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Abstract.

The Portfolio selection problem is a relevant problem arising in finance and
economics. While its basic formulation can be efficiently solved through lin-
ear programming, its more practical and realistic variants, that include various
kinds of constraints and objectives, have to be tackled by approximate algo-
rithms. Among the most effective approximate algorithms, are metaheuristic
methods that have been proven to be very successful in many applications. This
paper presents an overview of the main formulations of the Portfolio selection
problem and surveys the literature on the application of metaheuristics to it.
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1 Introduction

Portfolio selection is one of the most relevant and studied topics in finance. The
problem, in its basic formulation, is concerned with selecting the portfolio of assets
that minimizes the risk subject to the constraint of guaranteeing a given level of
returns. Individuals and institutions prefer to invest in portfolios rather than single
assets (or securities) because it enables them to dampen the risk, by diversification of
the investments, without negatively affecting expected returns. The basic model of
the portfolio selection problem (hereinafter referred to as PSP) is formulated in the
seminal work by Markowitz[42]. In that work, the author rejects the hypothesis that
investors wish to maximize expected returns, because this criterion does not imply
that a diversified portfolio is preferable to a non-diversified one. Thus, he states that
the goal is to select a portfolio with minimum risk at given minimal returns. Alter-
natively, the problem can be formulated as a multi-criteria optimization problem in
which risk has to be minimized while return has to be maximized. Notwithstanding
its potential in capturing the basic properties of the problem, the Markowitz model,
referred to as Mean-Variance model, suffers from several drawbacks. First, it might
be difficult to gather enough data and information for estimating risk and returns.
Second, the estimation of return and covariance (used for defining the risk) from
historical data is very sensitive to measurement errors. Finally, it is nowadays con-
sidered too simplistic for practical purposes, because it does not incorporate aspects
of real-world trading that are non-negligible, such as maximum size of portfolio,
minimum lots, transaction costs, preferences over the assets, management costs, etc.
Adding those constraints to the original formulation makes the problem very hard
to be solved by exact methods. Hence the need for designing efficient approximate
algorithms, such as metaheuristics[4]. Among such approaches can now be found the
state-of-the-art solvers for the PSP.

In this work, we give an overview of the use of metaheuristic techniques to solve
the PSP. We first present and discuss the different models from the literature and we
also introduce a classification of them, that can provide a general scheme for analyz-
ing and comparing such models. Then, we survey the most relevant metaheuristic
approaches for the PSP. The distinction between model and solving technique is be-
coming particularly effective in the recent years, due to the development of constraint
programming-oriented approaches, as demonstrated by recent successes of software
tools such as Comet [23], ILOG Solver [26] and EasyLocal++ [17].

In Sec. 2 we introduce the Markowitz model along with the most relevant vari-
ants and improvements. The problem model is considered as an object with three
attributes: decision variables and their domains, objectives and constraints. On
the basis of such attributes, we also provide classification such that each actual
problem formulation can be seen as an instance of a general abstract model, the
basic (or default) instance of which is the Markowitz model. Sec. 3 presents the



various metaheuristic approaches to the PSP by analyzing them through a general
framework for metaheuristics called MAGMA [43]. First, the basic building block
of algorithms based on metaheuristics are presented, such as the search space, the
neighborhood structures and the cost function. Then, we overview the most impor-
tant techniques from the literature, starting from solution construction procedures
till advanced search strategies. Sec. 4 summarizes the most important works form
the literature that explicitly address the issue of comparing different metaheuristic
approaches for the PSP. Finally, in Sec. 5 we briefly summarize related works and
we conclude with Sec. 6 outlining future research and application directions in the
field.

2 PSP Modeling

Constrained optimization problems can be defined by specifying variables, along with
their domains, objectives and constraints among variables. These entities can also
play the role of model attributes and serve as the basis for a classification of the
different models. Attributes may have several qualifications, that, in turn, may be
subdivided in more detailed categories, till reaching the specification of the actual
attribute instantiation. For instance, objectives (an attribute) can either be single
or multi-criteria (qualifications); each qualification can be specified by instantiating
the actual objective function, for example the minimization of a given risk measure.

In this section, we provide an overview of the PSP models that can be found
in the literature trying to capture the diverse formulations by means of a unique
classification, with the aim of giving a general view of PSP modeling along with the
possibility of making comparison among the models. We first present the Markowitz
model, that constitutes the basis upon which the other models are obtained as vari-
ations and extensions.

2.1 The basic model: Markowitz model

In the PSP in canonical form we want to find a portfolio that minimizes the risk
at given levels of return rate!. In the Markowitz formulation the risk measure is
given by the variance of the portfolio. This measure is the objective function most
commonly used in related works.

The Markowitz model [42] is as follows:

n o n
minZZaijxixj (1)

i=1j=1

'In agreement with the main literature on the subject, here we consider the problem objective
as the minimization of the risk measure. The problem can also be modelled as a maximization of
returns or in other ways. See [16] for a brief discussion on this topic.



subject to

x; € [0,1] i=1,...,n (4)

where n is the number of assets, x; is the proportion of money invested in asset i, 7;
is the expected return (per period) of asset 4, o;; is the real-valued covariance of ex-
pected returns on assets i and j. The objective function is the variance (herein called
risk-measure) 012,, given by >31'; >°% ; oijz:25. The expected return of portfolio is
given by r, and ) ;" | 7;x; represents the actual forecasted return of the chosen port-
folio. Constraint (3) ensures that asset weights sum up to one, as they are considered
as fractions of the whole amount of money to be invested.

Constraint (2) can also be written in the inequality form, that is the most com-
monly adopted constraint when metaheuristics are applied. In this case, constraint
(2) becomes

n
> riwi > (5)
=1

Furthermore, it is also possible to optimize function (1) for a set of values of r,[7]:

n
Z T > Tp rp=0...Tmaz (6)
i=1

The Markowitz model can be considered as the most simple formulation of the
PSP. Its conceptual representation is depicted in Fig. 1. Note that the three at-
tributes, variables, objectives and constraints, can be directly instantiated, as in the
case of constraints, or further detailed through qualifications. This basic model can
be varied and extended in many ways. Every modification can be viewed as the
result of the combination of simple variations, each of which affecting only one at-
tribute. For instance, different risk measures can be chosen, or constraints that make
the model more realistic can be added. The problem we consider in this paper is a
‘single-period’ (i.e., single-stage) problem; in particular, we do not take into account
possible adjustments between estimated and actual returns, nor transaction costs.
Moreover, the PSP formulations we discuss are deterministic.

In the following, we will detail the most important extensions of the basic model,
by keeping in the background the conceptual model scheme.
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Single-criterion _M
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Figure 1. Conceptual representation of the Markowitz model. Rectangles represent
the instantiation of a qualification (ellipse). In gray, qualifications and instantiations
not present in the model.

2.2 Variables and domains

We first briefly discuss the possible choices for variable domains in a PSP model.
In the Mean-Variance model, variables are real and they range between zero and
one, as they represent the fraction of available money to invest in an asset. This
choice is quite ‘natural’ and has the advantage of being independent of the actual
budget. Conversely, another possibility is to choose integer values for variables and
make them range between zero and the maximum available budget. When variables
are integer, it is possible to add to the model constraints that involve actual budget
values, such as minimum trading lots and also introduce more realistic objective
functions. Advantages and disadvantages of the two approaches will be discussed in
the following sections, in which variations in the basic model are presented.

