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Abstract

Hedging strategies for contingent claims are studied in a general model for high frequency data.
The dynamics of the risky asset price is described through a marked point process Y , whose local
characteristics depend on some hidden state variable X. The two processes Y and X may have common
jump times, which means that the trading activity may affect the law of X and could be also related
to the presence of catastrophic events. Since the market considered is incomplete one has to choose
some approach to hedging derivatives. We choose the local risk-minimization criterion. When the price
of the risky asset is a general semimartingale, if an optimal strategy exists, the value of the portfolio
is computed in the terms of the so-called minimal martingale measure and may be interpreted as a
possible arbitrage-free price. In the case where the price of the risky asset is modeled directly under
a martingale measure, the computation of the risk-minimizing hedging strategy is given. By using a
projection result, we also obtain the risk-minimizing hedging strategy under partial information when
the hedger is restricted to observing only the past asset prices and not the exogenous process X which
drives their dynamics.
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1. Introduction

In models for intraday stock price movements asset prices are used to be described by marked point processes.
In fact on a very small time scale, as in high frequency data, real asset prices are piecewise constant and
jump in reaction to trades or to significant new information.

In many papers, (see, for instance, [8], [9], [10], [12], [15] and [14]) the asset price process is modeled as
a double stochastic Poisson process with marks. In some of them, the local characteristics of this process
depend on an unobservable state variable, which may describe the intraday market activity, the activity of
other markets, macroeconomics factors or microstructure rules that drive the market.

In this paper we consider a more general model as that introduced in [4]. The behaviour of the asset prices is
described via a general marked point process Y , whose local characteristics, in particular the jump-intensity,
depend on an exogenous state variable X, which is modeled by a Markov jump-diffusion process. Moreover,
the dynamics of Y and X may be strongly dependent, in particular the two processes may have common
jump times. Hence our model could take into account also the possibility of catastrophic events. This kind
of events, in fact, influence both the asset prices and the hidden state variable which drives their dynamics.
We assume that the pair (X, Y ) is a solution of a system of stochastic differential equations driven by a
Browian motion and a Poisson random measure as a natural way to describe its dynamics.

In this note we are concerned with the hedging of contingent claims. When the given financial market is
complete, every claim can be replicated by a self-financing dynamic portfolio strategy which only makes use
of the existing assets. In this case, one can reduce to zero the risk of the claim by a suitable strategy. On
the other hand, markets modeled by marked point processes, where infinite number of marks are allowed,
are incomplete. Then one has to choose some approach to hedging derivatives. Since one cannot ask
simultaneously for a perfect replication of a given claim by a portofolio strategy and the self-financing
property of this strategy, one has to relax one of these conditions. In this paper we choose the local risk
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minimization, which keeps the replicability and relax the self-financing condition. In [7] the authors dealt
with the study of hedging of contingent claims under market incompleteness by introducing the criterion
of risk minimization in the case where the price process is a martingale under the real world probability
measure. They proved that the optimal strategy can be obtained by the Kunita-Watanabe decomposition.
In the general semimartingale case, since it does not exist in general any risk-minimizing strategy, the weaker
concept of locally risk-minimizing strategy was introduced ([16]). In [6], under the further assumption that
the risky asset price has continuous trajectories, it has been proved that an optimal strategy exists and that
it can be computed by the Kunita-Watanabe decomposition under the minimal martingale measure.

In this paper we first consider the general case where the risky asset price is a semimartingale, but since it is
not continuous, the results proved in [6] cannot be applied. However we prove that the value process of an
optimal strategy (when it exists) can be again computed in terms of the minimal martingale measure. The
explicit expression of the density of the minimal martingale measure is provided for our model where the
filtration is generated by the Wiener process and the random Poisson measure. In [13] this has been done
in the case of marked point processes with respect to their internal filtration.

In the last section we recall the main results obtained in [5] in the case where the price of the risky asset
is a local martingale under the real world probability measure. The risk-minimizing strategy is computed
by the Kunita-Watanabe decomposition. Moreover, by using a projection result ([17]), the risk-minimizing
strategy when agents have access only to the information contained in the past asset prices (they have not
knowledge of the latent state process) can be obtained by solving a filtering problem.
We do not discuss here this filtering problem since it is exhaustively studied in [4] when Y is a discrete
valued process and in [5] when Y is a real-valued process.

