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Abstract.

Portfolio Selection Problem (PSP) is one of the most studied issues in finance:
It is concerned with selecting the portfolio of assets which minimize the risk
given a certain level of returns. The PSP belongs to the class of combinatorial
optimization problems and adding constraints to the basic formulation lead
the problem to be NP-Hard, so metaheuristic approaches can be succesfully
applied to solve the problem. This work is aimed in developing a conceptual
analysis about Metaheuristic approaches developed in literature to this extent,
introducing the problem, classifying the general concepts and outlining the most
used strategies.
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Introduction

Portfolio selection is one of the most studied issues in finance: The problem, in its
basic formulation, is concerned with selecting the portfolio of assets which minimize
the risk given a certain level of returns. Individuals and institutions prefer to invest
in portfolios rather than single assets (or securities) because the first allow them
to diversify risk without reducing expected returns. The basic model is formulated
in the seminal work by Markowitz[38], in which the author rejects the hypothesis
that investor maximize expected returns, because this idea doesn’t imply that a
diversified portfolio is preferable to a non-diversified portfolio, and states that they
want to select a portfolio with minimum risk for given returns or more (and maximum
returns for given risk or less), assuming that returns follow a multivariate normal
distribution. This rule, as stated by the author, serves better as an explanation
of investment as distinguished from speculative behavior: Its use is suitable for
both theoretical analysis and practical purposes, but it presents shortcomings in the
assessment of risk and returns.

Notwithstanding its success, the Markowitz model, referred to as Mean-Variance
model, suffers from several drawbacks: At first it is difficult to gather necessary data
and to estimate return and covariance from historical data and results are too sen-
sitive to estimation errors of mean and covariances; Furthermore it is now judged
too simplistic for practical purposes because it lacks incorporating lot of aspects
of real-world trading: Maximum size of portfolio, minimum lots, transaction costs,
preferences of which assets to include in the portfolio and by how much, manage-
ment costs etc. Adding those issues to the original formulation makes the problem
very hard to be solved by exact methods. Hence the need for designing efficient
approximate algorithms, such as “metaheuristics”[3].

In this work we are aimed to give an overview of the use of “metaheuristic” tech-
niques to solve the portfolio selection problem (hereinafter referred to as PSP). As
PSP can be modeled as an optimization problem, in section 1 we will introduce the
objective functions used in the literature. The formulation of the problem can be
enriched by adding constraint, and they are introduced in section 2. The following
sections (3-5) tackle “metaheuristic” approaches for the PSP as developed in liter-
ature: Our work is aimed in discussing about the choice of optimal portfolio when
the initial wealth of investor is given by liquid in capital, so portfolio revision and
portfolio re-balancing are not taken into account.

1 Objective functions

As stated before, the PSP can be modeled as an optimization problem in which an
objective function has to be minimized (or maximized). In the process of portfolio
selection in canonical form we want to find a portfolio that minimizes the risk at



given levels of return rate!. In the Markowitz formulation the risk measure is given
by the variance of portfolio, and this measure represents the most common objective
function used in the majority of related works.

n o n
minZZaijxixj (1)

i=1j=1
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x; € [0,1] i=1,...,n (4)

where n is the number of risky assets, x; is the proportion of money invested in asset
i, r; is the expected return (per period) of asset i, o;; is the real-valued covariance of
expected returns on securities ¢ and j2. The expected return of portfolio is given by
p, whilst 31| r;x; represents the actual forecasted return. The variance of portfolio
(herein referred to as risk-measure) o> is given by > 3-7_; 0jxx;, constraint (2)
refers to the expected return of the portfolio. Constraint (3) ensures that asset
weights sum up to one, as they are considered as fractions of the whole portfolio
instead of their actual value (constraint (4)) .

In order to handle the problem it is possible to optimize function (1) for several
values of 7,[8].
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"Here we handle the problem as consisting in a minimization of the risk measure. Of course the
formulation can be expressed as a maximization of returns or in other several ways. See [16] for a
brief discussion.

%For understandability, and to satisfy specific algorithm requirements, covariances are stored in
the “covariance matrix” Cov, a n X n triangular matrix where element Cov[i, j] (if ¢ # j) represents
covariance between assets ¢ and j, whilst Cov[i, i] represents variance of asset 1.



Another approach consists on including constraint (2) on the objective function pa-
rameterizing risk and return to yield a parametric objective function [5] [58] [28]

n n o n
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=1

i=1j=1

subject to constraints (3) and (4), where ) is a trade-off coefficient belonging to the
range [0, 1]: If A = 0 the investor completely disregards risk and wants to maximize
returns; otherwise when A = 1 the investor is risk-adverse and only wants to minimize
risk. Resolving the problem for several A\ values we can estimate the efficient frontier
for the Markowitz unconstrained problem (referred to as UEF), being afterwards able
the investor to choose the portfolio he desires depending on his requirements. UEF is
composed of Pareto optimal solution: We say a solution is Pareto optimal, in a multi-
objective framework, if no criterion can be improved without deterioration of other
criterion. In our example a solution s is said to be efficient (Pareto-optimal) if there
is no other solution s; such that (return(sy) > return(s) and risk(s1) < risk(s))
or (return(s1) > return(s) and risk(si) < risk(s)). As “metaheuristics” provides
us an approximation of the actual Pareto-frontier, in the following we will distin-
guish between the true efficient frontier (UEF) and the approximated one (AUEF):
Since we are going to introduce constraints in our discussion, we will refer to the
constrained efficient frontier as CEF, whilst its approximation will be referred to as
ACEF. We notice since here that the unconstrained frontier generally dominates the
unconstrained one, so they are different.

In a straightforward way the problem can be formulated with a two-objective
function, in order to maximize returns and minimize risk[51][40]:
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minZZUijl‘il‘j (10)

i=1 j=1
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subject to constraint (3). Approaches (5)(9)(10) can be applied also if other risk
and return measures are used: Indeed several variations were successively applied to
the model, so involving different objective functions. Markowitz himself suggested
the use of semi-variance instead of variance in order to assess portfolio risk, but he
introduced the latter because it is more tractable computationally. Semi-variance
can be defined as

semivar = Z per(res — E[r])? (12)

re<E[r]

where 1., refers to one of the elements of portfolio return distribution, pe; to its
probability and E[r] to the expected mean return.