2.3 Objective functions

In general, the PSP objectives can be either to minimize the risk, while satisfying a
given return, or maximize the return not exceeding a given maximum risk, or both. In
the former cases, the problem objectives are single-criterion, while in the latter case
they are multi-objective. In our classification, we consider these two qualifications
for the attribute objectives, as shown in Fig. 2.

2.3.1 Single-criterion objectives

Although metaheuristics have been successfully applied to tackle both single and
multi-criteria optimization problems, the PSP has been mostly modeled as a single-



criterion optimization problem. A first simple variant of the single-criterion objective
consists in including constraint (2) in the objective function in a Lagrangian relax-
ation fashion [6] [62] [33]:

max (1 — \) Z riT; — )\Z Z OijTiT; (7)
i=1

i=1j=1

subject to constraints (3) and (4), where X is a trade-off coefficient ranging in [0,
1]. If X = 0 the investor completely disregards risk and aims to maximize returns;
conversely, when A = 1, the investor is risk-adverse and only wants to minimize
risk. By resolving the problem for several values of A it is possible to estimate the
efficient frontier for the Markowitz unconstrained problem (referred to as UEF).
The investor can then choose the portfolio depending on specific risk/return require-
ments. The UEF is composed of Pareto optimal solution, i.e., solutions such that no
criterion can be improved without deteriorating any other criterion. In our example,
a solution s is said to be efficient (Pareto-optimal) if there is no other solution s;
such that return(si) > return(s) and risk(s1) < risk(s) or return(sy) > return(s)
and risk(s1) < risk(s). As metaheuristics provides an approximation of the ac-
tual Pareto frontier, in the following we will distinguish between the actual efficient
frontier (UEF) and the approximated one (AUEF). Moreover, since we are going
to introduce other classes of constraints in our discussion, we will refer to the con-
strained efficient frontier as CEF, whilst its approximation will be referred to as
ACEF. We notice here that the unconstrained frontier dominates the unconstrained
one.

So far we have only considered variance as the risk measure, but other different
measures can be taken, thus defining different objective functions. Markowitz himself
suggested the use of semi-variance instead of variance in order to assess portfolio risk.
Semi-variance can be defined as

semivar = Z pj(ry — E[R])2 (8)
jZTjSE[R]

R is a distribution of returns, often statistically computed by enumerating the most
probable scenarios, 7; is the return of the j-th element of the distribution, p; its
probability and E[R] the mean of the distribution. This measure is equivalent to
variance if return distribution is symmetric around the mean and captures the essence
of risk as perceived by investors, characterized by the likelihood of incurring into a
loss. Its drawback is that an investor can perceive the loss not necessarily when
returns are below the mean, but below some other subjective threshold 7. This idea
refers to the part of distribution below a certain target of return, and for this reason
the corresponding measures are referred to as down-side risk measures:



DSR(r) =) pi(r —1:)" (9)
ri <7
When ¢ = 2 the formula is referred to as target semi-variance expression; in this case
if 7 = E[r] the formula is equivalent to semi-variance.
The threshold 7 is referred to as Value-at-risk (VaR) and can be conceived as
a measure of the portfolio catastrophic risk, since investors are concerned with the
chance of loosing their wealth because of a low-probability-high-impact-event[58].
7 has been used as the threshold below which the investor perceives a loss[19][18].
The probability that portfolio returns fall below the VaR level is called Shortfall
Probability:

SP =p(r <VaR) (10)

where r stands for Y ;' ; rjz;. Furthermore, the FEzpected Shortfall Probability is
defined as the expected return of portfolio given that its value has fallen below VaR:

ES = E(r|r <VaR) (11)

Amongst other approaches it worths mentioning the Mean-Absolute-Deviation model
(MAD)[35], in which the risk is defined as the mean absolute deviation of the portfolio
rate of return. This model does not rely on probabilistic assumptions on returns (it is
equivalent to the Markowitz model if returns are considered as normally distributed)
and it is easier to handle because it does not require the covariance matrix:

n n
minE[ Z rix; — F [ Z rixi] 1 (12)
i=1 i=1
. Z t=1TTit . .
Assuming r; = ~———, this equation can be re-formulated as follows:

T
min pyrany Z?;(Tit — 1) T4

(13)

Following the same ideas, in [53] risk is measured as the mean semi-absolute
deviation of the rate of return below the average:

Sy | min(0, Yo7y (ris — i)
T
This function is shown to be equivalent to MAD, as semi-deviation is equal to half
of absolute deviation.
Furthermore, since the Mean-Variance formulation is non linear, efforts have been
made to model the problem as a linear programming model. Amongst them, besides

(14)



the above cited ones, the approach proposed by Young|61]| defines the risk as the
minimum return achieved by portfolio over the considered time horizon.

2.3.2 Multi-criteria objectives

In the multi-criteria variant of the PSP model, the objectives are usually the follow-
ing [56][1]:

minz Zaijxixj (15)

i=1j=1
n
max Z TiT; (16)
i=1

subject to constraint (3).
Moreover, it is possible to have several functions to optimize: Subbu et al.[58],
for instance, propose the following:

max Portfolio expected return
min Variance (17)
min  Portfolio value at risk

This model can also handle preferences, by introducing other three metrics:
Market-yield, Dollar duration weighted Market-yield and Transaction costs. These
metrics are used to describe and structure ordinal preferences.

The approach consisting in weighting the criteria of a multi-criteria objective
function is common when the model is aimed to support decision processes. For
example, in Ehrgott et al.[14], the objective is to maximize a weighted sum of five
measures (annual price-performance, annual dividend, three year price-performance,
S & P rating and volatility) and weights are to be defined by users in order to specify
their preferences.

A different multi-objective formulation is given in Ong et al.[46]. According
to existing models, they assume portfolio risk being composed of the uncertainty
risk and the relation risk. The uncertainty risk measures the uncertainty on future
return rates, whilst relation risk measures the trending degree of the sequence. In
this framework the objective is given by

max Portfolio expected return
min Uncertainty Risk (18)
main  Relation risk

Many other objective functions and utility measures have been proposed, an
overview of which can be found in [30]. Among them, we mention the objectives
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Figure 2. Conceptual representation of the PSP model attributes variables and ob-
jectives.

introduced in [5], in which eight objective functions are defined to include more than
the two canonical moments (indeed they are suitable to include mean, variance,
kurtosis and skewness). Here below we report only two of them:

maxzn: lsin(50-xi) ﬁ wk] (19)

i=1 k=1,k=i

n n
max Z [xl H ([50 -k - mk]mod8)1 (20)
e=1L k=1ki

A visual conceptual overview of the different kinds of objectives is depicted in
Fig. 2, along with the possible choices for variable domains. Before discussing the
third attribute of the model, i.e., constraints, we have to note that the estimation
of returns from real-world data raises statistical and practical issues that have to be
taken into account when the PSP is tackled. A discussion on this topic is out of the
scope of this paper and we forward the interested reader to the specific literature on

the subject [45][3][27][18][19][13][59]-

2.4 Constraints

Constraints can be first distinguished into two classes: theoretical and practical.
The first class includes budget and return constraints, while practical constraints are
motivated by actual problem requirements, such as minimum lots imposed by law.

