈ (0, T ), y > 0, z > 0 (3.7)

with the boundary conditions u(T, z, y) = Uα(z), where Lθ denotes the generator of the controlled Markov
process (Zt, St) associated to the constant strategy θ

Lθf(t, z, y) =
∂f

∂t
(t, z, y) + Lθ

t f(t, z, y) =
∂f

∂t
(t, z, y) +

∂f

∂z
(t, z, y)(z − θ)r+ (3.8)

(
f
(
t, z + θK1(t, y), y(1 + K1(t, y))

)
− f(t, z, y)

)
λ1(t) +

(
f
(
t, z− θK2(t, y), y(1−K2(t, y))

)
− f(t, z, y)

)
λ2(t).

In general the fact that the value function of a stochastic control problem solves, in the classical sense, the
HJB-equation requires the knowledge a priori that the value function has enough regularity. Conversely,
Verifications results yield that, if there exist a function F (t, z, y) classical solution of (??) and the supremum
in (??) is attained by θ∗(t, z, y), then F coincides with the value function and if θ∗t = θ∗(t, Z∗t− , St−) is
admissible then it is an optimal feedback control (with Z∗t being the wealth process given by (??) when the
policy θ∗t is being used)

3.1. The logarithmic utility

In this subsection we deal with the logarithmic utility. By applying Verification results we will derive closed
form solutions for the value function and the optimal policy.

Theorem 3.2 There exists an optimal feedback strategy, θ∗t = θ̃∗(t, St−)Z∗t− ∈ Θ1, where θ̃∗(t, y) is defined
in Lemma ?? below with α = 0.

The value function is given by

V0(t, z, y) = log z + IE
[ ∫ T

t

H(θ̃∗)(r, Sr−)dr | St = y
]

(3.9)

where

H(θ̃∗)(t, y) = r(1− θ̃∗(t, y)) + log(1 + θ̃∗(t, y)K1(t, y))λ1(t) + log(1− θ̃∗(t, y)K2(t, y))λ2(t). (3.10)

The optimal final wealth is given by

Z∗T = z0exp{
∫ T

0

r(1−θ̃∗(t, St−))dt+
∫ T

0

[
log

(
1+θ̃∗(t, St−)K1(t, St−)

)
dN1

t +log
(
1−θ̃∗(t, St−)K2(t, St−)

)
dN2

t

]
}.

(3.11)

Proof.
The associated HJB-equation is given by

∂u

∂t
(t, z, y) + sup

θ
Lθ

t u(t, z, y) = 0 (3.12)

with the terminal condition
u(T, z, y) = log z. (3.13)

We look for a candidate solution of (??) in the form

u(t, z, y) = log z + h(t, y), (3.14)

and (??) yields that h(t, y) solves,

∂h

∂t
(t, y) +

(
h
(
t, y(1 + K1(t, y))

)
− h(t, y)

)
λ1(t) +

(
h
(
t, y(1−K2(t, y))

)
− h(t, y)

)
λ2(t)+ (3.15)
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sup
θ̃

(
r(1− θ̃) + log(1 + θ̃K1(t, y))λ1(t) + log(1− θ̃K2(t, y))λ2(t)

)
= 0

with the terminal condition h(T, y) = 0, where the control θ̃ corresponds to θ
z , with θ being the control

variable appearing in (??).

Observe that (??) can be written as

∂h

∂t
(t, y) + LS

t h(t, y) + sup
θ̃

H(θ̃)(t, y) = 0, h(T, y) = 0 (3.16)

where H is defined in (??) and LS
t denotes the generator of the Markov process S defined in (??).

We get that the maximum of H(θ̃) is achieved at θ̃∗(t, y) defined in Lemma ?? below, since H ′(θ̃) = Φα(θ̃)
with α = 0.

Hence h(t, y) solves,

∂h

∂t
(t, y) + LS

t h(t, y) + H(θ̃∗)(t, y) = 0, h(T, y) = 0. (3.17)

whose solution, by Lemma ?? below, is given by

h(t, y) = IE
[ ∫ T

t

H(θ̃∗)(r, Sr−)dr | St = y
]
.

Finally, by Lemma ??, θ∗t = θ̃∗(t, St−)Z∗t− ∈ Θ and Verification results allows us to conclude that V0(t, z, y)
given in (??) is the value function and θ∗t is an optimal markovian investment strategy.

Lemma 3.3 There exists a unique solution, θ̃∗(t, y) ∈ ( −1
K1(t,y) ,

1
K2(t,y)

)
, to the following equation

∀t ∈ [0, T ], y > 0, 0 ≤ α < 1

(1 + θ̃(t, y)K1(t, y))α−1λ1(t)K1(t, y)− (1− θ̃(t, y)K2(t, y))α−1λ2(t)K2(t, y) = r. (3.18)

Proof.
It is sufficient to observe that, for any fixed t ∈ [0, T ], y > 0, the function

Φα(θ) = (1 + θK1(t, y))α−1λ1(t)K1(t, y) + (1− θK2(t, y))α−1λ2(t)K2(t, y)− r, 0 ≤ α < 1

is continuous, strictly decreasing in
(

−1
K1(t,y) ,

1
K2(t,y)

)
and

limθ→ −1
K1(t,y)

Φα(θ) = +∞, limθ→ 1
K2(t,y)

Φα(θ) = −∞.

Remark 3.4 Notice that for the logarithmic case, corresponding to α = 0, explicit solutions to (??) can be
obtained. More precisely, for r = 0

θ̃∗(t, y) =
K1(t, y)λ1(t)−K2(t, y)λ2(t)

K1(t, y)K2(t, y)λ(t)
(3.19)

and for r 6= 0, θ̃∗(t, y) is the smallest root of the following second order equation

rK1(t, y)K2(t, y)θ̃(t, y)2−
[
r(K1(t, y)−K2(t, y))+λ(t)K1(t, y)K2(t, y)

]
θ̃(t, y)−r+λ1(t)K1(t, y)−λ2(t)K2(t, y) = 0.