This measure is equivalent to variance if return distribution is symmetric around
the mean and captures the essence of risk as perceived by investors: The likelihood of
incurring into a loss. Its drawback is that an investor can perceive the loss not neces-
sarily when returns are below the mean, but below some other subjective threshold
7. This idea refers to the part of distribution below a certain target of return, and
for this reason the corresponding measures are referred to as down-side risk

DSR(T) = Z Pet(T —71e1)? (13)
rel<T

When ¢ = 2 the formula is referred to as target semi-variance expression; in this case

if 7 = E[r] the formula is equivalent to Semi-variance.
The threshold 7 is referred to as Value-at-risk (VaR) and can be conceived as
a measure of the portfolio catastrophic risk, since investors are concerned with the
chance of loosing their wealth because of a low-probability-high-impact-event[53].
It has been used as the threshold below which the investor perceives a loss|[18][17].
The probability that portfolio returns falls below the VaR level is called Shortfall

Probability

SP =p(r <VaR) (14)

where, for sake of readability, r stands for » ;" ; r;x;.
Expected Shortfall Probability is furthermore defined as the expected return of port-
folio given that its value has fallen below VaR.

ES = E(r|lr <VaR) (15)

Amongst other approaches it worths to introduce the Mean-Absolute-Deviation model
(MAD)[31], in which the risk is defined as the mean absolute deviation of the portfolio
rate of return. This model doesn’t rely on probabilistic assumptions on returns (it is
equivalent to the Markowitz model if returns are considered as normally distributed)
and it is easier to handle because it does not require the covariance matrix.
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—17 .
Assuming r; = E[R;] = w, this equation can be re-formulated as follows:

in Ethl | iy (rie — mi)i
T

and in this formulation it presents an advantage on the easiness in constraining

the number of assets, since restricting the time-horizon the cardinality is supposed

to lower (an optimal solution will contain at most 2T + 2 assets regardless of the

instance size, being T the number of observations).

m

(17)



Following the same ideas, in [48] risk is measured as the mean semi-absolute
deviation of the rate of return below the average:

Sy |min(0, X0 (ri — 1))
T

(18)

This function is shown to be equivalent to MAD, as semi-deviation is equal to half
of absolute deviation, but it is useful to clarify the formulation because it halves the
number of constraints. The objective is modeled as a linear function through the
introduction of ad-hoc and dummies variables and constraints.

Furthermore, due to the high computational complexity of the Mean-Variance
formulation, several efforts have been made to reconduct the problem to a linear
programming model in order to make it solvable with conventional methods (as
the simplex method): Amongst them, besides the above cited ones, the approach
proposed in Young[57] defines the risk as the minimum return achieved by portfolio
over the considered time horizon.

Another drawback of the traditional Mean-Variance formulation is its two—dimensionality,
as portfolios are not directly comparable in their qualities: Also comparing two
solutions lying on the efficient frontier the investor must decide according to his
risk-aversion. So one-dimensional measure have been used to evaluate and compare
directly portfolios, as the reward-to-variability ratio[29][39][36] and the geometric
mean|13].

If the problem is described as a multi-objective optimization, it is possible to use
several functions to optimize: Subbu et al.[53] uses the following:

max Portfolio expected return
min Variance (19)
min  Portfolio value at risk

using a hybrid evolutionary approach embedded in a model able to handle pref-
erences, the objective is enriched with other three metrics: Market-yield, Dollar
duration weighted Market-yield and transaction costs (even if they are not exploited
in local-search, but only to describe and structure ordinal preferences). The idea
of using a multi-criterion objective function is common when the model is aimed
to support decision processes: In Ehrgott et al.[14], the objective is to maximize
a weighted sum of five measures (annual price-performance, annual dividend, three
year price-performance, S & P rating and volatility) and weights are to be defined
by users in order to specify their preferences.A different multi-objective formulation
is given in Ong et al.[42]. According to existing models, they assume portfolio risk
being composed of the uncertainty risk and the relation risk: The uncertainty risk
measures the possibilistic degree of future return rate, whilst relation risk measures



the trending degree of the sequence. In this framework the objective is given by

max Portfolio expected return
min Uncertainty Risk (20)
min  Relation risk

proposing an interesting alternative to traditional Mean-Variance portfolios.

Many other objective functions and utility measures have been proposed (see
Kallberg and Ziemba|25] for an overview) but a citation must be given to Catanas[4],
whose eight objective functions are defined to include more than the two canonical
moments (indeed they are suitable to include mean, variance, kurtosis and skewness).
Here below we report only two of them:

max Z lsin(BO - T4)

n
=1 1

I

k=1,k+i

xk] (21)

max z": [xl ﬁ (50 -k - xk]mod8)1 (22)
=1 k

=1k

1.1 Assessing returns

As stated before, the PSP takes into account two aspect of financial portfolios: Risk
and expected returns. Several measures have been discussed for the risk-assessment
of the portfolios, and they are all computable handling historical data. Assessing
returns is a different topic, as it is clear that asset future returns are not deductable
from past observation without the likelihood of incurring in errors: Mean-Variance
analysis is claimed to paid not enough attention in estimating returns, while fund-
managers and professionals, developing their decision-supporting models, require
good estimate in order to forecast performances. That’s why Mean-Variance port-
folios are generally said to suffer from not satisfactory out-of-samples performances
respect to simpler heuristic methods designed to specific purposes|[41].

The assessment of returns can be made in two ways, depending on the aim of
the work: If it consists of developing and testing the fitness of an algorithm for the
PSP, returns are easily computed, i.e. considering returns as normally distributed
and computing the mean of past returns (or using regression techniques). Bench-
marks provides generally this computation of expected returns (The reference bench-
mark for the PSP was introduced by Beasley in its OR Library|2], now available at
http://people.brunel.ac.uk/ mastjjb/jeb/info.html)

Conversely, if the work is aimed in depicting a good model of real world, it has to
take into account uncertainty about future returns. This generally happens by model-
ing future returns generating a set of possible realizations, called scenarios[17][18][13].



In few words, since we don’t know the future returns, we must choose under uncer-
tainty, imagining a series of imaginable future state (scenarios) of future returns, and
giving each of a probability of occurrence (their sum being 1) relying on a statistical
model, past returns or experts opinions. Given ps the probability of occurrence of
scenario s the optimization technique must optimize a function taking into account
the probability of occurrence of each scenario, i.e. with the following function:

m
min (Zps Z Tsj — reg;p)2 (23)
Jj=1

s

where 7,; represent the return of asset j under scenario s. Anyway also with this
technique it is difficult to reflect the situation of returns continuous distribution, so
other techniques based on sampling procedures can be used [55].