2.5 Budget and Return Constraints

Budget and Return constraints are the most important ones, because they char-
acterize the essential part of the problem. These constraints are included in the
unconstrained Markowitz model and are used to theoretically define the feasibility
of a solution:

10



n
> riwi > (22)
i=1

Constraint (21) means that all the capital must be invested. If an integer formu-
lation is used, in which assets are represented by their actual value rather than their
ratio to the whole portfolio, it can be expressed in the following way [8][53][39]:

n
C() S Z.Z‘Z S Cl (23)
i=1
where Cy and C are respectively the lower and upper bound on the budget.
Furthermore, in the continuous formulation, imposing the budget constraint gen-
erally means that short sales are not allowed.
Return constraint (22) is very important as returns represent one of the two main
aspects of the problem.

As stated above, a shortcoming of the original Markowitz formulation is that it
does not incorporate many aspects of real-world trading, such as maximum size of
portfolio, minimum lots, transaction costs, preferences of which assets to include in
the portfolio, management costs, etc. These aspects can be modeled by introducing
constraints of the type that we have called ‘practical’, that are introduced in the
following.

2.6 Cardinality Constraints

The number of assets in the portfolio is often either set to a given value or it is
bounded. Introducing a binary variable z; equal to 1 if asset i is in the portfolio and
0 otherwise, the constraint can be expressed as follows:

doa<k (24)
=1

This constraint is imposed to facilitate the portfolio management and to reduce its
management costs. When the model contains this constraint, it can be named “The
asset paring problem”[36]. It has been experimentally shown that, when the cardinal-
ity constraint is imposed, the ACEF tends to tightly approximate the UEF for high
values of k [28][6]. The inequality form is quite common (see, for instance, [50][7][33]),
however the constraint can also be expressed in the equality form, i.e., >1* | z; = k.
When k is greater than a threshold value, the ACEF returned by the algorithms
tends to collapse around one attractor point[1].

11



2.7 Floor and Ceiling Constraints

With these constraints we impose a minimum and maximum proportion (¢; and §;
respectively) allowed to be held for each asset in portfolio, so that ¢; < z; < ¢;
(t = 1...k); in other words, the portion of the portfolio for a specific asset must
range in a given interval:

Eizg < ZT; < (SZZZ (25)

Floor constraint (i.e., lower bound) is used to avoid the cost of administrating
very small portions of assets; ceiling constraints (i.e., upper bound constraints) are
introduce to avoid excessive exposure to a specific asset and in some case are imposed
by law. Generally the upper bound is considered more relevant than the lower bound
and it is also possible to impose different upper and lower bounds for each asset, but
this opportunity has not yet been explored in the literature.

2.8 Minimum lots

The unconstrained Markowitz model considers investments as perfectly divisible, so
as to be represented by a real variable, whilst in real world securities are negotiated
as multiples of minimum lots. For each asset there exists a minimum tradable lot,
referred to as round. Rounds are usually measured in unities of money, so this
constraint is generally encountered in the PSP integer formulation [8][32][39]. If p; is
the price of asset j and p; its minimum tradable quantity, the minimum lot ¢; of asset
J, measured in unities of money, is given by c¢; = p;p;. When using the continuous
formulation its application consists in imposing that each weight must be multiple
of a given fraction[56], and, obviously, its meaning is different from imposing rounds
in integer formulation.

Minimum lots seem to be relevant for small investors but negligible for big ones
and their introduction has the effect of reducing the number of different assets in the
optimal portfolio.

2.9 Class Constraints

In the real world of finance it may happen that investors ideally partition the as-
sets in mutually exclusive sets (classes). Each set consists of assets with common
characteristics (insurance assets, naval assets, etc.), and investors want to limit the
proportion of each class. Let M be the set of classes I'1,...,I'ys, L, and U, the
lower and upper proportion limit (respectively) for class m, the class constraint can
be defined as

Ly <) 2i<Un m=1...M (26)

iel'm,

12



2.10 Compulsory assets

An investor may wish that some specific assets be included in the portfolio, in pro-
portion fixed or to be determined. This constraint can be imposed by setting z; = 1
for the corresponding assets and imposing more or less restrictive upper and lower
bounds.

2.11 Turnover and trading constraints

For the sake of completeness, we also mentioning a class of constraints that arise
in the multi-period formulation of the problem. These constraints define upper and
lower bounds, respectively in case of buying and selling, for the variation of asset
values from one period to the next one. Moreover, they are usually combined with
transaction costs and taxes. These constraints have been introduced by Crama and
Schyns in [7] in a variant of the single-period formulation.

It has been shown that the constrained PSP is NP-Complete[39]. Moreover, exact
methods fail to solve large instances of the constrained PSP, therefore researchers
and practitioners have to resort to approximate algorithms and, in particular, to
metaheuristics and hybrid techniques.

The complete classification of the PSP model variants that can be found in the
main literature on the subject is depicted in Fig. 3. In the next section we present
an overview of the main metaheuristic approaches for tackling the PSP.

3 Metaheuristic techniques for portfolio selection

Metaheuristics are solving strategies based on which approximate algorithms for
combinatorial optimization problems can be designed and implemented. In general,
metaheuristic-based algorithms can not prove the optimality of the returned solu-
tion, but they are usually very efficient in finding (near-)optimal solutions. Some
techniques, such as tabu search, iterated local search, variable neighborhood search,
ant colony optimization and evolutionary algorithms have proven to be very success-
ful in tackling real-world problems. For further details on metaheuristics we forward
the reader to [4] and [24]. In this section, we provide a review of the most relevant
metaheuristic approaches to the PSP. To this purpose, we will adopt the stand-
point provided by MAGMA, a general framework for metaheuristics [43]. MAGMA
(MultiAGent Metaheuristics Architecture) provides a framework for classifying and
designing metaheuristic as a multi-agent system. Metaheuristics can be seen as the
result of the interaction among different kinds of agents: the basic architecture con-
tains three levels, each hosting one or more agents. At each level there are one or
more specialized agents, each implementing an algorithm. LEVEL-0 provides a fea-
sible solution (or a set of feasible solutions) for the upper level, therefore it can be

13
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Figure 3. Conceptual representation of all the PSP model attributes (variables, ob-
jectives and constraints).

considered as the (initial) solution construction level. LEVEL-1 deals with solution
improvement and agents perform a trajectory in the search space until a termination
condition is verified (basic local search level). LEVEL-2 agents have a global view
of the space, or, at least, their task is to guide the search toward promising regions
and provide mechanisms for escaping from local optima (long term strategy level).
Classical metaheuristic techniques, such as tabu search, can be easily described via
these three levels. This basic three level architecture can be enhanced with the
introduction of a fourth level of agents, LEVEL—-3 agents, coordinating lower level
agents. With this fourth level, the framework can also describe hybrid techniques
such as large neighborhood search, in which complete solvers are integrated into
metaheuristics [9][48]. We first survey the basic concepts metaheuristics for PSP are
based upon, i.e., the various choices for defining the set of feasible solutions, the

14



neighborhood structure(s) and the cost function. Then, we give an overview of the
techniques level by level, starting from the solution construction till the most general
search strategies.

3.1 Metaheuristic attributes

We can conceive a metaheuristic as an abstract class whose attributes are the search
space, the cost function and the neighborhood structure(s) that represents the basic
components of the search strategy. Once these attributes are instantiated, the search
strategy can be designed by instantiating the algorithm for each of the search levels,
i.e., solution construction, solution improvement, search strategy and coordination
strategy.