(3.20)
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Lemma 3.5 The following linear equation with final condition

∂v

∂t
(t, y) + LS

t v(t, y) + H(θ̃∗)(t, y) = 0, v(T, y) = 0 (3.21)

admits a unique measurable bounded solution, h(t, y), which is absolutely continuous with respect to t. Then,
for any y and for a.a. t, there exists ∂h

∂t (t, y) and is bounded.
Moreover its Feynman-Kac representation is given by

h(t, y) = IE
[ ∫ T

t

H(θ̃∗)(r, Sr−)dr | St = y
]
. (3.22)

Proof.
Let us observe that equation (??) can be written as

∂v

∂t
(t, y)− λ(t)v(t, y) + v

(
t, y(1 + K1(t, y))

)
λ1(t) + v

(
t, y(1−K2(t, y))

)
λ2(t) + H(θ̃∗)(t, y) = 0, v(T, y) = 0

taking v = g − 1, we study the following problem

∂g

∂t
(t, y)− λ(t)g(t, y) + g

(
t, y(1 + K1(t, y))

)
λ1(t) + g

(
t, y(1−K2(t, y))

)
λ2(t) + H(θ̃∗)(t, y) = 0, g(T, y) = 1

(3.23)
which is equivalent to

g(t, y) = e
−

∫ T

t
λ(s)ds+

∫ T

t

[
g
(
s, y(1+K1(s, y))

)
λ1(s)+g

(
s, y(1−K2(s, y))

)
λ2(s)+H(θ̃∗)(s, y)

]
e
−

∫ s

t
λ(r)dr

ds.

(3.24)

In fact, differentiating both sides w.r.t. t, we obtain an equation that, joint with (??) reproduces (??).

Equation (??) has a unique bounded solution. If g1, g2 are two bounded solutions, setting

F (t) = sup
y
|g1(t, y)− g2(t, y)|

we get

F (t) ≤ 2A2

∫ T

t

Γ(s)ds

and the assertion follows by a slight modification of Gronwall Lemma.
By a classical recursive method, we obtain existence of a bounded solution absolutely continuous w.r.t. t.
Define

g0(t, y) = e
−

∫ T

t
λ(s)ds +

∫ T

t

H(θ̃∗)(s, y)e−
∫ s

t
λ(r)dr

ds

gk+1(t, y) = e
−

∫ T

t
λ(s)ds+

∫ T

t

[
gk

(
s, y(1+K1(s, y))

)
λ1(s)+gk

(
s, y(1−K2(s, y))

)
λ2(s)+H(θ̃∗)(s, y)

]
e
−

∫ s

t
λ(r)dr

ds

we have that

||g1 − g0|| ≤ 2A2(T − t)||H(θ̃∗)||, ||gk+1 − gk|| ≤
(2A2T )k

k!
||g1 − g0||

and the conclusion follows by standard arguments.
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Finally, by Proposition ??

h(T, ST ) = h(t.St) +
∫ T

t

(∂h

∂r
(r, Sr) + LS

r h(r, Sr)
)
dr + mT −mt

where mt is a {P,Ft}-martingale and taking the expectation conditioned to Ft by equation (??) we obtained
(??).

In the power law utility case, in order to exhibit closed-form solutions for the value function and the optimal
strategy, we will consider linear dynamics for the stock price, by assuming that the functions Ki(t, y), i = 1, 2,
are dependent only on t. The general non-linear stock dynamics will be analysed in Subsection 3.3.

3.2. The linear stock dynamics case

In this subsection the functions Ki(t, y) will replaced by Ki(t), i = 1, 2. Then we consider the following stock
dynamics

dSt = St−

(
K1(t)dN1

t −K2(t)dN2
t

)
. (3.25)

The value function is now given by

Vα(t, z) = sup
θ∈Θ

IE
(
Uα(ZT ) | Zt = z

)
.

Observe that it has been possible to absorb the stock price variable y in the wealth variable z, being the
wealth dynamics given by

dZt =
θt

St−
dSt + (Zt − θt

St

St−
)
dBt

Bt−
= θt

(
K1(t)dN1

t −K2(t)
)
dN2

t ) + (Zt − θt)rdt, Z0 = z0 > 0. (3.26)

Main results are outlined below. For sake of completeness we consider both the power law and the logarithmic
utilities for the simplified stock dynamics given in (??).

Theorem 3.6 There exists an optimal strategy θ∗t , θ∗t = θ̃∗(t)Z∗t− ∈ Θ1 (see (??)), where θ̃∗(t) is the unique
solution to equation (??).

The value function is, for the power utility (0 < α < 1), given by

Vα(t, z) =
zα

α
e

∫ T

t
(Hα(θ̃∗)(s)−λ(s))ds (3.27)

where

Hα(θ̃∗)(t) = αr(1− θ̃∗(t)) +
(
1 + θ̃∗(t)K1(t)

)α
λ1(t) +

(
1− θ̃∗(t)K2(t)

)α
λ2(t) (3.28)

and, for the logarithmic utility (α = 0), given by

V (t, z) = log z +
∫ T

t

H(θ̃∗)(s)ds. (3.29)

where H(θ̃∗) is defined in (??).

Moreover, the final wealth process is given in both the cases by (??).
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Proof.
First, let us denote by Lθ the generator of the controlled Markov process Zt associated to the constant
strategy θ

Lθf(t, z) =
∂f

∂t
(t, z) + Lθ

t f(t, z) =
∂f

∂t
(t, z) +

∂f

∂z
(t, z)(z − θ)r+ (3.30)(

f
(
t, z + θK1(t)

)
− f(t, z)

)
λ1(t) +

(
f
(
t, z − θK2(t)

)
− f(t, z)

)
λ2(t).