2 Constraints

As stated before, a shortcoming of the original Markowitz formulation is that it lacks
incorporating many aspects of real-world trading: Maximum size of portfolio, min-
imum lots, transaction costs, preferences of which assets to include in the portfolio
and by how much, management costs, etc. These aspects can be formulated by intro-
ducing constraints and in the following we will introduce some of the most relevant
ones.

2.1 Budget and Return Constraint

These are the most important constraints, stating that weights of assets must sum
up to one and that the weighted sum of assets returns must be equal (or >) to the
expected return. These constraints are included in the unconstrained Markowitz
model and are used to norm the solution.

Zrixi > (25)
i=1

Constraint (24) means that all the capital must be invested. If an integer formulation
is used, in which assets are represented by their actual value rather than their ratio
to the whole portfolio (see section 5) can be relaxed allowing that it can assume
value between two bounds Cy and C1[9][48][35]

n
C() S le S Cl (26)
=1



Furthermore, in the continuous formulation, imposing the budget constraint gener-
ally means that short sales are not allowed.

Return constraint (25) is very important as returns represent one of the two
main aspects of the problem. For that reason it can be relaxed and included in the
objective in a lagrangian style (see section 1). When belonging to constraint set it is
used with both equality operator, as in equation (2)[8][5][44], or inequality operator

(Xry riai > 1p) [45].

2.2 Cardinality Constraints

The number of assets in the portfolio has to be limited. Introducing a binary variable
z equal to 1 if asset is in the portfolio and 0 otherwise, the constraint can be expressed
as follows:

Y z=k (27)

This constraint can be defined also in inequality form, imposing that the portfolio
must contain no more than k assets[45][8][28]; it is imposed to facilitate the portfolio
management and to reduce its management cost. When the problem is facing this
constraint it can be named “asset paring” problem[32]. There is evidence that when
imposing this constraint ACEF tends to approach UEF when k increases [23] [5],
whilst from a certain value of k onward ACEF tends to roll up toward special points:
These points fix an average profit and risk from which the algorithms are not able
to quit[40].

2.3 Floor and Ceiling Constraints

With these constraints we impose a minimum and maximum proportion (g; and ;)
allowed to be held for each asset in portfolio, so that ¢; < a; < 4; (i =1...k); in
other words the portion of the portfolio for a specific asset (each asset or some of
them) must be included in a fixed interval. Floor constraint (we can also refer to it
as a lower bound) is used to avoid the cost of administrating tiny portions of assets;
ceiling constraints (we can also refer to it as an upper bound) to avoid excessive
exposure to a specific asset and in some case is imposed by law.

Eizg < ZT; < (SZZZ (28)

Note that this constraint can implicitly define a range for the cardinality constraint
(For instance a lower bound of 0.1 for each asset implicitly defines a maximum
cardinality of 10 assets in portfolio), so the two constraints, when both formulated,
must be consistent.

Bounds must be carefully chosen in order to ensure that feasible solutions exist.
Generally the upper bound is considered more relevant than the lower one and it

10



is also possible to impose different upper and lower bounds for each asset, but this
opportunity has been not exploited in literature so far.

2.4 Minimum lots

The unconstrained Markowitz model considers investments as perfectly divisible, so
as to be represented by a real variable, whilst in real world securities are negotiated
as multiples of minimum lots. For each asset there exists a minimum tradable lot,
generally referred to as round: it is expressed in money so this constraint is generally
encountered when dealing with the integer formulation [9][27][35], in which assets
are labeled by their actual value rather than their ratio to the whole portfolio (see
section 5). In integer values, if p; is the price of asset j and ¢r; its minimum tradable
quantity, the minimum lot expressed in money is given by c¢; = tr;p;. When using
the continuous formulation its application consists in imposing that each weight must
be multiple of a given fraction[51], but its meaning is different from imposing rounds
in integer formulation.

Minimum lots seem to be relevant for small investors but negligible for big ones
and their introduction has the effect to reduce the number of different assets in the
optimal portfolio. Imposing them in the Markowitz formulation the PSP switches
from a formerly continuous problem into a discrete one[51].

2.5 Turnover and trading constraints

These constraints define upper (in case of buying) and lower (in case of selling)
bounds for the variation of asset values from one period to the next one; they can
be implicitly inserted in the model imposing transaction costs and taxes either in
the objective function or in the constraints. A formulation, conversely, can define
lower bounds in case of buying and upper bound in case of selling: It means that
investors are not interested in selling and buying small volumes of assets, due to
contract clauses or fixed transaction costs. These constraints can be used in each
combination in the formulation (they are not mutually exclusive), and were intro-
duced in Crama and Schyns[8], but they are explicitly formulated so as to belong
to a multi-period formulation, whilst the problem faced by these authors is indeed
a single-period. In their work these constraints are to be satisfied considering solu-
tions found in adjacent computation time w.r.t. the execution time of the algorithm,
as they implicitly show converting turnover constraints into floor and ceiling con-
straints. This is not conceptually sound as those constraints have to be satisfied,
in a multi-period formulation, over adjacent pairs of portfolios on the planing hori-
zon. In other words, a search algorithm is run, returning a portfolio for each period;
portfolios representing solutions in adjacent periods must satisfy these constraints,
whilst no restrictions are imposed over neighbor solutions in the search space defined
in order to find the best portfolio in one single period.

11



Equations (29) and (30) represent purchase and sale turnover constraints, whilst
equation (31) represents trading constraint,

max(z; — 27,0) < B; 1<i<n (29)

max(zy — z;,0) < 5; 1<i<n (30)
~8) 1<i<n (31)

ajizw?orxiZ(w?—l—&)orwig(x? <
where z{ denotes weight of asset i in the previous period, B; and S; denote the
maximum purchase and sale bounds (respectively) of asset ¢, B; and S; denote the
minimum purchase and sale bounds (respectively) of asset i. Trading constraints
are aut-aut constraints, as either the asset weight remains at the same level or it
is modified by a minimum admissible value, so they are difficult to handle: They
are similar to rounds (the new weight must be higher than the threshold, while
introducing rounds must be a multiple of it), but they are included in the continuous

model.