2. The Model

We consider the same model studied in [4] and [5]. On some underlying filtered probability space (Ω,F ,Ft, P )
we consider a market with two traded assets: a riskless money market account and a risky asset. The risky
asset price S is supposed having the form

St = S0e
Yt (2.1)

where

S0 ∈ IR+, Yt =
Nt∑

n=0

Zn, Z0 = 0, Nt =
∑
n≥1

1I{Tn≤t},

the random times {Tn} represent instants at which a large trade occurs or at which a market maker updates
his quotes in reaction to significant new information, Y represents the logreturn process, Zn = YTn

− YTn−1

is the size of the nth logreturn change and N is the point process which counts the total number of changes.

Besides the risky asset, there is a risk-free asset traded in our market, whose price is taken equal to 1. This
simply means that S is the discounted price of the risky asset and this helps to avoid more complicated
notations.

We will consider the case in which the (P,Ft)-local characteristics ([2]) (λt,Φt(dz)) of the marked point
process Y may depend on some exogenous process X.

In [8], [9] and [10], the possibility that the jump-times of N and X coincide has been excluded. In this note,
we allow common jump times between N and X.

A natural way to describe this kind of behaviour is to suppose that the pair (X, Y ) takes values in IR× IR,
and that it is a global solution to the following system

Xt = x0 +
∫ t

0

b(Xs) ds +
∫ t

0

σ(Xs) dWs +
∫ t

0

∫
Z

K0(s,Xs− ; ζ) N (ds, dζ) (2.2)

Yt =
∫ t

0

∫
Z

K1(s,Xs− , Ys− ; ζ) N (ds, dζ) (2.3)
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where x0 ∈ IR, Wt is a (P,Ft)-standard Brownian motion, N (dt, dζ) is a (P,Ft)-Poisson random measure on
IR+×Z, independent of Wt, with mean measure dt ν(dζ), with ν(dζ) a σ-finite measure on a measurable space
(Z,Z). The IR-valued functions b(x), σ(x), K0(t, x; ζ) and K1(t, x, y; ζ) are jointly measurable functions of
their arguments.

Overall this paper we assume existence and uniqueness (at least weak uniqueness) to the system (2.2), (2.3)
(see [4] and [5] for a discussion on this topic).

In Proposition (2.1) and (2.2) below we recall some results proved in [5]. At first, the (P,Ft)-local char-
acteristics (λt,Φt(dz)) of Y are derived taking into account the representation (2.3). The time-dependency
of (λt,Φt(dz)) incorporate seasonality effects, which are typical for high frequency data. In particular λt,
corresponds to the rate at which new economic information is absorbed by the market.

First, we introduce the sequence of jump times of Y

T1 = inf{t > 0 :
∫ t

0

∫
Z

K1(s,Xs− , 0; ζ) N (ds, dζ) =/ 0}

Tn+1 = inf{t > Tn :
∫ t

Tn

∫
Z

K1(s,Xs− , YTn
; ζ) N (ds, dζ) =/ 0}

and the sequence of the marks

Zn = YTn − YTn−1 =
∫

Z

K1(Tn, XT−n
, YTn−1 ; ζ) N ({Tn}, dζ).

Let us define
D1(t, x, y) = {ζ ∈ Z : K1(t, x, y; ζ) =/ 0} (2.4)

and
D0(t, x, y) = {ζ ∈ Z : K0(t, x; ζ) 6= 0, K1(t, x, y; ζ) =/ 0}. (2.5)

Proposition 2.1 Let ∀T > 0, ∀t ∈ [0, T ], ∀A ∈ B(IR) (where B(IR) denotes the family of Borel subsets of
IR)

DA
1 (t, x, y) = {ζ ∈ Z : K1(t, x, y; ζ) ∈ A \ {0}} ⊆ D1(t, x, y), (2.6)

and denote by m the integer valued random measure associated to Y ([2],[11])

m(dt, dz) =
∑
n≥1

δ{Tn,Zn}(dt, dz)1I{Tn<∞}. (2.7)

Then, under the assumption

E[
∫ T

0

ν(D1(s,Xs, Ys)) ds] < ∞
( ∫ T

0

ν(D1(s,Xs, Ys)) ds < ∞ P − a.s.
)