3.1.1 The search space

Usually, a solution to the PSP is represented by an array of n variable x1,...,x,,
where x; represents the fraction of the amount invested in asset ¢ (or the actual
amount of money in the integer variable model). Besides those variables, auxiliary
variables and data structures can be added for improving algorithm efficiency. An
important distinction has to be made in the way the different approaches deal with
constraint violations. Indeed, some works define the search space explored by the
algorithm as consisting of only feasible portfolios (i.e., satisfying all the constraints
in the model), while in other works the search process is allowed to explore also
infeasible solutions. For the sake of simplicity, we partition the constraints in two
classes:

1. Hard constraints, that must be always satisfied by any candidate solution;

2. Soft constraints, allowed to be not satisfied during the search process. Gener-
ally, their violation is evaluated in the cost function by means of penalties.

We therefore can classify the search processes depending on how they handle
infeasibility:

e All feasible approach: Each candidate solution s must satisfy the constraints
at any step of the search process (e.g Chang et al.[6]);

e Repair approach, in which if an infeasible solution is found, this is immediately
forced to satisfy the constraints by means of an embedded repair mechanism
(e.g Streichert et al.[56]);

e Penalty approach: It is allowed to visit infeasible solutions, but those will be
assigned a penalty in the cost function, depending on the amount of violation
(e.g Schaerf [50]).

15



Repair mechanisms are very often used for they provide a tradeoff between ex-
ploration and intensification. A typical repair mechanism is explained in Streichert
et al.[57], referring to a formulation with cardinality and minimum lots constraints.
This mechanism takes as input a non-normalized solution vector and repairs the
solution through the following deterministic procedure:

1. All weights are normalized so as to sum to one. This is done by setting weights
xp =1/ X, %5

2. the obtained vector is normalized so as to meet the cardinality constraint: only
the k assets with largest value of x} are held and then are normalized to the
value x’;

3. a further modification is required to meet minimum lots constraints: asset

weights are forced to the largest roundlot level less or equal than the current
asset weight, i.e., 2/ = z — (2] mod ¢;). The residual amount of budget is
redistributed so as to meet minimum lots constraints by buying quantities of
¢; of assets with the largest (2] mod ¢;) until all the budget is spent.

3.1.2 Cost function

When the PSP is attacked by metaheuristic algorithms, it is important to distinguish
between objective function and cost function. The former represents the function to
be optimized to solve the problem, while the latter represents the function guiding
the search process over the search space. In many metaheuristic algorithms the
objective of the problem is used as evaluation function, but sometimes different cost
functions can better guide the search toward promising solutions.

A prominent example of a cost function for the PSP is provided by Schaerf][50]
who defines a cost function in which the cost associated to the violation of budget
constraint (f1(X)) is combined with the original objective function (f2(X)). The
overall cost function to be minimized is a weighted sum of the two components
w1 f1(X) + wafo(X), where wy and wsy vary during search according to a shifting
penalties mechanism.

min ’LU1f1 (X) + w2f2(X) (27)

f1(X) = max (0, 2": TiT; — rp)
i=1

fa(X) =YY oijwix,

i=1j=1
A similar approach is followed by Gilli and Kéllezi in [18]. They choose the
following objective function:

16



__J ¢ if returns are higher than r,
P=9 0 otherwise

where p is the penalty term.

3.1.3 Neighborhood relations

The neighborhood relation defines the states of the search space that are reachable
from the current state of the search. The definition of neighborhood structures to be
used during search is one of the key components of metaheuristic algorithm design
The first examples of neighborhood relations in local search for the PSP were
introduced by Rolland[49]. These neighborhoods are defined for the unconstrained
model, i.e., the one with only theoretical constraints as explained in Sec. 2, and can be
considered the basic structures upon which further developments have been designed.
In the first structure (referred to as RollandI) the neighbor of a solution is defined as
a solution in which the weight of only one asset is increased or decreased of a given
quantity, called step. The second neighborhood (referred to as RollandII) is defined
so that the weight of an asset is increased or decreased of a given step and the value of
one other asset is respectively decreased or increased of the same value. With these
two neighborhood structures, the assets contained in the final solution are a subset
of the starting portfolio, since the assets to be modified are chosen amongst the ones
present in the portfolio. Anyway, this does not prevent the search from being able to
explore all the possible asset combinations, because the model is unconstrained and
the portfolio is initialized with x; = %, for each asset ¢ = 1,2,...,n. We also observe
that Rollandl might move the search to infeasible solutions. These neighborhoods are
well suited for the unconstrained model, but have to be modified for the constrained
models because assets can not be present in the portfolio in any quantity. Hence,
these neighborhood structures are modified by embedding asset insertion and deletion
operations. RollandII can be modified by transferring a quantity from one assets ¢
to another asset j even if the latter does not belong to the portfolio. In this case,
asset j will be inserted in the portfolio (see the neighborhood called TID in [50]
and [18]). This approach should also include some mechanism to handle upper and
lower bounds, in case they are present in the formulation. Rollandl can be modified
by enforcing the satisfaction of the budget constraint and by allowing insertions
and deletions of assets. Feasibility w.r.t. the budget constraint can be enforced by
increasing the weight of one asset and decreasing the other asset weights [5]. More
precisely, if a solution is given by a weight vector (z1...z,), the neighboring one

. 1 z;+step T . . . . .
is (1+step"" Trstes - 1Jrstep), for only one ¢, 1 < i < n. This neighborhood is
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proven to be complete, i.e., for a long enough sequence of moves, each solution can
in principle be reached. Completeness does not depend on the initial solution and
holds iff step < ﬁ The possibility of having asset insertions and deletions lead
to neighborhoods defined in [50], called idR, and [6]. This neighborhood takes into
account the case that an asset i is decreased so that its value falls below its lower
bound e€; hence, asset ¢ is deleted and another asset j is inserted in the portfolio.
Conversely, if asset ¢ is increased so that its value exceeds its upper bound §, then its
weight is set to § and all other asset weights are normalized. Observe that all these
variants do not change the number of assets in the portfolio. A further improvement
is thus possible by allowing neighbor solutions to have different number of assets

(see [50],idID), defined by allowing three kinds of operations on the selected asset i:

o If asset i is already in the portfolio, increase its weight of a given quantity. If
the resulting value exceeds the upper bound J, then set the value to 9.

o If asset ¢ is already in the portfolio, decrease its value of a given quantity. If
the value falls below the lower bound ¢, asset i is deleted and not replaced by
any asset.

e If asset i is not in the portfolio, it is inserted in the portfolio with weight equal
to its lower bound.

After these operations, asset weights are normalized.
In general, neighborhood relations can be divided in two classes:

1. Neighbors are generated by modifying the weights of a subset of the assets of
the current portfolio.

2. Neighbors are generated by modifying all the assets in the current portfolio.

We can ideally define a neighbor of a solution by selecting one asset to be mod-
ified, specifying the amount of variation and performing the change. This asset is
referred to as pivot|1]. Then, this modification is counter-balanced by changing the
weights of some other assets. If only a pre-determined subset of assets is selected to
be modified the neighborhood is said to belong to class 1, otherwise the neighborhood
is said to belong to class 2.

The neighborhood structures of class 1 can either consist only of feasible solutions
(e.g., [50], structure TID) or allowing infeasible moves too (e.g., [49]). The simplest
neighborhoods in this group are generated by modifying the pivot weight and coun-
terbalancing this change by modifying the weight of only one other asset ([49] TID;
[18]). This structure can be generalized by introducing an integer c representing the
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number of assets to be modified in order to counterbalance the pivot weight vari-
ation. Crama and Schyns|7] use ¢ = 2, but it is possible to set ¢ at any number,
even 0, thus allowing infeasible moves?. In the previously described neighborhoods,
the step size is set before choosing the assets involved in the modification; however,
neighbors can also be generated by varying this value. For example, in [1] neighbors
are generated by varying step from a minimum of % to a maximum of Wpiyot,
being forced to assume all multiples of %

Neighborhoods of class 2 are generally used in population-based algorithms, espe-
cially in genetic algorithms, in which crossover and mutation operators could return
infeasible solutions. In this case, it is often impossible to determine which asset plays
the role of pivot. Anyway, there are some representative cases in which the pivot is
used, such as in [6][5][50].