2.6 Class Constraints

In the real world of finance it may happen that investors ideally split all assets in
mutually exclusive sets (classes). Each set consists of assets with common character-
istics (insurance assets, naval assets etc.), and investors want to limit the proportion
of the portfolio held in each class. Let M be the set of classes, L,, and U,, the lower
and upper proportion limit (respectively) for class m, the class constraint can be
defined as

Ly <Y 2i<Un, m=1...m (32)
1€l'm

being I',,, the set of assets belonging to class m. This constraint is useful to diversify
the portfolio amongst several economics areas, and reveals all its importance when
we consider the multi-period asset allocation problem under the fixred—miz strategy,
in which we determine a predetermined mix of classes (e.g. 30% insurance assets,
30% treasury bills, 40% naval assets) to be satisfied for each period, so imposing a
re-balancing of the portfolio (to handle dividends and transaction costs) for reaching
the desired mix-level. This problem was one of the fist asset allocation formulation
to be attacked by a “metaheuristics”[19], so we will discuss about it in the following,
even if it doesn’t represent a typical single-period portfolio-selection formulation.

2.7 Compulsory assets

Ideally one investor may wish that some specific assets appears in the portfolio,
in proportion fixed or to be determined. This constraint can be easily determined

12



setting z; = 1 for corresponding assets and imposing more or less restrictive upper
and lower bound.

2.8 Non-negativity constraints

This constraint is defined in the formulation of the problem, when imposing x; >
0 Vj, where j is the subscript indicating a specific asset. This constraint means
that no short sales are allowed and it is imposed over almost all the works we are
analyzing (a notable exception is given by [44], whilst in [8] short sales are allowed
in the beginning formulation). Note that this constraint becomes redundant when
imposing floor constraints.

It has been shown that the constrained PSP is NP-Complete[35]; when imposing
constraints the feasible set of solutions, w.r.t. the LP model, becomes not connected
and the problem becomes a non-convex optimization problem on the boundary of
the feasible set[14].

The most used model in literature imposes cardinality, floor and ceiling con-
straints: These constraints are generally imposed to prevent the portfolio containing
too much assets with tiny weights, a situation that generally occurs when solving
the unconstrained case.

3 Metaheuristic approaches for portfolio selection

3.1 General concepts

In order to apply “metaheuristics” techniques to the PSP a series of topics must be
taken into account: Objective functions and constraints (we already discussed about
it), search space, neighborhood relations, choice of the initial solution, cost function,
performance measures. These topics will be tackled in the following subsections,
before discussing about different strategies developed in literature for the PSP.

3.1.1 Portfolio representation and search space

When applying meta-heuristics to the PSP, we must first define the search space
and how to represent it, considering that the historical data and universe n are kept
fixed and stored in a non-modifiable data structure. We consider assets universe
as represented by a list U = [1...n] whose elements represents asset indexes. For
representing states reached by the search process during its execution, generally two
ideas can be pursued: FEither only a dynamical data-structure of assets is mantained,
in which weights for each asset are stored, or two dynamical data-structures are
mantained. In this latter case, generally a list L = [aj1 ... a;.], 2 < n is used to store
indexes corrisponding to asset actually in the portfolio and another list is used to

13



store weights associated to each previously introduced assets (S = [zj1...x7,]) so
that zy; is the fraction of aj; in the portfolio. For instance, if we are facing a problem
in which n = 10, we can represent a portfolio with the following lists: L = [1,4,9, 10]
and S = [%, i, %, %]: This representation means that the composition of the portfolio
is the following: x; = %, Ty = i, Tg = %, T = % (we refer to this representation as
two-fold-representation).

If we decide to use only a data-structure, we will store in it weights of all as-
sets in the universe: In this case if an asset does not belong to the actual portfolio
found its weight will be 0. The representation of the same portfolio discussed above
will be composed only by the following list S = [%,0,0, i,0,0,0,0, %, %] This im-
plementation can turn out to be inefficient as for each search step we must keep
in memory weights for each asset and some ad-hoc mechanisms must be devised to
perform specific operations (i.e. to determine the actual composition of the portfolio
the array must be thoroughly browsed). This representation (whom we refer to as
one-fold-representation) allows us to preserve all information about the current state
of the search, but it can slow down too much the search process. Conversely, the
two-fold-representation is more flexible and speedy, but it must be implemented with

care.

A compromise between these two approaches in given by Streichert et al.[50][51][52]
in which a knapsack-based representation of portfolios is used: Basically an one-
fold-representation is used, but for each asset a bit (label) is added to specify if
it belongs to portfolio or not. The asset representation will be z; = z; - s; and,
for the same portfolio discussed above, the representation will be the following:
Z = [1,0,0,1,0,0,0,0,1,1] and S = [3,0,0,%,0,0,0,0, £, %], in which each 0 in
the list S’ can be replaced by any real number between 0 and 1 since to determine
the real value of asset 7, s; will be multiplied for the corresponding z; value. This
value will be always 0 Vi|b; = 0. This representation simplifies the search process
as adding or removing asset ¢ in portfolio can be performed just setting b; = 1 or
0. Similar is the representation by Kellerer and Maringer[28] in which a portfolio is
represented by two-fold-representation, but it CAN contain also asset with weight 0
due to the implementation of the search process, as during the search if an asset i
is forced to zero it is either kept in the portfolio with x; = 0 (with probability p) or
replaced by another asset j with random weight z; € [0, (2 - U;)] (with probability
1-p): This representation is useful when cardinality constraint in inequality form is
posed.

Whatever the representation of portfolios, they constitute the search space ex-
plored by the algorithm we develop for the problem: This search space presents the
important feature to be more dense in the region corresponding to low returns, whilst
less reachable portfolios belong to the upside part of the frontier, where returns are
higher and the search space is more sparse. Please notice that explaining the pre-
viously introduced representation we didn’t mention constraints: This is because

14



there is no unanimous agreement about the feasibility of portfolios (and implicitly,
constraint satisfaction) in the search space: The issue about feasibility of portfolios
found during the search process doesn’t appear to be addressed in an unanimous
way. In other words, some works defines the neighborhood and the search strategies
so that states must consist only of feasible portfolios, other works does not, allowing
the search process reaching unfeasible solutions. A compromise can be stated by
partitioning constraints in two classes:

1. Hard constraints, constraints that must be always satisfied by any candidate
solution;

2. Soft constraints, constraints allowed to be not satisfied during the search pro-
cess. Generally their violation is given a weight in the cost function.

so that a state can consist of a portfolio that strictly satisfies some constraints whilst
not satisfying others.