(2.8)

the (P,Ft)-predictable projection of m is given by

mp(dt, dz) = λtΦt(dz)dt = λ(t,Xt− , Yt−)Φ(t, Xt− , Yt− , dz)dt (2.9)

where

λt = λ(t, Xt− , Yt−) = ν(D1(t,Xt− , Yt−)) (2.10)

provides the (P,Ft)-predictable intensity of the point process Nt =
∑

n≥1 1I{Tn≤t} and on {Tn < ∞}
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ΦTn(A) =
ν(DA

1 (Tn, XT−n
, YT−n

))
ν(D1(Tn, XT−n

, YT−n
))

. (2.11)

Moreover, whenever there exists a transition function µ(t, x, y, A) such that, ∀A ∈ B(IR)

P
(
Zn ∈ A | FTn−

)
= µ(Tn, XT−n

, YT−n
, A)

then on {Tn < ∞}
ΦTn

(A) = P
(
Zn ∈ A | FT−n

)
. (2.12)

By applying Itô formula to (2.3) we derive the joint dynamics of the pair (X, S):

Xt = x0 +
∫ t

0

b(Xs) ds +
∫ t

0

σ(Xs) dWs +
∫ t

0

∫
Z

K0(s,Xs− ; ζ) N (ds, dζ) (2.13)

St = S0 +
∫ t

0

∫
Z

Sr−(eK1(r,Xr− ,log(Sr−/S0);ζ) − 1)N (dr, dζ). (2.14)

The pair (X, S) is a Markov process whose generator is given in the next proposition.

Proposition 2.2 Under the assumptions, ∀T > 0

E
[ ∫ T

0

σ2(Xs) ds
]

< ∞ (2.15)

E
[ ∫ T

0

ν(Di(s,Xs, Ys)) ds
]

< ∞ i = 0, 1 (2.16)

for real-valued, bounded functions f(t, x, s) such that ∂f
∂t , ∂f

∂x , ∂2f
∂x2 are bounded and continuous, the process

f(t, Xt, St)− f(0, x0, S0)−
∫ t

0

Lf(r, Xr, Sr) dr (2.17)

is a (P,Ft)-martingale , where

Lf(t, x, s) =
∂f

∂t
(t, x, s) + Ltf(t, x, s) = (2.18)

=
∂f

∂t
(t, x, s) + b(x)

∂f

∂x
(t, x, s) +

1
2

σ2(x)
∂2f

∂x2
(t, x, s)

+
∫

Z

(
f
(
t, x + K0(t, x; ζ), seK1(t,x,log( s

S0
);ζ))− f(t, x, s)

)
ν(dζ).

In [5] it has been studied the case where S is a (P,Ft)-local martingale. Instead of this, here we will consider
the more general case where S is a (P,Ft)-semimartingale.

Proposition 2.3 Under (2.8) and the following condition∫ T

0

∫
Z

(eK1(t,Xt,Yt;ζ) − 1)2ν(dζ)dt < +∞ P − a.s. (2.19)

S is a special semimartingale ([11]) with the decomposition

St = S0 + Mt + At (2.20)

where
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At =
∫ t

0

∫
Z

Sr−(eK1(r,Xr− ,Yr− );ζ) − 1)ν(dζ)dr

is a predictable process with paths locally of bounded variation,

Mt =
∫ t

0

∫
Z

Sr−(eK1(r,Xr− ,Yr− ;ζ) − 1)(N (dr, dζ)− ν(dζ)dr)

is a local martingale, locally square-integrable whose angle process is given by

< M >t=
∫ t

0

∫
Z

S2
r−(eK1(r,Xr− ,Yr− ;ζ) − 1)2ν(dζ)dr. (2.21)

Proof.
First notice that (2.8) and (2.19) imply∫ T

0

∫
Z

| eK1(t,Xt,Yt;ζ) − 1 | ν(dζ)dt < +∞ P − a.s. (2.22)

hence

Rt =
∫ t

0

∫
Z

(eK1(r,Xr− ,Yr− ;ζ) − 1)N (dr, dζ)

is a semimartingale and by (2.19) square integrable. By (2.14) S is a semimartingale being the stochastic
exponential of the semimartingale R. To conclude observe that, since S2 is also a semimartingale being the
stochastic exponential of the semimartingale∫ t

0

∫
Z

(e2K1(r,Xr− ,Yr− ;ζ) − 1)N (dr, dζ),

S is locally square-integrable.