3.2 Metaheuristic search components

In this section, we describe the search methods composing the metaheuristics for
the PSP. We first present trajectory based strategies, such as simulated annealing
and tabu search, and then we introduce population-based metaheuristics, such as
evolutionary algorithms and ant colony optimization.

3.2.1 Initial solution

It has been empirically observed that metaheuristics for the PSP are usually quite
robust with respect to the choice of the initial solution. This assertion has been
formally proven by Catanas in [5], subject to the specific neighborhood structure
defined therein. For this reason, most of the works assume as starting solution a
randomly generated one or a solution constructed by means of a simple heuristic
procedure [14], possibly embedding also a mechanism to ensure feasibility of the
initial portfolio [7].

3.3 Iterative Improvement

Iterative improvement can be considered as the simplest local search, as it performs
a path in the search space by moving from a solution to a neighboring one with a
lower cost. This search can be named best improvement, if the neighbor chosen is
the best among the feasible neighbors, or first improvement, if the chosen neighbor
is the first state found during the neighborhood enumeration that is better than
the current one. Iterative improvement is usually incorporated into a more com-
plex strategy, rather than being used as a stand alone localsearch. For instance, in
Glover et al. [20] iterative improvement is the local search component of a variable

%In this case a repair mechanism should be included.
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neighborhood search technique. As another example, we mention Armananzas and
Lozano [1] who use a greedy search to refine solutions found by an ant algorithm.

3.4 Simulated Annealing

The possibility of moving to solutions with a higher cost (i.e., performing degrading
moves) characterizes Simulated annealing (SA). The probability of moving toward
solutions worst than the current one depends on the cost difference between the
two solutions and it also decreases during the search. This probabilistic acceptance
criterion enables the search to escape from local optima. Crama and Schyns [7] apply
SA to various PSP models by first considering in the model only one constraint class
at a time (floor, ceiling and turnover first, then trading and cardinality), then they
include all constraints in the model. The authors experiment with three strategies:

e Independent runs, starting from the same initial solution;

e Subsequent runs, using as initial solution for the current run the best one found
in the previous one;

e Run the algorithm a number of times such that a list P of promising solutions
is created, then perform |P| independent runs, using as initial solutions the
ones stored in P.

The fact that there is no clear dominance among these strategies gives support to
the statement that such a search processes are insensitive to the initial solution. SA
by Crama and Schyns is able to plot the UEF exactly and achieves good performances
in the model with floor, ceiling and turnover constraints. Nevertheless, the ACEF
returned in the model with trading constraints appears to be quite rugged. Anyway,
in all the cases this technique is able to approximate the CEF in reasonable runtimes
for medium-sized instances.

The concepts of SA can also be effectively utilized inside population-based algo-
rithms, as done in [33] [21]. In the approach proposed in [33], an initial population of
random portfolios is generated. Then, for each portfolio p, in the initial population,
anew portfolio p, is created by selecting some assets ¢ and modifying them according
to the following rule:

Wy, = max(wy,, + $,0) (29)

where s is randomly chosen in the range [—Uy, Uy| and this range decreases over time.
Weights are then normalized and p,, is evaluated and accepted or not depending on
the Metropolis criterion. Once the new population is created, it is further refined
by replacing worst portfolios either by a clone of a probabilistically selected portfo-
lio with higher fitness with probability r or, with probability 1 — r, by a portfolio
composed of assets with average weights over best portfolios.
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An interesting application of SA for a multi-objective formulation is presented
in [1], in which moves are always accepted if at least one criterion is improved, while
deteriorating moves are subject to the SA usual probabilistic acceptance criterion.
This approach seems to find good solutions in the lower part of the frontier, where
risk and profits are small.

3.5 Threshold Accepting

Threshold accepting (TA) shares some analogies with SA, as a degrading move can
be accepted if the cost difference between the current and the new solution is within
a given threshold, that is progressively decreased to zero. The threshold decreas-
ing schedule is defined by estimating the distribution of distances between objective
values of neighboring positions (an analogous parameter tuning procedure is under-
taken also for SA). TA has been applied to the PSP by Dueck and Winker [13] and
Gilli et al.[18] [19]. These works are primarily aimed at comparing risk measures,
so the algorithm represents the technical mean to investigate financial aspects. For
example, in [13] different risk measures are compared, namely variance, generalized
semi-variance and geometric mean. Experimental results show that the solutions
corresponding to a risk measure are generally not efficient w.r.t. another risk mea-
sure. In this way it is possible to directly compare risk measures. In [13] it is stated
that the ACEF is not as smooth as it seems, since it turns out to be composed of
linear fragments, and the curve switches from a segment to another one when the
fraction held in a particular asset changes sharply.

Besides solving the mean-variance portfolio selection, Gilli and Kéllezi [18] tackle
a more realistic problem in a downside-risk framework in which decision variables are
integers. The problem is formulated as a maximization of future returns, while value-
at-risk and expected-shortfall are compared as risk measures. In a further work[19]
TA is used to compare three different risk measures: Value at Risk (VaR),Ezpected
Shortfall (ES) and Omega measure (defined as the ratio of the weighted conditional
expectation of losses over the weighted conditional expectation of gains) in a for-
mulation with cardinality and upper/lower bounds constraints. Results show that
Mean-VaR portfolios are more diversified than those obtained with ES criteria, while
ES frontier dominates the other two.

These works stress the fact that much attention has to be paid to the choice of an
appropriate risk measure. Indeed, efficient portfolios with respect to a risk measure
are usually not efficient with respect to other measures and efficient portfolios are
very different from each other with respect to different utility functions.

3.6 Tabu search

The Tabu search metaheuristic (TS) moves away from local optima by forbidding
the search to execute the inverse of the last [ recently performed moves. This simple
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mechanism, enhanced with the exploitation of the search history for intensifying and
diversifying the search, makes TS one of the best performing local search strategies.
The application of TS to the PSP has its milestones in the works by Rolland [49]
and Glover et al.[20]. These works refer to different formulations of the problem and
moreover Glover tackles a multi-period formulation (while our work is concerned only
with single-period portfolio selection). Nevertheless, both deserve to be analyzed for
the richness of concepts presented.

Rolland uses a TS for the unconstrained problem. The author tackles two prob-
lems of minimizing variance and minimizing variance given an expected level of re-
turns. That work is more oriented in finding a single point (describing the trajectory
followed by the algorithm over time to reach it) rather than drawing out the whole
UEF.

The approaches designed for tackling these two problem formulations differ in
the repair mechanism. In the minimum variance formulation, after having executed
five steps in the infeasible search space area, the algorithm repairs the incumbent
solution as follows:

e If the investment exceeds the budget (i.e., if >°, z; > 1), find the asset ¢ with
maximum sum of covariance referring to other assets (i such that >°; oyzz;
is maximal) and decrease z; in order to ensure feasibility;

e If the investment is less than the budget (i.e., if >, 2; < 1), find the asset ¢ with
minimum sum of covariance referring to other assets (i such that > OijTiT; 18
minimal) and increase z; in order to ensure feasibility.