Following these ideas, we can classify the search processes depending on how they
handle infeasibility over the search space:

e all feasible approach: Each candidate solution s must satisfy constraints for
any step in the search process (e.g Chang et al.[5]);

e repair approach, in which if a non-feasible solution is found, this is suddenly
forced to satisfy constraints by an embedded repair mechanism (e.g Streichert
et al.[51]);

e penalties approach: We allow moving toward infeasible solutions, but those
will be assigned a penalty in the cost function, depending on the amount of
violation (e.g Schaerf [45], see section 3.1.4). When using this mechanism the
most reliable approach consists in satisfying all but the return constraint over
the search process.

Sometimes it turns out to be difficult determining which class a search method
belongs to, as it can be difficult to determine if a search trajectory moves only
in feasible areas because of its formulation or because an implicit repair mechanism
is embedded. Repair mechanisms have the effect of considering a huge number of
candidate solutions and to reduce run-time, but they can cause loss of information
and wasting good partial solutions features as apart from increasing the exploration
of the search space, they increase randomness reducing the exploitation of good
solutions.

A typical repair mechanism is explained in Streichert et al.[52], referring to a
formulation with cardinality and minimum lots constraints: This take as input a
non normalized weight vector and repairs the solution in the following way (Please
notice that this repair-mechanism is deterministic):
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1. all weights are normalized so as to sum to one. This is done by setting weights

T =2/ Y, ws

2. the obtained vector is normalized so as to meet cardinality constraint: Only
the k assets with largest value of 2/ are held and then are normalized to the
value z7/;

3. a further modification is required to meet minimum lots constraints: Asset
weights are forced to their previous roundlot level z!’ = 2z — (2 mod ¢).
The free portfolio amount is then redistributed so as to meet minimum lots
constraint buying quantities of ¢; on assets with biggest (27 mod ¢;) until all
the remainder is spent.

If only feasible states are allowed we are sure to obtain valid portfolios during the
whole search-process, but constraint can create troubles in finding them; conversely
allowing infeasibility can help exploring a wider portion of the search-space, but can
greatly slow down the convergence of the algorithm, so this issue must be addressed
with care.

3.1.2 Neighborhood relations

Defining and understanding the neighborhood relation is a key point in order to
develop and fathom powerful local search strategies. This is a crucial point in “meta-
heuristics” as sometime in the literature the neighborhood is not explicitly defined,
with the effect of making the algorithm unclear.

The first relations were introduced by Rolland|44] as, tackling the unconstrained
problem, he introduced two neighborhoods that can be considered the basic struc-
tures for further developments. In the first (referred to as Rollandl) the neighbor
of a solution is defined as a new solution in which the weight of only one asset is
increased or decreased of a given step size. The second (referred to as RollandII) is
defined so that the weight of an asset is increased or decreased of a given value (step
size) and the value of one other asset (randomly chosen) is increased or decreased
of the same value. Note that with this approach assets contained in the final solu-
tion will constitute a subset of the starting portfolio since assets to be modified are
chosen amongst assets present in the portfolio, but the author does not consider it
as a problem as the problem is unconstrained and the portfolio is initialized with all
assets in the universe N, with =z = % for each asset; furthermore Rollandl is likely
to produce infeasible solutions. These neighborhoods are well suited to the uncon-
strained case, as assets can assume every possible value (given their sum being one),
but when imposing constraints the situation changes as assets cannot be present in
the portfolio in any quantity. Hence those neighborhoods are to be enhanced enbed-
ding insertion and deletion of assets. RollandIl can be improved transfering a part of
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the portfolio from one assets ¢ to another one j even if the latter does not belong to
the portfolio: In this case j it will be inserted ([45] TID; [17]). Anyway this approach
must include some mechanism to handle upper and lower bound if they are present
in the formulation.

Also RollandI can be improved either ensuring feasibility for each step or al-
lowing inserting and deleting assets. We can exploit feasibility defining a portfo-
lio as neighbor of a solution if weight of one asset is increased while others are
decreased[4]: If a solution is given by a a weight vector (x;...x,), the neighbor
one is (7o, ﬁi:sstfg ... 718, for only one i, 1 < i < n. This neighborhood
is proven to guarantee the finiteness of its size and that for a long enough sequence
of moves, each solution of the problem is close enough to a move in the sequence
(completeness). Completeness does not depend on the initial solution and holds iff
step < ﬁ (n is the number of assets and the optimal value of step is said to be ﬁ
for sake of speed-convergence). The latter improvement is given by inserting and
deleting assets ([45]idR,[5]): This happens when a decrease is performed on asset i
so that its value falls below its lower bound ¢, so that asset i is deleted and another
asset j is inserted on the portfolio. Conversely if an increase is performed on asset ¢
so that its value exceeds its upper bound J, the assumed value is set to §. All other
assets are normalized. Even if with this neighborhood asset contained in neighbor
position are allowed to be different, the cardinality of neighbor portfolios is identi-
cal. A further improvement is reached allowing neighbor solutions to have different
number of assets([45] idID): Three kinds of operations are allowed on a selected asset
i

e the value is increased of a given proportion (in this case asset ¢ is already in
the portfolio). If the obtained value exceeds its upper bound 0, the assumed
value is set to d;

e the value is decreased of a given proportion (in this case asset i is already in
the portfolio). If the value falls below its lower bound ¢, asset 7 is deleted and
not replaced by any asset;

e asset is inserted in the portfolio with weight equal to its lower bound (in this
case asset 7 is not yet in the portfolio);

Weights are afterward normalized.
After this brief overview we can propose a way of classifying the neighborhood

relations in two classes:

1. relations in which neighbors are generated modifying weights of a pre-determined
number of asset of the current solution;
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2. relations in which neighbors are generated modifying all assets in portfolio in
order to ensure feasibility.

In order to fathom this classification, we can ideally define a neighbor of a port-
folio starting from the portfolio itself, selecting one asset to be modified, specify-
ing its amount of variation and performing the change: This asset, referred to as
pivot[40], constitutes the asset neighbors are generated starting from. After doing
it, we counter-balance this modification by changing weights of other assets: If only
a pre-determined number of assets is selected to be modified® the neighborhood is
said to belong to class 1, otherwise, if all assets belonging are to be modified the
neighborhood is said to belong to class 2.