The Hamilton-Jacobi-Bellman equation is given by

∂u

∂t
(t, z) + sup

θ
Lθ

t u(t, z) = 0 (3.31)

with the terminal condition
u(T, z) = Uα(z). (3.32)

When 0 < α < 1 we look for a candidate solution of (??) in the form

u(t, z) =
zα

α
h(t), (3.33)

and (??) yields that h(t) solves,

dh

dt
(t)− h(t)λ(t) + sup

θ̃

(
αr(1− θ̃) + (1 + θ̃K1(t))αλ1(t) + (1− θ̃K2(t))αλ2(t)

)
h(t) = 0 (3.34)

with the terminal conditions h(T ) = 1, where the control θ̃ = θ
z , with θ being the control variable appearing

in (??).

By Lemma ??, since H ′
α(θ̃) = αΦα(θ̃), we get that the maximum of Hα(θ̃)(t) is achieved, for each t ∈ [0, T ],

at the unique θ̃∗(t) solution to equation (??), replacing Ki(t, y) by Ki(t), i = 1, 2.

Hence h(t) solves,

dh

dt
(t) + h(t)(Hα(θ̃∗)(t)− λ(t)) = 0, h(T ) = 1 (3.35)

By Lemma ??, θ∗t ∈ Θ and Verification results imply that

Vα(t, z) =
zα

α
e

∫ T

t
(Hα(θ̃∗)(s)−λ(s))ds

is the value function, and θ∗t = θ̃∗(t)Z∗t− , is an optimal markovian investment strategy.

In the logarithmic case, as in the previous subsection, we look for a candidate solution of (??) in the form

u(t, z) = log z + h(t), (3.36)

and (??) yields that h(t) solves,

dh

dt
(t) + H(θ̃∗)(t) = 0, h(T ) = 0. (3.37)

Then Verification results allows us to conclude that

V0(t, z) = log z +
∫ T

t

H(θ̃∗)(s)ds (3.38)

is the value function and θ∗t = θ̃∗(t)Z∗t− is an optimal investment strategy.
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Corollary 3.7 Explicit forms for the optimal strategy can be obtained when r = 0 and 0 ≤ α < 1

θ̃∗(t) =
1− Γ(t)

1
1−α

K2(t) + Γ(t)
1

1−α K1(t)
(3.39)

where

Γ(t) =
K2(t)λ2(t)
K1(t)λ1(t)

,

and in the logarithmic case (α = 0) also when r 6= 0 being θ̃∗(t) the smallest root of the second order equation
(??) replacing Ki(t, y) by Ki(t), i = 1, 2.

Proof.
It is a direct consequence of Theorem ?? and Lemma ??.

Remark 3.8 Let us observe that when Ki(t) and λi(t), i = 1, 2 are not time dependent the optimal strategy
dictates that is optimal to keep a fixed proportion of the current total wealth, as in the Merton’s original
problem with CRRA preferences.

3.3. The power law utility

We will now go back to the general non-linear stock dynamics described in Section 2.

First, let us recall a suitable version of Girsanov Theorem for our model.
A probability measure Q is equivalent to P iff

dQ

dP
|FT

= LT = E(MT ), E[LT ] = 1 (3.40)

where

• Mt is a {P,Ft}-local martingale given by

Mt =
2∑

i=1

∫ T

0

U i
s(dN i

s − λi(s)ds)

• U i
s, for i = 1, 2, are {P,Ft}-predictable process such that

U i
s + 1 > 0, and

∫ T

0

|U i
s + 1|λi(s)ds < +∞ P − a.s.

Under Q, N i
t , i = 1, 2, are point processes with (Q,Ft)-intensities given by

λi,Q
t = (U i

t + 1)λi(t), j = 1, 2, ..,m (3.41)

respectively.

Moreover LT can be written as

LT = exp
{ 2∑

i=1

[ ∫ T

0

log(1 + U i
s)dN i

s −
∫ T

0

U i
sλi(s)ds

]}
. (3.42)
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Lemma 3.9 Let θ̃t = θ̃(t, St−), with θ̃(t, y) ∈ ( −1
K1(t,y) ,

1
K2(t,y)

)
.

Then it is well defined the probability measure P θ̃ as

dP θ̃

dP
|FT

= LP θ̃

T , (3.43)

with LP θ̃

T = E(M θ̃
T ), and

U θ̃,1
t = (1 + θ̃tK1(t, St−))α − 1

U θ̃,2
t = (1− θ̃tK2(t, St−))α − 1.

Under P θ̃, N1
t and N2

t are point processes with intensities

λθ̃,1(t, St−) = (1 + θ̃tK1(t, St−))αλ1(t), λθ̃,2(t, St−) = (1− θ̃tK2(t, St−))αλ2(t) (3.44)

respectively and St is a Markov process whose generator, for bounded measurable functions f(t, y), absolutely
continuous w.r.t. t, is given by

Lθ̃,Sf(t, y) =
∂f

∂t
(t, y) + Lθ̃,S

t f(t, y) = (3.45)

∂f

∂t
(t, y) +

(
f
(
t, y(1 + K1(t, y))

)
− f(t, y)

)
λθ̃,1(t, y) +

(
f
(
t, y(1−K2(t, y))

)
− f(t, y)

)
λθ̃,2(t, y).

Proof.
It is sufficient to observe that U θ̃,i

t , i = 1, 2, are bounded. In fact, recalling that IE[LP θ̃

T ] ≤ 1 and that

Lθ̃
t = 1 +

∫ t

0

Lθ̃
s−

2∑
i=1

U θ̃,i
s (dN i

s − λi(s)ds)

we get that Lθ̃
t is a (P,Ft)-martingale by

IE[
∫ t

0

Lθ̃
s−

2∑
i=1

| U θ̃
s | λi(s)ds] < +∞.