The algorithm for the minimum-variance-given-return formulation initially tries
to reach the desired level of returns, repairing the solution as follows (after having

visited consecutively five infeasible solutions):

e find 7 such that

(-5 .

J .Ti>_}<;xﬂ«j—rp)

is minimized;

e If the investment exceeds the budget (i.e., if >, z; > 1), decrease x; in order
to make the solution feasible.

e If the total investment is less than budget (i.e., if >~ x; < 1), increase x; so as
to make the solution feasible.
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When the return level of the best solution found is within the 0,005% of the
desired level, the repair mechanism invoked is the one described for the minimum
variance problem, so that the solution is feasible w.r.t. the requested minimum-
variance point after the requested return level has been reached.

Even if the proposed TS is said to attain good performances, it is useful only
to find single point instead of the whole UEF, therefore this implementation does
not represent the most powerful solution for real-world problems; however, it can be
useful when only one desired level of return is given.

Glover et al. tackle the asset-allocation with fixed-mix, a problem similar to the
PSP. This is a multi-period problem in which we want, for each period, to respect
the proportions of asset classes (generally assets, bonds and treasury bills) out of
the whole portfolio, in order to attain the same risk profile for each period, taking
into account cash-flows generated by the portfolio management. At the beginning of
each period, the portfolio must be re-balanced in order to ensure feasibility, as assets
generate dividends to be re-invested, transaction costs must be taken into account
and constraints on proportions held can be considered. The simplest strategy is given
by selling a portion of asset classes with returns higher than the average return and
buying a portion of asset classes with returns below average.

Both cases with and without transaction costs are investigated and the search
strategy is implemented by interleaving TS with wvariable scaling. With this term
we indicate a strategy in which the neighborhood changes over iterations due to a
change of the step length of moves (the biggest step length is 5% and the smallest
is 1%). Step lengths are defined and ranked in decreasing order, and an Iterative
improvement search is performed with the first step length. When no improvements
are obtained, the step length changes to the next value and the Iterative improve-
ment procedure is repeated starting from the last solution found. This process is
iteratively repeated until the last step value of the list is reached. At this point, if
improvements were reached over the list, the process restarts from the first value,
otherwise the procedure stops. At the end of this phase, a TS run is performed; in
case of improvements, the search switches back to variable scaling and the process
continues until no improvements are achieved. The step size is crucial for the effec-
tiveness of the algorithm and in TS it is set at a higher value than in Variable Scaling
so as to diversify the search. The ACEF is compared with the frontier obtained with
exact global optimization, and it is shown that they are almost identical, in both the
cases with or without transaction costs.

Tabu Search has been widely applied to solve the PSP. It is easy to find it in works
aimed at comparing the performance of different algorithms on the same instance
(see Sec. 4). A very successfull application of TS can be found in Schaerf[50], in
which TS is improved by dynamically changing the neighborhood structures.
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3.7 Variable Neighborhood Search

Variable Neighborhood Search|22]| (VNS) is a metaheuristic that dynamically changes
neighborhood structures during search, so that a neighborhood is substituted by
another one when the current solution cannot be further improved. There is no
explicit application of VNS to the PSP, however, as this strategy is very general,
its principles can be found in some important works in the literature. This is the
case of the work by Glover et al.[20], in which the implementation of variable scaling
can be considered a VNS, as a new neighborhood is introduced by changing the step
when no further improvement is possible. A similar technique can be found in [14],
in which the search switches between two neighborhoods. Moreover, similar ideas
can be found in [50], in which TS is implemented in a token ring sequence, in which
runs using a different neighborhood structures are interleaved.

It is worth mentioning also the work by Speranza|53|, in which a heuristic al-
gorithm is defined and applied to Milan Stock Market using an integer formula-
tion. Here, in order to satisfy the constraints on capital, assets are ordered and
re-numbered in nondecreasing order of z; in the portfolio; then z; is increased (and,
if this move is unsuccessful, decreased) by one unit. If the new solution is feasible,
the algorithm stops, otherwise the procedure is repeated over x5 ...x,. At the end
of this phase, if no feasible solution is found, the cycle is repeated increasing assets
by two units, then three and so on. This mechanism can be considered as a kind
of VNS, even if the neighborhood cardinality is constant over the whole process and
the neighbor selection process is deterministic.

3.8 Evolutionary Algorithms

Evolutionary algorithms (EA) are population-based metaheuristics whose inspiring
principle is the Darwin theory of natural evolution and selection. These search
strategies maintain and manipulate a set of solutions at each iteration, combining the
best solutions of the current set to generate the solutions of the new set. Often EA-
based metaheuristics are enhanced by hybridizing EAs with advanced constructive
procedures and local search strategies. The strategies presented in these works can
be better labelled as memetic algorithms, as local search runs are executed to improve
the quality of the solutions constructed by the EA.

The first applications of EAs to the unconstrained PSP are presented by Tetta-
manzi et al. in [2][37][38]. In [2] a genetic algorithm (GA) is implemented for the
PSP with down-side measure of risk. In the algorithm, one population is handled
and individuals are generated according to investor preferences: a specie is defined
for each A (where A is the trade-off coefficient between return and risk, as discussed
in Sec. 2.3). Individuals are generated such as their probability of belonging to a
specie is proportional to the investor’s interest in that specie. At each generation, a
new individual replaces the worst one in the previous population.
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In a further work [38], a distributed genetic algorithm is applied in which each
A value is associated to a subpopulation. As the AUEF is composed by plotting a
point for each A, the greater the number of populations, the finer the resolution of
the frontier. Migrations of individuals between populations corresponding to neigh-
boring values of )\ are permitted, in order to avoid premature convergence of the
algorithm. Individuals are allowed to mate only with individuals of the same popu-
lation or of adjacent ones. This implementation outperforms the previous sequential
version, and in [37] a detailed description of the implementation and risk measures is
provided. In parallel implementation of GA, if the cardinality constraint is imposed
it is possible to search in parallel several ACEF corresponding to each value of k,
using information from each of these to improve the search process of others. With
this approach, the ACEF approximates the UEF with increasing precision, as k in-
creases and constrained optimal portfolios are shown to be not significantly different
from unconstrained ones, except for very small number of assets and very low risk
levels.

Cardinality constrained PSP is also tackled by Streichert et al. in [55][56][57] us-
ing a two-objectives optimization model, enriching their implementation by adding
an archive in order to store the frontier obtained so far. In their work, they introduce
the knapsack representation of portfolios, comparing it with the standard one. The
authors also investigate the use of Lamarckism. In fact, these algorithms embed a
repair mechanism that prevents the search from rejecting infeasible solutions. In
the GA version without Lamarckism, only the phenotype of an individual (i.e., the
normalized vector of assets) is altered by the repair mechanism, while the genotype
(i.e., the non-normalized vector of assets) remains unaltered. Conversely, in the ver-
sion with Lamarckism, the repair mechanism modifies the genotype too, according
to the phenotype. In each case, this solution representation leads to a better perfor-
mance than the standard one. Moreover, Lamarckism helps improve performances
too. Furthermore, different variable representations (binary and real-valued) are also
compared and different coding [56] and crossover operators [57] are examined.

Memetic algorithms for the PSP are presented in [41], in which the use of SA and
TA inside the EA framework is compared. The results discussed indicates that TA
is more suitable when VaR is used as risk measure, while SA makes the algorithm
perform better when ES is chosen. An explanation of this result is given by observing
that VaR induces a rugged search space, while ES induces a smoother landscape.
In that work also the use of a kind elitist strategy is investigated, that implement a
sort of intensification of the search around the best found solutions. This strategy
improves the performance of the algorithm when the search space is rugged, while
it seems not to payoff when the search space is smooth. Moreover, the introduction
of this kind of intensification makes the algorithms more robust against parameter
values.