The neighborhood structured as class 1. can either consist only of feasible solu-
tions (i.e. [45], structure TID) or allowing infeasible moves too (i.e [44], pag. 8).
The simplest neighborhoods in this group are generated modifying the pivot weight
and counterbalancing this change by modifying weight of only another asset ([44]
TID; [17]). The process can be generalized introducing an integer c representing
the number of assets to be modified in order to counterbalance the magnitude of
pivot weight variation. Crama and Schyns|[8] uses ¢ = 2, but it is possible to set ¢
at an higher number, even if there are no significative efforts in this direction. It is
also possible to set ¢ = 0, so allowing infeasible and worst moves, but in this case
an implicitly formulated repair mechanism should be included (Rolland[44] repairs
solutions after five consecutive infeasible moves). Using this framework we can define
the distance step as the difference between pivot weights over the starting portfolio
and its neighbors. In the previously introduced neighborhoods step is kept fixed be-
tween the starting portfolio and all its neighbors, but neighbors can be generated also
varying its value: In Armananzas and Lozano [40] neighbors are generated varying
step from a minimum of % to a maximum of Wyt , being forced to assume as
value all multiples of W, so letting pivot disappear in one neighbor and defining
the cardinality of the neighborhood as n.

Conversely, neighborhoods of class 2 are generally encountered using population-
based algorithms with particular mention to genetic algorithms, in which crossover
and mutation operators are most likely to return an infeasible state. In this case
the above specified two-phase mechanism (Choose an asset and modify its weight;
Decide what to do with other assets) generally does not hold because the search is
structured as evolution of portfolios generated by assemblying existing portfolios, so
it turns out being impossible to determine the pivot. We can say that whenever a
repair mechanism is implemented, the neighborhood belongs to class 2: Obviously
this doesn’t represent the only case, and other approaches can be reconducted to this
class[5][4][45], even if they rather appear reconductable to examples of class 1 with
c=k—1

3This number can even be 0, see [44], pag. 8.
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Neighborhoods described above can be used in conjunction when using strategies
such VNS (see sec. 3.6). Indeed, this aspect has not been exploited enough for
the PSP, and the few efforts in this direction [19] [14] [48] cannot be said to belong
exactly to the PSP in its canonic formulation.

3.1.3 Initial solution

Usually “metaheuristics” are quite robust w.r.t. the choice of the initial solution:
This assertion has proven formally to be true, for the portfolio selection problem, by
Catanas [4] referring to its neighborhood relation (see section 3.1.2), and empirically
holds for the most works on this issue. For that reason most of the works assume
as starting solution(e.g. Ehrgott et al.[14]), a randomly generated one, embedding a
mechanism[8| to ensure feasibility of the starting portfolio.

An extension of this idea is generally employed when using genetic algorithms,
when a population of solutions (chromosomes) must be initialized. The portfolios
belonging to the initial population are randomly generated (generally ensuring fea-
sibility) but some mechanism can be employed to insert in some of them particular
features. For instance in Wang et al.[9] 200 portfolios are randomly generated, but
two amongst them (randomly selected) are suddenly substituted by solutions of two
single objective programming problems (max expected return and min variance) s.t.
constraints in the formulation, where these solutions represent the global maximum
return and the global minimum variance solution respectively.

Also Rules of thumb are used i.e. selecting the best amongst randomly generated
portfolios [45] or selecting n assets with = 1\n for each i [44] (unconstrained case).
If satisfying cardinality constraint is considered essential greedy initialization can be
used: Ehrgott et al.[14] uses, besides the initialization before described, a procedure
in which new assets are successively added following a greedy strategy until the
desired number of assets is reached. Indeed is it possible first to randomly select &
assets and then determining their weights in order to satisfy constraints [40].

3.1.4 Cost function

In order to apply “metaheuristics” to the PSP it is important to distinguish between
objective function and cost function: The first represents the function to be opti-
mized to solve the problem, so the function being minimized (or maximized) in the
final state reached by the search algorithm; The latter represents the function leading
the search process over the search space toward solutions, so allowing to evaluate and
accept (or not) new solutions encountered during the search. Generally when dealing
with combinatorial optimization problems the objective of the problem is often used
as evaluation function, but sometimes different cost function can better guide the
search toward promising solutions; in other cases, when dealing with constraints, the
cost function can be defined starting from the objective and adding some mechanism
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to embed and evaluate their violation (if any). In fact there is a debate in “meta-
heuristic” literature about how to head the search trajectory over the search space:
The major issue is if to force the search to visit only feasible solutions or to allow
visiting infeasible ones. When the search process is allowed to explore infeasible
regions the solution can consist in a infeasible solution because some constraint has
been violated. In this case we must assign a cost to each violation and incorporate it
in the cost function. Schaerf[45] defines a cost function in which the cost associated
to the violation of budget constraint (f1(X)) is combined with the original objective
function ( fo(X )) The overall cost function to be minimized is an overall weighted
sum of the two components wy f1(X) + wafo(X), in which initially w; is set to a
much larger value then ws, while it varies during the search according to a shifting
penalties mechanism.

min wy f1 (X) + wa fo (X) (33)

f1 (X) — Imax (0, Xn:’ml‘z)
i=1

n n
fQ(X) = Z Z 045 X43 5
i=1j=1
A similar approach is followed in Gilli and Kéllezi[17]|, when they want to test their
TA approach (see below) on Mean-Variance formulation. They choose to minimize
the following:

min <Xn: Xn: 03T + Q(Tp - i;m&)) (34)

i=1j=1

) ¢ if returns are higher than r,
P=9 0 otherwise

where p is the penalty term. Similarly to Schaerf, in this approach only the return
constraint is allowed not to be satisfied, as the algorithm is implemented so that
other constraints are always satisfied.

If the search is allowed to visit only feasible moves generally cost and objective
function are equivalent. Anyway, it must be understood if the search trajectory
moves only in feasible areas because of its formulation or because an implicit repair
mechanism is embedded (see section 3.1.1).

3.1.5 Performance measures

Generally performance measures are obtained by comparing constrained results (ACEF)
with the ones obtained in the unconstrained case for each level of return (each point
on the UEF) and drawing statistical measures (mean and median percentage error,
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standard deviation etc.) for the overall frontier. There are however many ways to as-
sess error measure: Chang et al.[5] considers the distance of the point from the UEF,
defined as the minimum between the percentage distance on the x-axis direction
and the percentage distance on the y-axis direction®. Here the distance is computed
with respect to both x and y axis, and both measures (considered as averaged) are
used to compare the performances, showing, for instance, that results by GA are the
best respect to a measure (z-axe: Variance) but poor respect to the other (y-axe:
Mean returns). This approach does not provide us with an unique performance mea-
sure, but in our opinion is the most suitable for grasping useful information when
comparing different algorithms on the same instance.