By Girsanov Theorem and Ito formula, (??) and (??) can be obtained.

Theorem 3.10 (i) When the class of admissible investment strategies reduces to Θ1 defined in (??), then
the associated value function is of the form

V 1
a (t, y, z) =

za

α
h(t, y), (3.46)

where h(t, y) is a bounded function given by

h(t, y) = sup
θ̃

IE θ̃
[
e

∫ T

t
(Hα(θ̃)(s,Ss)−λ(s))ds | St = y

]
, (3.47)

where IE θ̃ denotes the expected value under P θ̃, that is the probability measure defined in Lemma ?? and
Hα(θ̃) is given in (??) replacing θ̃∗(t) by θ̃(t, y) and Ki(t) by Ki(t, y), i = 1, 2.

(ii) (Verification result) If there exists a bounded solution h(t, y), absolutely continuous w.r.t. t, to

∂h

∂t
(t, y) + sup

θ̃

(
Lθ̃,S

t h(t, y) +
(
Hα(θ̃)(t, y)− λ(t)

)
h(t, y)

)
= 0, h(T, y) = 1, (3.48)
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where Lθ̃,S
t is defined in (??), then the value function is given by Vα(t, y, z) = zα

α h(t, y) and there exists an
optimal strategy θ∗t = θ̃∗(t, St−)Z∗t− ∈ Θ1, with θ̃∗(t, y), for any t ∈ [0, T ], y > 0, the unique solution to(

1 + θ̃(t, y)K1(t, y)
)α−1

λ1(t)K1(t, y) h
(
t, y(1 + K1(t, y))

)
− (3.49)

(
1− θ̃(t, y)K2(t, y)

)α−1
λ2(t)K2(t, y) h

(
t, y(1−K2(t, y))

)
= r h(t, y)

Moreover the following Feynman-Kac representation holds

h(t, y) = IE θ̃∗
[
e

∫ T

t
(Hα(θ̃∗)(s,Ss)−λ(s))ds | St = y

]
. (3.50)

Proof.
(i) Since the wealth associated to strategies belonging to Θ1 is given by (??) we get that

Vα(t, z, y) = sup
θ∈Θ1

IE
(Zα

t

α
| Zt = z, St = y

)
=

zα

α
×

sup
θ̃

IE
(
exp{

∫ T

t

α(r−θ̃(s, Ss−))ds+
∫ T

t

α
[
log

(
1+θ̃(s, Ss−)K1(s, Ss−)

)
dN1

s +log
(
1−θ̃(s, Ss−)K2(s, Ss−)

)
dN2

s

]
} | St = y

)
,

then the value function is in form
Vα(t, z, y) =

zα

α
h(t, y),

where
h(t, y) = (3.51)

sup
θ̃

IE
(
exp{

∫ T

t

α(r−θ̃(s, Ss−))ds+
∫ T

t

α
[
log

(
1+θ̃(s, Ss−)K1(s, Ss−)

)
dN1

s +log
(
1−θ̃(s, Ss−)K2(s, Ss−)

)
dN2

s

]
} | St = y

)
.

Moreover, by assumptions (??) there exists a constant C > 0 such that

exp{
∫ T

t

α(r−θ̃(s, Ss−))ds+
∫ T

t

α
[
log

(
1+θ̃(s, Ss−)K1(s, Ss−)

)
dN1

s +log
(
1−θ̃(s, Ss−)K2(s, Ss−)

)
dN2

s

]
≤ eC(T+NT )

which implies that h(t, y) is a bounded function. Finally, notice that

IE
(
exp{

∫ T

t

α(r−θ̃(s, Ss−))ds+
∫ T

t

α
[
log

(
1+θ̃(s, Ss−)K1(s, Ss−)

)
dN1

s +log
(
1−θ̃(s, Ss−)K2(s, Ss−)

)
dN2

s

]
} | St = y

)
=

= IE
(Lθ̃

T

Lθ̃
t

e

∫ T

t
(Hα(θ̃)(s,Ss)−λ(s))ds | St = y

)
= IE θ̃

[
e

∫ T

t
(Hα(θ̃)(s,Ss)−λ(s))ds | St = y

]
,

where IE θ̃ denotes the expected value under P θ̃, that is the probability measure defined in Lemma ??, hence
(??) follows.

(ii) We have that Vα(t, y, z) = zα

α h(t, y) is a classical solution to the HJB-equation

∂Vα

∂t
(t, z, y) + sup

θ
Lθ

t Vα(t, y, z) = 0, t ∈ (0, T ), y > 0, z > 0 (3.52)

with the terminal condition Vα(T, z, y) = zα

α and where the control θ = θ̃z , with θ̃ being the control variable
appearing in (??). Moreover θ∗(t, y, z) = θ̃∗(t, y)z realizes the supremum in (??). By Verification results
Vα(t, y, z) is the value function and θ∗t = θ̃∗(t, St−)Z∗t− ∈ Θ1 is an optimal investment strategy.
Finally, by applying Feynman-Kac formula we have the representation (??).
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Remark 3.11 Let us observe that θ̃∗(t, y), defined in (??), depends on the function h. In order to implement
the optimal investment plan we need to know h, that is the solution to equation (??).
For instance, explicit formulas depending on h can be obtained when r = 0

θ̃∗(t, y) =
1− Γ̃(t, y)

1
1−α

K2(t, y) + Γ̃(t, y)
1

1−α K1(t, y)
(3.53)

where

Γ̃(t, y) =
K2(t, y)λ2(t)
K1(t, y)λ1(t)

h(t, y(1−K2(t, y))
h(t, y(1 + K1(t, y))

.