Liu and Stefek [36] tackle the PSP with cardinality and ceilings constraints, com-
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paring GA with a heuristic proprietary method and they investigate crossover rates,
population size and elitist strategy showing that GA can achieve good performances,
even if worse than the heuristic, especially concerning execution time.

We should observe that the model with floor, ceiling and cardinality constraints
is the most commonly used in literature when GA are applied [6][14][15]. GA have
also been used in conjunction with formulations differing from the canonical Mean-
Variance one, in order to define more realistic customer-oriented frameworks. An
interesting example is represented by [62], in which the objective function to max-
imize is given by the usual weighted objective function (eq. 7), but they solve this
model for different isolated values of A rather than trying to plot the whole frontier.
They show that in the obtained portfolios return is higher than the best one provided
by optimization software for Mean-Variance (LINGO[31]) even if they are more risky.

One of the main contribution of that work is that the expected return is consid-
ered as a variable, rather than an instance datum. The return ranges in an interval
in which arithmetical mean represents lower bound a if its recent history trend has
been increasing, the upper bound b if its trend has been decreasing.V-Shaped trans-
action costs are also investigated for portfolio revision, but they are only considered
as proportional®. Transaction costs (embedded in a MAD objective function) and
single A values analysis are considered in Wang et al.[59] in which a sample procedure
for stochastic returns is introduced instead of the classical scenario analysis.

More complex approaches are proposed aimed at helping decision making by
introducing other measures either to define an ordinal-preference framework in which
other measures are added to the formulation (see [58][14]), or to predict the future
return rate and to estimate the uncertainty risk of the future return rate when the
sample is small [46].

We must finally notice that GA, by being inherently effective in diversifying the

search, show good performances especially in multi-objective formulations, as shown
by the family of MOEAs (MultiObjective Evolutionary Algorithms) [10][55][56][57][8][46].

3.9 Particle Swarm

The nature-inspired paradigm referred to as Particle swarm is a promising search
paradigm, especially when continuous optimization problems are tackled. Neverthe-
less, its application to the PSP is still limited, and the works on this topic do not
tackle the standard formulation, being aimed at finding one portfolio optimal with
respect to a measure such as the reward-to-variability ratio out of a given set of
assets, rather than drawing out the whole efficient frontier|34|(44].

3In a further work[60] risk-free asset are introduced and the formulation is based on a linear
programming model.
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3.10 Ant Colony Optimization

Ant colony optimization (ACO) is a population-based metaheuristic that is inspired
by the foraging behavior of ants. Solutions are built component by component,
according to a probabilistic procedure that bias the choice of the next solution com-
ponent on the basis of the quality of the previous constructed solutions. Usually,
ACO also incorporates some local search algorithm to improve the quality of the
solutions built. Initially conceived for discrete spaces, ACO has been adapted also
for continuous spaces, too (see, for instance, [52]). Nevertheless, the potential of
ACO for tackling the PSP appears still not completely exploited.

A successfully application of ACO can be found in a PSP modeled with the
cardinality constraint [1][40]. The approach consists in defining a population of n
ants that explore a completely connected graph composed of n nodes. Assets and
nodes are in one-to-one mapping and the path traversed by an ant corresponds to
the assets to be chosen for the portfolio. Path lengths are of exactly k steps, where
k is the portfolio cardinality. In the case of multi-criteria optimization, ants are
divided in populations such that each population solves a problem corresponding
to one objective function [1]. When ants terminate the exploration phase, a greedy
search refines the solutions. This method finds better solutions than SA and iterative
improvement and results are particularly striking in the upper part of the frontier,
where risk and profits are high.

ACO has found application in problems similar to the PSP such as the so-called
multi-objective project portfolio selection [11][12], a generalization of the bin-packing
problem in which we want to choose a portfolio of project proposals (e.g. research
and development projects) constraining the problem so as to ensure that the portfolio
will contain not more than a given maximum number of projects out of a certain
subset (e.g. projects pursuing the same goal) and imposing resource limitations and
minimum benefit requirements.

4 Comparative studies

The comparison of the techniques for tackling the PSP described in the literature is
an awkward task, primarily because data-sets are rarely the same, different algorithm
implementations can lead to unfair comparisons, utility and performance measures
are often different. Furthermore, comparisons can be driven by different criteria,
such as efficiency, robustness, performance with respect to a given model, etc. For
these reasons, the comparison amongst different works is very often not possible and
we have to resort to papers describing and comparing different algorithms on the
same instance set and model. Before overviewing the most relevant works on this
subject, we briefly comment on the performance measures used for the comparison
of the algorithms.
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Performance measures are usually obtained by comparing constrained results
(ACEF) with the ones obtained in the unconstrained case for each level of return
(each point of the UEF) and computing statistical measures (mean and median per-
centage error, standard deviation etc.) for the overall frontier. There are however
many ways to define an error measure. For instance, Chang et al.[6] consider the
distance of the point from the UEF, defined as the minimum between the distance on
the x-axis direction and the distance on the y-axis direction*. Another measure can
be found in Streichert et al.[55] [56] [57], where the algorithm performance is com-
puted as the percent difference between the area below the UEF and the obtained
ACEF. The issue of comparing two frontiers is just an instance of the more general
problem of comparing algorithms for multi-objective optimization[47]. Often, also
statistical tests are used [28] [10], especially to determine if the difference between
UEF and CEF is significant, and some works introduce measures to determine the
best portfolio in a frontier[13].

One of the first comparative works is due to Catanas[5]. That paper is focused
on investigating properties of the proposed neighborhoods (see Sec. 3.1.3). The
author uses TS and SA, implemented in both robust and dynamic way. In the robust
implementation, the step is kept fixed during all iterations, while in the dynamic one
it is decreased to zero during the execution. Furthermore, a schema for the variation
of the step is defined such that its value is increased if solution quality worsens and
decreased if solution quality improves. Moreover, a threshold on the minimum value
of step is introduced, since too small values can make the search stagnate.

Chang et al.[6] introduce cardinality and minimum and maximum holding con-
straints and observe that the CEF becomes discontinuous. This is due to the fact that
feasible proportions of assets are dominated (because of the existence of portfolios
with lower variance and higher return); furthermore portions of frontier could not be
reachable for a classical A-weighting drawing approach (due to minimum proportion
constraints). In [6], the authors implement GA, TS and SA to solve the problem.
Results show that GA is able to approximate the UEF with the lowest average mean
percentage error. Regarding the constrained problem, GA seems to perform better
than SA and TS, but differences are not as clear as in the unconstrained case, so they
use portfolios from the three metaheuristics to draw out the ACEF. Their approach
is to store, for each heuristic, all the improving solutions found in the search process
and, finally, deleting the dominated ones. The sets obtained by the three heuristics
are then pooled to draw the ACEF. This approach shows that for the constrained
problem the ACEF approximate the UEF when the asset cardinality is high (as
already stated in [28], see Sec. 3.8).