Let us observe that the following representations in terms of the integer valued measure m associated to Y
hold

St = S0 +
∫ t

0

∫
IR

Sr−(ez − 1)m(dr, dz) (2.23)

Mt =
∫ t

0

∫
IR

Sr−(ez − 1)(m(dr, dz)− λrφr(dz)) (2.24)

At =
∫ t

0

∫
IR

Sr−(ez − 1)λrφr(dz), (2.25)

and condition (2.19) can be written as∫ T

0

∫
IR

(ez − 1)2λrφr(dz) < +∞ P − a.s.

3. Hedging of a contingent claim

3.1. Problem formulation

Since our market is incomplete we have to choose some approach to hedging derivatives. In this paper we
will use the criterion of risk minimization. This approach has been proposed in [7] in the martingale case
and weakened in local sense in [16] for the general semimartingale case.
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We consider a European contingent claim with maturity T whose payoff is given by H(ST ) and such that
E[H2(ST )] < ∞. The simplest example is given by a call option with strike price k where

H(ST ) = (ST − k)+.

We look for a trading strategy which generates the required payoff H(ST ) and at the same time minimizes
some measure of riskiness.

A {Ft}-trading strategy is a pair (ξ, η) = {(ξt, ηt) : t ∈ [0, T ]}, where ξt is an {Ft}-predictable process
and ηt is a process {Ft}-adapted; ξt is the number of shares of the risky asset to be held at time t, while ηt

is the amount invested in the riskless asset.

The value at time t of such a portfolio is given by

Vt = Vt(ξ, η) = ξtSt + ηt.

We shall concentrate on strategies, (ξ, η), which are H-admissible in the sense that

VT (ξ, η) = H(ST ) P − a.s.

and satisfies

E(
∫ T

0

ξ2
t d < S >t) < ∞ (3.1)

E((supt∈[0,T ] | Vt |)2) < ∞. (3.2)

The cost process of (ξ, η) is defined by

Ct(ξ, η) = Vt(ξ, η)−
∫ t

0

ξrdSr (3.3)

and provides the cumulative cost up to time t as current value of the portfolio minus total gains from trade.
Under (3.1) and (3.2) C is a square integrable process. Moreover a strategy (ξ, η) is called self-financing if
its cost process Ct(ξ, η) is constant and it is called mean-self-financing if Ct(ξ, η) is a martingale.

In an incomplete market perfect duplication is, in general, impossible and so the cost process will not be
constant but fluctuate randomly over time. Hence we need a criterion to compare different strategies.
As a measure of riskiness, we introduce for each strategy (ξ, η) the conditional mean square error process

Rt(ξ, η) = E
(
(CT (ξ, η)− Ct(ξ, η))2 | Ft

)
(3.4)

and the problem of risk minimization is formulated as follows

Given H = H(ST ) with E[H2(ST )] < ∞, we have to find an H-admissible {Ft}-strategy minimizing the
{Ft}-risk process, Rt, over the class of H-admissible {Ft}-strategy. This strategy will be called {Ft}-risk
minimizing strategy.

In [7], in the martingale case, this problem was completely solved by using the Kunita-Watanabe decompo-
sition. While, in the general case of a semimartingale there cannot exist any risk-minimizing strategy hence
in [16] the weaker concept of locally risk-minimizing strategy was introduced.
It has been also proved that this definition is equivalent to the following
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Definition 3.1 An H-admissible strategy (ξ∗, η∗) is called optimal if the associated cost process C(ξ∗, η∗)
defined in (3.3) is a square-integrable (P,Ft)-martingale orthogonal to M under P , that is the angle process
< C(ξ∗, η∗),M >= 0 P -a.s..

This concept of optimal strategy is related to the existence of the minimal martingale measure as we will
see in Proposition (3.4) and (3.5).

3.2. The minimal martingale measure

We recall that absence of arbitrage opportunities is related to the existence of risk-neutral probability mea-
sures. That is probability measures Q, equivalent to P , such that S is a local (Q,Ft)-martingale. We
concentrate our attention to the minimal martingale measure

Definition 3.2 A martingale measure P ∗ equivalent with respect to P is called minimal if any square-
integrable (P,Ft)-martingale which is orthogonal to M under P is still a martingale under P ∗.