Substituting this expression into (??) we get a non-linear equation. Whereas, in the logarithmic case we
obtained a linear equation, see (??) .

Remark 3.12 When the Verification result (ii) can not use one has to relax the notion of solutions to
equation (??) by introducing viscosity solutions (see [?], [?], [?]. [?] and references therein). Herein we do
not deal with this topic.

4. The dual problem

In this section we provide the solution to the dual problem associated to our utility maximization problems.

First, we characterize the set, Me, of the martingale measures, consisting of all probability measures P ′,
equivalent to P , such that the discounted stock price, S̃t = St

Bt
, is a local (P ′,Ft)-martingale.

Proposition 4.1 A probability measure P ′ equivalent to P , defined as in (??), is a risk-neutral measure iff

2∑
i=1

∫ T

0

Ki(s, Ss−)(1 + U i
s)λi(s)ds < +∞ P − a.s. (4.1)

K1(t, St−)(1 + U1
t )λ1(t)−K2(t, St−)(1 + U2

t )λ2(t) = r for a.a. t ∈ [0, T ], y > 0, P − a.s. (4.2)

Proof.
The dynamics of S̃t, under the probability measure P is given by

dS̃t = S̃t−

(
K1(t, St−)dN1

t −K2(t, St−)dN2
t − rdt

)
Recalling (??) and Girsanov Theorem we can write

S̃t = S̃0 +
∫ t

0

S̃s−

(
K1(s, Ss−)(1 + U1

s )λ1(s)−K2(s, Ss−)(1 + U2
s )λ2(s)− r

)
ds+

∫ t

0

S̃s−

m∑
i=1

(−1)i−1Ki(s, Ss−)
(
dN i

s − (1 + U i
s) λi(s)ds)

Thus, S̃ is a special semimartingale under P ′, and a local martingale iff (??) and (??) hold.

In this section we consider the general non linear dynamics (??) for the logarithmic utility and the simplified
linear (??) for the power law case. We will denote by Ki

t , i = 1, 2, the coefficients appear either in (??) or
(??) and by θ̃∗t , the strategy θ̃∗(t, St−) defined in Lemma ?? (which does not depend on St− in the power
law case).
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Proposition 4.2 The probability measure Q∗ defined as

dQ∗

dP
|FT

= LQ∗

T , (4.3)

with LQ∗

T = E(M∗
T ), and

U∗1
t = (1 + θ̃∗t K1

t )α−1 − 1

U∗2
t = (1− θ̃∗t K2

t )α−1 − 1

with 0 ≤ α < 1, is a risk-neutral probability measure.

Proof.
It is sufficient to observe that the risk neutral condition is a consequence of (??) and that U∗i

t , i = 1, 2, are
bounded.
The proof that LQ∗

t is a (P,Ft)-martingale is along the lines of that of Lemma ??.

Using the theory of convex duality we introduce the dual problem associated to our utility maximization
problem. More precisely the following duality relation holds ([?])

sup
θ

IE
[
Uα(ZT )

]
= inf

P ′∈Me

inf
γ>0

(
γz + IE

[
Ψα

(
γLP ′

T

(BT

B0

)−1)])
, (4.4)

where Ψα is the conjugate convex function associated to Uα, defined by

Ψα(y) = supx∈IR[U(x)− yx] y > 0.

The conjugate of the power law utility is given by

Ψα(y) =
1− α

α
y

α
α−1 , 0 < α < 1

and that of the logarithmic is

Ψα(y) = − log y − 1.

Theorem 4.3 The probability measure Q∗ solves the dual problem.

Proof.
We have that the right hand side of (??) is given by

log z0 + rT − inf
P ′∈Me

IE[log LP ′

T ], α = 0. (4.5)

inf
P ′∈Me

(z0)α

α
eαrT IE

[
(LP ′

T )
α

α−1

]1−α

, 0 < α < 1 (4.6)

By (??) we get that

IE[log LQ∗

T ] = −IE
[ ∫ T

0

[
log(1 + θ̃∗t K1

t )dN1
t + log(1− θ̃∗t K2

t )dN2
t

]]
+

−IE
[ ∫ T

0

[(
(1 + θ̃∗t K1

t )−1 − 1
)
λ1(t) +

(
(1− θ̃∗t K2

t )−1 − 1
)
λ2(t)

]
dt

]
.
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Then by the definition of intensity of point processes and by (??)

IE[log LQ∗

T ] = −IE
[ ∫ T

0

[
log(1 + θ̃∗t K1

t )λ1(t) + log(1− θ̃∗t K2
t )λ2(t)− θ̃∗t r

]
dt

]
.

Finally, since by Theorem ??

sup
θ

IE
[
log ZT

]
= log z0 + rT + IE

[ ∫ T

0

[
log(1 + θ̃∗t K1

t )λ1(t) + log(1− θ̃∗t K2
t )λ2(t)− θ̃∗t r

]
dt

]
,

the assertion, in the α = 0 case, is proved.

In the 0 < α < 1 case, recalling that Ki
t , i = 1, 2, and θ̃∗t are deterministic functions, by (??) we get that

IE
[
(LQ∗

T )
α

α−1

]
= IE

[
exp

{∫ T

0

[
ln(1 + θ̃∗t K1

t )αdN1
t + ln(1− θ̃∗t K2

t )αdN2
t

]}]
×

exp
{ α

1− α

∫ T

0

[
(1 + θ̃∗t K1

t )α−1λ1(t) + (1− θ̃∗t K2
t )α−1λ2(t)− λ(t)

]
dt

}
.