An unique measure can be found in Streichert et al.[50] [51] [52] where the per-
formance is given by the percentage difference between the area below the UEF
(considered as reference solution) and the obtained ACEF. This approach appears
to be the most reliable as areas below frontiers are computed using the S-Metric[60],
explaining that the cardinality of their ACEF is limited due to the limited size of the
archive used (see section 3.7) and the point on the frontier are equally distanced.

We must recall that several issues arise when trying to evaluate a frontier and
compare it with other ones specially when dealing with multi-objective formulations
[43] so that the comparison could turn out to be unfair and lead to misleading con-
clusions. To this aim also statistical tests are used [23] [10], expecially to determine
if UEF and CEF are equal, and some works introduces measures to determine the
best portfolio in a frontier[13], also if this approach tends to waste all the financial
and preference-oriented considerations about the problem at hand.

When the goal is to compare the proposed implementation against standard
tools (e.g. Branch and Bound), performance is evaluated comparing the obtained
ACEF with the one obtained by standard quadratic programming packages such as
LINGO[26] or CPLEX][7]. The problem is that exact methods, when constraints are
imposed, generally fail to generate the whole CEF within the given run-time limit.
So the comparison is made between single points on the CEF, computing an error
measure for each point and afterward computing, e.g., the mean or median error
over all points. If exact methods do not provide us the solution we are looking for,
solutions are compared against an approximation, e.g. the solution of the continuous
relaxation, if it is involved in the search process[35], or lower-bound. This approxi-
mation can be coarse, so the comparison might not be meaningful, but the procedure
is widely used and represents the only way to operate.

3.2 Iterative Improvement

This strategy represents the most basic local search approach: It is easy to un-
derstand and simple to implement, but it offers the poorest performances|45][40].

*A similar approach is given by Fernandez and Gomez [15]
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Nevertheless it can be embedded in a more complex hybrid approach, as in Glover et
al.[19] where if no further improvement are made the algorithm switches to another
neighborhood (this is the basic idea of Variable Neighborhood Search, see section 3.6)
or in Armananzas and Lozano[40]| where a greedy search “refines” solutions found by
ants (see section 3.9).

3.3 Simulated Annealing

SA was applied to the PSP generally showing good performances: Crama and
Schyns|8] use SA investigating empirically each class of constraints as alone (floor,
ceiling and turnover first, then trading and cardinality), then they impose simulta-
neously all constraints in a single model. They use three kinds of strategies:

e performing independent runs from the same initial solution;

e performing several runs, using as initial solution the best one found in the
previous cycle;

e first performing a run to create a list P of promising solutions, then performing
| P| independent runs, using as initial solutions the ones stored in P.

The fact that there is no clear dominance amongst the these strategies can be consid-
ered as a proof of validness regarding the insensitiveness of such search-processes to
the initial solution (see section 3.1.3). Their SA is able to draw out exactly the UEF
but, apart from good performances when imposing floor, ceiling and turnover con-
straints, ACEF drawn out when imposing trading constraints appears to be quite
rugged. Anyway in all cases SA was able to approximate the CEF in reasonable
run-times for medium-sized instances.

Good performances of SA are found in works comparing performances of different
algorithms on the same instance (see section 4). Conversely it is easy to understand,
browsing the same works, that SA suffer the comparison with other strategies as
Genetic Algorithms, appearing to be always the best solvers. Keeping it in mind
it becomes spontaneous to try improving performances of SA by embedding this
strategy in a population-based framework, i.e. mantaining a set of portfolios instead
of only one portfolio and letting them evolve: This approach has been used either
modeling the problem as to include cardinality constraint|[28] or including a wider set
of constraints (Gomez et al.[20] uses the same set of constraints introduced by [8]).
The basic approach [28] consists of starting from an initial population of random
portfolios and generating, for each portfolio p,, a new portfolio p,, by selecting some
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assets ¢ and modifying them according to the following rule’:
Wy, = max(wg,, + s,0) (35)

where s is randomly chosen in the range [—U;,U;] and this bandwidth decrease
over time. Weights are then normalized to sum up to 1 and p, is evaluated and
accepted or not depending on the Metropolis function. Performing this step for each
portfolio produces a new population, that is furthermore refined replacing worst
portfolios either by a clone of a probabilistically selected portfolio with high fitness
with probability r or by a portfolio composed of assets with average weights over
best portfolios with probability (1-r). The algorithm correctly draw out the ACEF,
stopping after a fixed number of steps and returning the best portfolios found.

An interesting improvement of SA can be thought for a multi-objective formu-
lation, in which better solution are always accepted whilst worst are evaluated an-
nealing separately each objective: In other words, a worst solution is accepted also if
just only one objective satisfies the acceptance criterion, so letting other objectives
worsen while offering the possibility of improve later[40]. Noticeably, this approach
seems to find good solutions in the downside part of the frontier, where risk and
profits are kept small.

3.4 Threshold Accepting

Threshold Accepting shares some analogies to simulated annealing: It tries to avoid
getting stuck in local optima by accepting solutions which are not worse than a
given threshold which is decreased progressively, assuming the value zero over the
last epoch. Threshold sequence is defined by estimating the distribution of distances
between objective functions of neighbor positions (a similar approach is followed in
SA to determine the initial temperature).

TA was applied to the PSP by Dueck and Winker|[13]| and Gilli et al.[17] [18] but
interestingly works using TA are rather interested in comparing risk measures, so the
algorithm represents the technical mean to investigate financial aspects. In example
in [13] different risk measures are compared: Variance, generalized semi-variance
and geometric mean. At first, ACEF is drawn w.r.t. a risk measure. Afterwards
other risk measures are computed for each portfolio belonging to the formerly drawn
ACEF, drawing out another frontier and showing that this is generally not efficient
w.r.t. the new risk measure chosen: This happens for each function used as first
and new. In this way it is possible, also visually, to understand how risk measures
are different and by how much, drawing out interesting financial conclusions. For
instance it is stated that ACEF is not as smooth as it seems, since it results being

SPlease notice that ¢t stands for the runtime of routine, not for the temporal line over which the
portfolio must be optimized: We recall once more this work does not take into account multi-period
portfolio optimization.
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composed of linear fragments, and the curve switches from a segment to another one
when the fraction held in a particular asset changes sharply.