Jobst et al. [29] compare the results presented in [6] against two heuristic meth-
ods. The first is an integer-restart procedure that plots the CEF starting from the

*A similar approach is proposed by Fernandez and Gomez [15]
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highest return and its corresponding risk to lower return and reduced risk. The re-
sult obtained at each stage is supplied as starting point to the next (lower return)
stage, considering it as first feasible value (this heuristic is referred to as warm restart
heuristic). The second, inspired to an idea similar to [53], first solves a continuous
relaxation without any constraints, then uses the k assets with highest weights as
input for a problem in which constraints are imposed (this heuristic is referred to as
re-optimization heuristic). Both heuristics are embedded in a branch-and-bound and
are said to outperform metaheuristics used in [6]. Anyway, we should note that re-
optimization heuristic could not able to draw the whole frontier when the continuous
relaxation produces a portfolio with less than k assets.

Another important work that compares different techniques is the one by Schaerf[50],
in which the model includes floor, ceiling and cardinality constraints. The author
defines three neighborhood relations, that specify moves that satisfy the budget con-
straint, and defines a cost function that account for the violation of the other con-
straints. The initial state is selected as the best amongst 100 randomly generated
portfolios with % assets. A first phase of experiments with Best and First Iterative
improvement, SA and TS run as single solvers is performed. Then TS, the most
promising solver in the preliminary experimental analysis, is chosen for an exten-
sive experimental analysis, combining neighborhood relations in various token-ring
strategies. In this case, the step length is set to a higher value in the first used solvers
to favor diversification, while it is set to a smaller value in the last used solvers for
intensifying the search. Experimental results show that the best performances are
achieved by token ring solvers with random steps, even if fixed steps seem to behave
well too. Single solvers do not attain comparably good results.

Armananzas and Lozano [1] compare iterative improvement, SA and ACO in a
multi-objective formulation with cardinality, floor and ceiling constraints. The al-
gorithms used are tailored to the multi-objective problem, and ACO outperforms
the other techniques. The simple greedy search (iterative improvement) shows poor
performances if used alone, but turns out to be effective when used to refine solu-
tions provided by ACO. Interestingly, ACO and SA best performances are found in
different areas of the frontier: the first in the upper part of the frontier, the latter in
the lower part.

Also Ehrgott et al.[14] proposes a multi-objective framework with cardinality,
floor and ceiling constrains in which utility functions are interpolated over utility
values for a set of points. They use SA, TS, GA and a local search similar to a
VNS embedding a random escaping mechanism to avoid stagnation at local minima.
They test the algorithms over both random and real-world instances. Results on
both instance classes show that GA appears to be the best performing solver. The
local search and SA achieve good results, while TS performances appear to be the
worst ones.

A further interesting comparison is made by Fernandez and Gomez[15], in which
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metaheuristics by Chang et al. are compared with a neural net approach. An Hop-
field network® is used to plot the ACEF when cardinality constraint and bounds
(lower and upper bounds) are imposed. Their results show that there is no signi-
ficative difference between their neural network and metaheuristics such as GA, TS
and SA. In order to improve the performance, portfolios from the four approaches
are pooled and dominated solutions are deleted, so as to obtain an improved ACEF
(the same approach pursued by Chang). The quality of solutions returned is high,
making this neural nets approach successful®. Nevertheless, the number of different
portfolios returned by the neural net is lower than the number returned by other
heuristics, therefore, even if the quality is high, stand-alone neural nets approaches
are not suitable for solving the problem in the whole frontier.

5 Related work: LP-based heuristic approaches

For the sake of completeness, in this section we briefly review heuristic approaches
based on linear programming, that can be very useful as components of more robust
and complex metaheuristic strategies. These works are also important because they
deal with integer formulations of the PSP, in which assets are assigned integer values
corresponding to the actual amount of money to be invested in each asset. The
model they use is as follows:

n o on
minZZoijxiwj (31)

i=1 j=1

subject to
> riwi=r,-C (32)
i=1

x; integer i=1,...,n (34)

where C'is the total amount of available budged to be invested. Speranza[53] models
the problem by including transaction costs, minimum lots, cardinality, floor and ceil-
ing constraints and by introducing two auxiliary binary variables to indicate whether

SHopfield networks|25] are neural network composed of a single layer of neurons fully connected
and are widely applied in combinatorial optimization[51].

SIndeed, neural nets can capture non linear relations among variables and do not need model
assumptions, therefore they are suited for forecasting future returns without relying on the stock
returns normal distribution assumption. This idea has been also exploited in [54] and [63] in order
to optimize portfolio management.
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a security has fixed transaction costs and whether it belongs to the portfolio. The
idea presented is to relax the integer constraint on quantities, transforming the prob-
lem into a linear programming one (to be solved efficiently even when the number
of securities is high) and finding a solution to it. Fractional asset weights are then
rounded to the closest integer and heuristics are applied to force the solution to
satisfy capital and rate of return requirements. If the algorithm terminates without
solutions, less restrictive bounds on capital are iteratively set. This algorithm (re-
ferred to as ROUND-LP) shows good performance when the total number of assets
is low and reaches a solution close to the optimal one when the capital is large.

In Mansini and Speranza[39], the formulation of the problem includes minimum
lots and proportional taxes. The authors provide three heuristic algorithms based
upon the idea of solving sub-problems of the original formulation, involving subsets
of initial universe of assets. In the first heuristic (referred to as SINGLE-LP) they
solve the continuous relaxation of the problem. Then, they use this solution to feed
the mixed integer-linear programming solver. The second heuristic (referred to as
Reduced—cost—MILP-heuristic) considers a vector zr with a number of assets greater
than the vector of assets i s.t. x; # 0 as input of MILP-procedure, thus including
also assets whose quantity in the solution of the relaxed problem is zero. The third
method consists in an iterated routine: after solving the relaxed problem, the vector
xR is used as input for a MILP procedure. After each step, half of the assets i s.t.
x; = 0 is deleted and half is replaced in the solution. The process ends when a given
number of securities has been considered. This third heuristic is the most effective,
but requires more computational time. These heuristics performs reasonably better
than simple problem specific heuristics proposed in [53] and they have the advantage
of being more general and are also used in Kellerer et al.[32] in a formulation enriched
by introducing fixed transaction costs and minimum lots. These heuristics are applied
to four different models that include rounds and fixed costs applied if the amount of
money invested in a security exceeds a minimum threshold.

6 Conclusions

In this work, we have defined a framework for classifying metaheuristic approaches
for the PSP, introducing the main aspects of the models of the problem and the
general components of the metaheuristics developed to tackle it.

The PSP is only a representant of a class of problems consisting in the man-
agement of portfolios of different nature. There is plenty of scope for applying
metaheuristic techniques to this classes of problems, as to date they appear to be
not investigated enough. Indeed, metaheuristics provide flexible and powerful solv-
ing strategies that can effectively and efficiently tackle the various instantiations
of the PSP, from the basic Markowitz formulation, to more elaborated models in-
cluding also side constraints. Moreover, we believe that metaheuristic and hybrid
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approaches could be very successful also to tackle dynamic and multi-period for-
mulations of portfolio selection, in which issues of re-balancing, index-tracking and
re-optimization arise.

The works we discussed in this paper show, on the one hand, the potential of
such a solving strategies and, on the other hand, the modelling and algorithm design
issues that have to be addressed for implementing effective tools. Future research is
now focusing on the development of methodologies for designing and implementing
constraint-based metaheuristics and hybrid techniques. Furthermore, the practical
importance of stochastic optimization has contributed to increase the efforts in pro-
viding effective solvers for such a kind of problems, both off-line and on-line. Finally,
it is important to recognize that research on the PSP is inherently interdisciplinary
and, for these problems to be effectively attacked, it requires a cross-fertilization
between algorithmics and finance.
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