By Lemma ?? below (recalling that N1
t and N2

t are independent) we obtain

IE
[
exp

{ ∫ T

0

[
ln(1+θ̃∗t K1

t )αdN1
t +ln(1−θ̃∗t K2

t )αdN2
t

]}]
= exp

{∫ T

0

[
((1+θ̃∗t K1

t )α−1)λ1(t)+((1−θ̃∗t K2
t )α−1)λ2(t)

]
dt

}
,

and taking into account (??)

IE
[
(LQ∗

T )
α

α−1

]1−α

= exp{
∫ T

0

[
(1 + θ̃∗t K1

t )αλ1(t) + (1− θ̃∗t K2
t )αλ2(t)− αθ̃∗t − λ(t)

]
dt}.

Finally, by Theorem ??

sup
θ

IE
[Zα

T

α

]
=

(z0)α

α
eαrT exp{

∫ T

0

[
(1 + θ̃∗t K1

t )αλ1(t) + (1− θ̃∗t K2
t )αλ2(t)− αθ̃∗t − λ(t)

]
dt}

and this concludes the proof.

Lemma 4.4 Let be Nt a double stochastic Poisson process with intensity λ(t). Then for any bounded deter-
ministic process c(t)

IE
[
e

∫ T

0
c(t)dNt

]
= exp{

∫ T

0

(ec(t) − 1)λ(t)dt}.

Proof.
It is sufficient to consider c(t) = 1I(t1,t2], with t1 < t2 < T .

IE
[
e

∫ T

0
c(t)dNt

]
= IE

[
eNt2−Nt1

]
=

∑
k

ek

k!
( ∫ t2

t1

λ(t)dt
)k

e
−

∫ t2

t1
λ(t)dt

=

= e

∫ t2

t1
(e−1)λ(t)dt

= exp{
∫ T

0

(ec(t) − 1)λ(t)dt}.

Finally the assertion follows by dominated convergence results.

5. Investment models with intermediate consumption

In this section we examine the combined problem of portfolio selection and consumption rules. We as-
sume that the individual preferences are modeled through a CRRA utility and a bequest function for the
consumption of the same risk aversion.
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A single agent manages his portfolio by investing in a bond and in a stock account. The processes, that the
prices of the two assets follow, are the same as in Section 2.
The investor starts with initial capital z0 > 0 and invests at any time t ∈ [0, T ] the amount θt

St

St−
in the

risky asset and his remaining wealth, Zt− θt
St

St−
, in the bond. He also consumes out of his bond holdings at

the rate Ct. The wealth process Zt evolves according to

dZt =
θt

St−
dSt+(Zt−θt

St

St−
)
dBt

Bt
−Ctdt = θt

(
K1(t, St−)dN1

t −K2(t, St−)dN2
t

)
+(Zt−θt)rdt−Ctdt, Z0 = z0

(5.1)
The pair of control processes (θt, Ct) is said to be admissible if θt is a IR-valued (P,Ft)-predictable process
and Ct a non negative Ft-progressively measurable process such that∫ T

0

|θt|dt < +∞,

∫ T

0

Ctdt < +∞ P − a.s. (5.2)

and there exists a unique solution to equation (??) satisfying IE|Zt| < +∞,∀t ∈ [0, T ], and the state
constraint

Zt > 0 a.e.t ∈ [0, T ].

We denote by A the set of admissible policies.

Lemma 5.1 The set of admissible investment-consumption strategies A contains the following set of Marko-
vian policies

A1 =
{

(θt, Ct) = (θ̃(t, St−)Zt− , C̃(t, St)Zt) : θ̃(t, y) ∈
( −1

K1(t, y)
,

1
K2(t, y)

)
, C̃(t, y) ≥ 0 and bounded

}
.

(5.3)
Moreover, the wealth associated to such strategies is strictly positive and is given by

Zθ,C
t = Zθ

t e
−

∫ t

0
C̃(u,Su)du (5.4)

where Zθ
t is the wealth associated to the investment strategy θt = θ̃(t, St−)Zt− given in (??).

Proof.
We have that the wealth associated to Markov control policies in A1 satisfies

dZθ,C
t = Zθ,C

t− dM̃t

where

M̃t =
∫ t

0

θ̃(u, Su−)
(
K1(u, Su−)dN1

u −K2(u, Su−)dN2
u

)
+

∫ t

0

(
(1− θ̃(u, Su−))r − C̃(u, Su)

)
du.

Hence, by the Doléans-Dade exponential formula, Zθ,C
t is well defined on t ∈ [0, T ] and given by

Zθ,C
t = Zθ

t e
−

∫ t

0
C̃(u,Su)du

> 0

where Z θ̃
t is the wealth associated to the investment strategy θt = θ̃(t, St−)Zt− given in (??).

Since Zθ,C
t ≤ Zθ

t Lemma ?? implies IE(Zt) < +∞ and∫ T

0

|θt|dt < +∞
∫ T

0

Ctdt < +∞ P − a.s.

and this concludes the proof.

The investor’s objective is to choose a portfolio-consumption strategy in a such way to maximize
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IE
[ ∫ T

0

Uα(Ct)dt + Uα(ZT )
]
, (5.5)

where Uα is a CRRA utility function defined in (??).
The associated value function is

V (t, z, y) = sup
(θ.C)∈A

IE
( ∫ T

0

Uα(Cs)ds + Uα(ZT ) | Zt = z, St = y
)

and the Hamilton-Jacobi-Bellman equation for the optimal investment/consumption problem is given by

∂V

∂t
(t, z, y) + sup

θ,C
{Lθ,C

t V (t, y, z) + Uα(C)} = 0, t ∈ (0, T ), y > 0, z > 0 (5.6)

with the terminal condition V (T, z, y) = Uα(z), where, for constants (θ, C), Lθ,C denotes the generator of
the Markov process (Zt, St)

Lθ,C
t =

∂V

∂z
(t, z, y)

[
(z − θ)r − C

]
+

(
V

(
t, z+θK1(t, y), y(1+K1(t, y))

)
−V (t, z, y)

)
λ1(t)+

(
V

(
t, z−θK2(t, y), y(1−K2(t, y))

)
−V (t, z, y)

)
λ2(t).