Existence and uniqueness of the minimal martingale measure for general semimartingales satisfying the
structure condition, (SC), has been discussed in [1]. The (SC) condition requires that S assumes the form

St = S0 + Mt +
∫ t

0

crd < M >r

where M is a (P,Ft)-local square integrable martingale and the predictable process c is such that∫ t

0

c2
rd < M >r< ∞ P − a.s.

In our context, taking into account (2.20) and (2.19), the (SC) condition is fulfilled with

Mt =
∫ t

0

∫
Z

Sr−

(
eK1(r,Xr− ,Yr− ;ζ) − 1

)
(N (dr, dζ)− ν(dζ)dr),

cr =

∫
Z
(eK1(r,Xr− ,Yr− ;ζ) − 1)ν(dζ)

Sr−
∫

Z
(eK1(r,Xr− ,Yr− ;ζ) − 1)2ν(dζ)

,

and under (2.8), the mean-variance tradeoff process is such that

Kt =
∫ t

0

c2
rd < M >r=

∫ t

0

(
∫

Z
(eK1(r,Xr− ,Yr− ;ζ) − 1)ν(dζ))2∫

Z
(eK1(r,Xr− ,Yr− ;ζ) − 1)2ν(dζ)

dr ≤
∫ t

0

ν(D1(r, Xr, Yr))dr < ∞ P − a.s.

where we recall that D1 is defined in (2.4).

Hence by the result proved [1], we get the following proposition

Proposition 3.3 Under (2.8), (2.19) if

ct∆Mt < 1 (3.5)

the minimal martingale measure P ∗ exists and is defined on (Ω,FT ) by

dP ∗

dP
= L∗T

where L∗ is the Doleans-Dade exponential martingale associated to the (P,Ft)-martingale mt = −
∫ t

0
crdMr.
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Let us observe that condition (3.5) can be written as∫
Z
(eK1(r,Xr− ,Yr− ;ζ)

)
− 1)ν(dζ)∫

Z
(eK1(r,Xr− ,Yr− ;ζ) − 1)2ν(dζ)

∫
Z

(eK1(r,Xr− ,Yr− ;ζ)
)
− 1)N ({t}, dζ) < 1

or equivalently, in terms of the local characteristics of Y , as∫
IR

(ez − 1)Φt(dz)∫
IR

(ez − 1)2Φt(dz)
(e∆Yt − 1) < 1.

3.3. Existence of optimal strategies

In [6] it is proved that an optimal strategy corresponds to the Follmer-Schweizer decomposition, more
precisely

Proposition 3.4 The existence of an optimal strategy is equivalent to a decomposition

H(ST ) = H0 +
∫ T

0

ξH
r dSr + LH

T (3.6)

with H0 square-integrable F0-measurable random variable, ξH predictable and satisfying (3.1), LH square-
integrable martingale orthogonal to M .
For such decomposition, the associated optimal strategy (ξ∗, η∗) is given by

ξ∗ = ξH , η∗ = V (ξ∗, η∗)− ξ∗S

with

Vt(ξ∗, η∗) = H0 +
∫ t

0

ξH
r dSr + LH

t .

In [6], when S has continuous paths, it has been proved that the above decomposition is uniquely determined
and coincides with the Kunita-Watanabe decomposition under the minimal martingale measure. Hence the
optimal strategy exists and can be computed in terms of the minimal martingale measure. This result is
obtained by using the property that the minimal martingale measure preserves orthogonality (see Theorem
3.5 of [6]), property which is not satisfied in the case where S has discontinuous paths. But, even if S is not
continuous, if an optimal strategy exists, the value process associated to it can be computed again as the
conditional expectation of the contingent claim H(ST ) under the minimal martingale measure, as we will
prove in the following proposition.