We first deal with the logarithmic case.

Theorem 5.2 There exists an optimal strategy (θ∗t , C∗t ), where θ∗t = θ̃∗(t, St−)Z∗t− , with θ̃∗(t, y) unique
solution to (??) and C∗t = Z∗

t

1+T−t .

The value function is given by

V C
0 (t, z, y) = (1 + T − t) ln z + hC(t, y) (5.7)

where

hC(t, y) = IE
[ ∫ T

t

(
H (̃θ∗)(u, Su−)(1 + T − u)− 1− ln(1 + T − u)

)
du|St = y

]
(5.8)

with H(θ̃∗)(t, y) defined in (??) .

Proof.
The Hamilton-Jacobi-Bellman equation for the optimal investment/consumption problem is given by

∂V

∂t
(t, z) + sup

θ,C
{Lθ,C

t V (t, z) + log C)} = 0, t ∈ (0, T ), y ∈ IR, z > 0 (5.9)

with the terminal condition V (T, z) = log z
We look for a candidate solution in the form (1 + T − t) log z + hC(t, y), hence hC(t, y) solves

∂hC

∂t
(t, y) + LS

t hC(t, y) + sup
θ̃,C̃

[(
H(θ̃)(t, y)− C̃

)
(1 + T − t) + ln C̃

]
= 0 t ∈ (0, T ), h(T, y) = 1. (5.10)

where H(θ̃)(t, y) is defined in (??), LS
t is the generator of the Markov process St given in (??) and the control

(θ̃, C̃) corresponds to ( θ
z , C

z ) with (θ, C) being the control variable appearing in (??).

The maximum over θ̃ is achieved at θ̃∗(t, y), unique solution to (??) and the maximum over C̃ at

18



C̃∗(t) =
1

1 + T − t

Inserting this expression into equation (??) yields

∂h

∂t
(t, y) + LS

t h(t, y) + K(θ̃∗)(t, y) = 0, h(T, y) = 0. (5.11)

with
K(θ̃∗)(t, y) = (1 + T − t) H(θ̃∗)(t, y)− 1− log(1 + T − t)

whose solution, by Lemma ??, is given by

hC(t, y) = IE
[ ∫ T

t

K(θ̃∗)(r, Sr−)dr | St = y
]
.

By Lemma ??, (θ∗t , C∗t ) ∈ A, where

θ∗t = θ̃∗(t, St−)Z∗t− , C∗t =
Z∗t

1 + T − t

Finally, Verification results allows us to conclude that V C
0 (t, z, y) given in (??) is the value function and

(θ∗t , C∗t ) is an optimal markovian investment-consumption strategy.

We now discuss the power law utility case.

Theorem 5.3 (i) When the class of admissible investment strategies reduces to A1 defined in (??), then the
associated value function is of the form

V 1,C
α (t, y, z) =

zα

α
h1,C(t, y), (5.12)

where h1,C(t, y) is a bounded function given by

h1,C(t, y) = sup
(θ̃,C̃)

IE θ̃
[ ∫ T

t

C̃(u, Su)α e

∫ u

t
Gα(θ̃,C̃)(s,Ss)ds + e

∫ T

t
Gα(θ̃,C̃)(s,Ss)ds | St = y

]
, (5.13)

where IE θ̃ denotes the expected value under P θ̃, that is the probability measure defined in Lemma ??,

Gα(θ̃, C̃)(t, y) = Hα(θ̃)(t, y)− λ(t)− αC̃(t, y) (5.14)

and Hα(θ̃)(t, y) given in (??) replacing θ̃∗(t) by θ̃(t, y) and Ki(t) by Ki(t, y), i = 1, 2.

(ii) (Verification result) If there exists a bounded solution hC(t, y), absolutely continuous w.r.t. t, to

∂h

∂t
(t, y) + sup

(θ̃,C̃)

(
Lθ̃,S

t h(t, y) + Gα(θ̃, C̃)(t, y) h(t, y) + C̃α
)

= 0, h(T, y) = 1, (5.15)

where Lθ̃,S
t is defined in (??), then the value function is given by

V C
α (t, y, z) =

zα

α
hC(t, y)

and there exists an optimal strategy (θ∗t , C∗t ), where θ∗t = θ̃∗(t, St−)Z∗t− , with θ̃∗(t, y) unique solution to (??)
and C∗t = C̃∗(t, St)Z∗t with C̃∗(t, y) = h(t, y)

1
α−1 .

Moreover the following Feynman-Kac representation holds

hC(t, y) = IE θ̃∗
[ ∫ T

t

C̃∗(u, Su)α e

∫ u

t
Gα(θ̃∗,C̃∗)(s,Ss)ds

du + e

∫ T

t
Gα(θ̃∗,C̃∗)(s,Ss)ds | St = y

]
. (5.16)
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Proof.
(i) From Lemma (??), the wealth associated to Markov control policies in A1 satisfies

Zθ,C
T = Zθ,C

t eRT−Rt

where

Rt =
∫ t

0

(
log

(
1+θ̃(u, Su−)K1(u, Su−)

)
dN1

u+log
(
1−θ̃(u, Su−)K2(u, Su−)

)
dN2

u

)
+

∫ t

0

(
(1−θ̃(u, Su−))r−C̃(u, Su)

)
du.

Moreover, ∀u ∈ [t, T ]

Cu = C̃(u, Su) Zθ,C
t eRu−Rt .

Therefore, we have

IE
( ∫ T

t

Cα
u

α
du +

Zα
T

α
| Zt = z, St = y

)
=

zα

α
IE

( ∫ T

t

C̃(u, Su)α eα(Ru−Rt)du + eα(Ru−Rt) | St = y
)

=

= IE
( ∫ T

t

C̃(u, Su)α Lθ̃
u

Lθ̃
t

e

∫ u

t
Gα(θ̃,C̃)(s,Ss)ds

du +
Lθ̃

T

Lθ̃
t

e

∫ T

t
Gα(θ̃,C̃)(s,Ss)ds | St = y

)
which implies (??) and (??).

(ii) The proof follows the same lines of that of Theorem ??. We have that V C
α (t, y, z) = zα

α hC(t, y) is a
classical solution to the HJB-equation

∂V C
α

∂t
(t, z, y) + sup

(θ,C)

(
Lθ,C

t V C
α (t, y, z) +

Cα

α

)
= 0, t ∈ (0, T ), y > 0, z > 0 (5.17)

with the terminal condition V C
α (T, z, y) = zα

α and where the control (θ, C), corresponds to (θ̃z, C̃z) , with
(θ̃, C̃) being the control variable appearing in (??).
Moreover, the pair (θ∗(t, y, z) = θ̃∗(t, y)z, C∗(t, y, z) = C̃∗(t, y)z) realizes the supremum in (??). By Verifica-
tion results V C

α (t, y, z) is the value function and (θ∗t = θ̃∗(t, St−)Z∗t− , C∗t = C̃∗(t, St)Z∗t ) ∈ A1 is an optimal
investment-consumption strategy.
Finally, by applying Feynman-Kac formula we have the representation (??).

As in Section 3, to exhibit closed-form solution for the value function we will consider linear dynamics for
the stock price given in (??).
The value function is now given by

V C
α (t, z) = sup

(θ,C)∈A
IE

( ∫ T

0

Uα(Cs)ds + Uα(ZT ) | Zt = z
)
.

and the wealth dynamics

dZt =
θt

St−
dSt +(Zt−θt

St

St−
)
dBt

Bt−
= θt

(
K1(t)dN1

t −K2(t)
)
dN2

t )+(Zt−θt)rdt−Ctdt, Z0 = z0 > 0. (5.18)

Theorem 5.4 There exists an optimal strategy (θ∗t , C∗t ), where θ∗t = θ̃∗(t)Z∗t− , with θ̃∗(t) the unique solution
to (??) and C∗t = C̃∗(t)Z∗t with C̃∗(t) = 1

p(t) .

The value function is given by

VC(t, z) =
zα

α
p(t)1−α, (5.19)
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p(t) = e

∫ T

t
a(r)dr[1 +

∫ T

t

e
−

∫ T

s
a(r)dr

ds], a(t) =
1

1− α
(Hα(θ∗)(t)− λ(t)) (5.20)

with Hα(θ∗)(t) defined in (??) .

Proof.
The Hamilton-Jacobi-Bellman equation for the optimal investment/consumption problem is given by

∂V

∂t
(t, z) + sup

θ,C
{Lθ,C

t V (t, z) + Uα(C)} = 0, t ∈ (0, T ), y ∈ IR, z > 0 (5.21)

with the terminal condition V (T, z) = Uα(z)
We look for a candidate solution in the form zα

α h(t) hence h(t) solves

dh

dt
(t)− h(t)λ(t) + sup

θ̃,C̃

[(
Hα(θ̃)(t)− αC̃

)
h(t) + C̃α

]
= 0 t ∈ (0, T ), h(T ) = 1. (5.22)

where Hα(θ̃)(t) is defined in (??). Note that the control (θ̃, C̃) corresponds to ( θ
z , C

z ) with (θ, C) being the
control variable appearing in (??).

The maximum over θ̃ is achieved at θ̃∗(t), unique solution to (??), and the maximum over C̃ at C̃∗(t) =
h(t)

1
α−1 . Using the form of C̃∗(t) in equation (??) yields

dh

dt
(t) + (Hα(θ̃∗)(t)− λ(t))h(t) + (1− α)h(t)

α
α−1 = 0 t ∈ (0, T ), h(T ) = 1. (5.23)

We now make the classical transformation h(t) = p(t)1−α, which gives

dp

dt
(t) +

1
1− α

(Hα(θ̃∗)(t)− λ(t))p(t) + 1 = 0 t ∈ (0, T ), p(T ) = 1, (5.24)

whose solution is given by (??). Finally admissibility of (θ∗t , C∗t ) follows by Lemma ??.
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[9] C. Doléans-Dade, Quelques applications de la formule de changement de variables pour le semi-
martingales, Z. fur W. 16 (1970) 181-194.

21



[10] W. Flemig and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, New York, Springer
(1993).

[11] D.G. Luenberger, Optimization by vector space methods, Wiley New York (1969).

[12] R. Merton, Optimal consumption and portfolio rules in a continuous time model, Journal of Economic
Theory, 3 (1971) 373-413.

[13] H. Pham, Optimal stopping of controlled jump diffusion processes: a viscosity solution approach, Journal
of Mathematical System, Estimation, and Control, 8 (1) (1998) 1-27.

[14] H. Pham, Smooth solution to optimal investment models with stochastic volatilities and portfolio con-
straints, Appl. Math. Optim., 78 (2002) 55-78.

[15] W. Schachermayer, Utility maximization in incomplete market in: Stochastic Methods in Finance,
M.Frittelli and W.J. Runggaldier eds., Springer-Verlag (2004) 255-293.

[16] T. Zariphopoulou, Consumption investment models with constraints, SIAM J. Control and Optimization,
30 (1994) 59-84.

[17] T. Zariphopoulou, A solution approach to valuation with unhedgeable risks, Finance and Stochastics, 5
(2001) 61-82.

22