Proposition 3.5 Assume (2.15), (2.16), (2.19) and (3.5).
If there exists an optimal strategy (ξ∗, η∗), the value process is given by

Vt(ξ∗, η∗) = EP∗(H(ST ) | Ft) = l(t, Xt, St) (3.7)

where if l ∈ C1,2
b ([0, T ]× IR× IR+) it is a solution of the following integro-differential equation

L∗l(t, x, y) =
∂l

∂t
(t, x, y) + b(x)

∂l

∂x
(t, x, y) +

1
2

σ(x)2
∂2l

∂x2
(t, x, y)+ (3.8)∫

Z

(
l
(
t, x + K0(t, x; ζ), yeK1(t,x,log(y/S0);ζ)

)
− l(t, x, y)

)
(1 + U∗(t, x, y; ζ))ν(dζ) = 0

l(T, x, y) = H(y)

with

U∗(r, x, y; ζ) = −(eK1(r,x,log(y/S0);ζ) − 1)

∫
Z
(eK1(r,x,log(y/S0);ζ) − 1)ν(dζ)∫

Z
(eK1(r,x,log(y/S0);ζ)

)
− 1)2ν(dζ)

. (3.9)
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Proof.
Since C(ξ∗, η∗) is a square-integrable (P,Ft)-martingale orthogonal to M under P we have that it is a
(P ∗,Ft)-martingale hence we get

EP∗(H(ST ) | Ft) = EP∗(VT (ξ∗, η∗) | Ft) = EP∗(CT (ξ∗, η∗) +
∫ T

0

ξ∗rdSr | Ft) = Vt(ξ∗, η∗).

By a suitable version of Girsanov Theorem ([3]), since

−
∫ t

0

crdMr =
∫ t

0

U∗(r, Xr− , Sr− ; ζ)(N (dr, dζ)− ν(dζ)dr)

where U∗(r, x, y; ζ) is given in (3.9), we get that the (P ∗,Ft)- compensator of the integer-valued random
measure N (dr, dζ) is given by

νP∗(dr, dζ) = (1 + U∗(r, Xr− , Sr− ; ζ))ν(dζ)dr.

Finally, by Itô formula we get that for any f ∈ C1,2
b ([0, T ]× IR× IR+)

f(t, Xt, St) = f(0, x0, S0) +
∫ t

0

L∗f(r, Xr, Sr)dr + mt (3.10)

where L∗ is given in (3.8). By (2.15) and (2.16)

mt =
∫ t

0

σ(Xr)
∂f

∂x
(r, Xr, Sr)dWr+

∫ t

0

∫
Z

(
f
(
r, Xr−+K0(r, Xr− ; ζ), Sr−eK1(r,Xr− ,Yr− ;ζ)

)
−f(r, Xr− , Sr−)

)
(1+U∗(r, Xr− , Sr− ; ζ))(N (dr, dζ)−ν(dζ)dr)

is a (P ∗,Ft)-martingale. To this end it is sufficient to observe that∫
Z

|
(
f
(
r, x + K0(r, x; ζ), yeK1(r,x,log(y/S0);ζ)

)
− f(r, x, y)

)
(1 + U∗(r, x, y; ζ)) | ν(dζ) ≤

2‖f‖
(
ν
(
D0(t, x, log(y/S0))

)
+ ν

(
D1(t, x, log(y/S0))

)
+

∫
Z

| U∗(r, x, y; ζ) | ν(dζ)
)

and ∫
Z

| U∗(r, x, y; ζ) | ν(dζ) ≤
(
∫

Z
| eK1(r,x,log(y/S0);ζ) − 1 | ν(dζ))2∫

Z
(eK1(r,x,log(y/S0);ζ) − 1)2ν(dζ)

≤ ν
(
D1(r, x, log(y/S0))

)
.

Hence under P ∗ the Markovianity of the pair (X, S) is preserved and L∗ provides its generator.
Now, for f = l in (3.10), since l(t,Xt, St) is a (P ∗,Ft)-martingale all finite variations terms have to vanish
and this leads to equation (3.8).

Notice that analytical solutions to equation (3.8) are difficult to find but one could search approximating
solutions. Otherwise one could compute the expectation in (3.7) by Monte Carlo simulations. This problem
has been mentioned in [10] where related references are given.

3.4. The martingale case

In the sequel we shall assume (2.8), (2.19) and

∀t ∈ [0, T ], x ∈ IR, y ∈ IR

∫
Z

(eK1(t,x,y;ζ) − 1)ν(ζ) = 0 (3.11)
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which ensure that P is a martingale measure for S.

Taking into account (2.23) condition (3.11) means, when (2.12) holds, that

E[eZn − 1 | FT−n

]
=

∫
IR

(ez − 1)ΦTn
(dz) = 0,

and this condition should be compared with that given in [8], where it is assumed that E[eZn − 1] = 0.

The martingale case is discussed in [5]. In the sequel we will recall the main results there proved. Since S is
a martingale we have that the decomposition (3.6) is given by the Kunita-Watanabe one and the following
hold

Proposition 3.6 Under the hypotheses (2.15), (2.16) and (2.19), let us define

g(t, Xt, St) := E(H(ST ) | Ft). (3.12)

If g ∈ C1,2
b ([0, T ]× IR× IR+) it is a solution of the following integro-differential equation

Lg(t, x, y) =
∂g

∂t
(t, x, y) + b(x)

∂g

∂x
(t, x, y) +

1
2

σ(x)2
∂2g

∂x2
(t, x, y)+ (3.13)

∫
Z

(
g
(
t, x + K0(t, x; ζ), yeK1(t,x,log(y/S0);ζ)

)
− g(t, x, y)

)
ν(dζ) = 0

g(T, x, y) = H(y).

Furthermore, the risk-minimizing hedging strategy (ξ∗, η∗) is given by

ξ∗t =
h(t, Xt− , St−)

St−Σ(t,Xt− , St−)
(3.14)

η∗t = g(t, Xt− , St−)− ξ∗t St

where

h(t, Xt− , St−) =
∫

Z

(
eK1(t,Xt− ,Yt− ;ζ)−1

)(
g
(
t, Xt−+K0(t, Xt− ; ζ), St−eK1(t,Xt− ,Yt− ;ζ)

)
−g(t,Xt− , St−)

)
ν(dζ)

(3.15)

Σ(t, Xt− , St−) =
∫

Z

(
eK1(t,Xt− ,Yt− ;ζ) − 1

)2
ν(dζ) (3.16)

and Yt− = log(St−/S0).

The criterion of risk minimization is also well suited to deal with restricted information. We assume now that
the hedger has access only to the information given by the past asset price, that is the filtration generated
by S, FS

t = σ{Sr : r ≤ t} which coincides with the filtration generated by Y , FY
t = σ{Yr : r ≤ t}.

In this framework we restrict our attention to {FS
t }-strategy and, as in [17] and [6], we consider the {FS

t }-risk
process of an {FS

t }- strategy defined by

RS
t (ξ, η) = E

(
(CT (ξ, η)− Ct(ξ, η))2 | FS

t

)
. (3.17)

In [17] is proved that there exists a unique H-admissible, {FS
t }-risk minimizing strategy (ξ′, η′), where ξ′ is

given by the Radon-Nikodym derivative of < V (ξ∗, η∗), S >p,FS
t , with respect to < S >p,FS

t :
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ξ′t =
d < V (ξ∗, η∗), S >p,FS

t

d < S >p,FS

t

where (ξ∗, η∗) is the H-admissible, {Ft}-risk minimizing strategy and, for any locally integrable process A

of finite variation, Ap,FS

denotes the {FS
t }-predictable projection (see [11] for details).

Moreover η′ is given by

η′t = Vt(ξ′, η′)− ξ′tSt

and the value process is such that

Vt(ξ′, η′) = E[H(ST ) | FS
t ] = E[g(t, Xt, St) | FS

t ].

Hence, since

< V (ξ∗, η∗), S >t=
∫ t

0

Sr−h(r, Xr− , Sr−)dr, < S >t=
∫ t

0

S2
r−Σ(r, Xr− , Sr−)dr

we get

ξ′t =
E[h(t, Xt− , St−) | FS

t− ]
St−E[Σ(t, Xt− , St−) | FS

t− ]
=

πt−(h(t, ·, St−))
St−πt−(Σ(t, ·, St−))

η′ = πt(g(t, ·, St))− ξ′tSt

where πt− denotes the left-continuous version of the filter πt. The filter πt is the probability measure-valued
FS

t -adapted process such that for any f bounded measurable function on IR

πt(f(·)) = E(f(Xt) | FS
t ).

Thus the knowledge of the filter allows us to compute our strategy under restricted information.
For a discussion of the filtering problem see [4] and [5].
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