After using TA to solve Mean-Variance portfolio selection, Gilli and Kéllezi[17]
tackle a more realistic problem in a downside-risk framework in which decision vari-
ables are considered as integers (see section 5). The problem is formulated as max-
imizing future returns, while value-at-risk and expected-shortfall are compared as
risk measures. In a further development[18] TA is used to compare three different
risk measures: Value at Risk (VaR),Expected Shortfall (ES) and Omega measure
(defined as ratio of the weighted conditional expectation of losses over the weighted
conditional expectation of gains) in a formulation with cardinality, upper and lower
bounds constraints. Results show that mean-VaR portfolios are more diversified
than those obtained with other measures, while ES frontier dominates other two (in
this context it means that extreme losses are less likely using ES measure, but small
losses are more likely using ES measure than others).

Interestingly all these works give evidence to the fact that much attention is
to be paid to the choice of the appropriate risk measure, as efficient portfolios for
a risk measure are usually not efficient w.r.t. other measures and under different
utility functions efficient portfolios are very different from each other: Investors can
choose the risk measure accordingly to their preferences, as this choice plays an
important role in determining the final portfolio features. Furthermore, in all TA
implementations by these different authors, portfolios are allowed to contain liquid
cash over the search process, while this choice is not taken into account with other
techniques.

3.5 Tabu search

The application of TS to the PSP has its milestone in the works of Rolland [44] and
Glover et al.[19]. Indeed these works belong to different formulations of the problem
and indeed Glover tackles a multi-period formulation (while our work is concerned
only with single-period portfolio selection), but both deserve to be analyzed due to
the richness of concepts stated, being the basis for further works and explanations.
Rolland uses a tabu search for the unconstrained problem: Moving in the previously
mentioned neighborhood relation (see section 3.1.2), the author tackles two problems
of minimizing variance and minimizing variance given an expected level of returns,
even if its paper is more oriented in finding a single point (describing the trajectory
drawn by the algorithm over time to reach it) rather than drawing out the whole
UEF. The two approaches differ in the repair mechanism: The minimum variance
one, after generating five non-feasible solutions, repairs the solution as follows:

e If investment exceeds budget (3 x; > 1), find the asset with maximum sum
of covariance referring to other assets (i so that o;;z;x; is maximized) and
decrease x; in order to ensure feasibility;
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e If investment is less than budget (3° z; < 1), find the asset with minimum sum
of covariance referring to other assets (i so that mino;jz;x;) and increase z;
in order to ensure feasibility.

The minimum-variance-given-return approach instead initially tries to reach the de-
sired level of returns, repairing the solution as follows (after moving over five non-
feasible solutions):

e find 7 so that

<’1—ij

7«> (S - )

e If investment exceeds budget (3" x; > 1), decrease x; in order to ensure feasi-
bility, otherwise;

’ (36)

is minimized;

e If investment is less than budget (3} x; < 1), increase x; in order to ensure
feasibility.

Afterwards, when the return level of the best solution found is within the 0,005% of
the desired level, the repair mechanism invoked is the one described for the minimum
variance problem, so that the solution “home in” on the requested minimum-variance
point after the requested return level has been reached. Step length can assume two
distinct values: 1—10 and ﬁ and over the search process it toggles after 100 non-
improving steps. Even if the proposed TS is said to offer good performances, it is
useful only to find single point instead of the whole UEF, so this implementation
does not represent the most powerful solution for real-world problems; nevertheless
it can be useful when only one desired level of return is given.

Glover et al. tackle a problem close to the portfolio selection: The asset-allocation
with fixed-mix (we defined it in section 2.6). This is a multi-period problem in which
we want, for each period, to respect the proportions of asset classes (generally as-
sets, bonds and treasury bills) to the whole portfolio, in order to attain the same
risk profile for each period, taking into account cash-flows generated by the portfolio
management: At the beginning of each period the portfolio must be re-balanced in
order to ensure feasibility as assets generate dividends to be re-invested, transaction
costs must be taken into account (they are considered as proportional in this case)
and constraints on proportions held can be considered. The simplest strategy is given
by selling a portion of asset classes with returns higher than the average return and
buying assets classes with returns below average. Both cases with and without trans-
action costs are investigated and Tabu search is used in conjunction with variable
scaling: With this term we indicate a strategy in which the neighborhood changes
over iterations due to a change of the step length of moves (the biggest step length
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is 5% and the smallest is 1%). Step length are defined and ranked in decreasing
order, and an Iterative Improvement is performed with the first step length. When
no improvements are obtained, the step length changes to the next value and the
Iterative Improvement procedure is repeated starting from the last solution found.
This process is iteratively repeated until the used step size is the last of the rank. At
this point if improvements were reached over the list, the process restarts from the
first value, otherwise the procedure stops. This procedure has the effect of moving
away from local optima by a change of the step size, enforcing indeed intensification
until it is not possible to escape anymore from the local optimum by changing the
neighborhood: At this point a TS search is performed; if improvements are gained
the search switches back to variable scaling and the process continues until no im-
provements are made. Step size is crucial, and in TS it is set higher than in Variable
Scaling to escape from local optimum. ACEF is compared with the frontier obtained
with exact global optimization, showing that they are almost identical, in both cases
with or without transaction costs. Interesting conclusions are drawn: If the investor
is risk-averse the portfolio held is more diversified with taxes and transaction costs,
whilst diversification is not requested by investors with low risk-aversion if taxes an
transaction costs are included in the model.

Tabu Search has been widely applied to solve the PSP: It is easy to find it in
works comparing different algorithms on the same instance (see section 4). Indeed the
application of TS produced very different performances when compared with other
strategies: Apart from Schaerf[45], TS is generally not competitive enough, even
compared with SA[5] [4] [14]. In our opinion this defect comes from non optimized
enough implementations and TS represents a very attractive and powerful strategy
for the PSP.

3.6 Variable Neighborhood Search

Variable Neighborhood Search[21] (VNS) is a “metaheuristic” that dynamically changes
neighborhood structures during search, so that a neighborhood is substituted by an-
other one when the actual solution cannot be improved using the former structure.
There is no explicit application of VNS to the portfolio selection problem, but, as
the algorithm is very general, its principles can be found in works exploiting other
kinds of algorithms. This is the case of Glover et al.[19], where the implementation
of Variable Scaling can be easily re-conducted to a VNS, as a new neighborhood
is exploited changing the step when no further improvement is possible, also if the
problem is in the multi-period formulation and neighborhoods with the same cardi-
nality are defined. The ideas underlying this approach can be found in Ehrgott et
al.[14], where search switches between two neighborhoods.

A special mention must be given to Speranza|48|, in which an heuristic is defined
and applied to Milan Stock Market using an integer formulation. Here, in order to
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satisfy constraints on capital, assets are ordered and re-numbered in nondecreasing
order of z; in the portfolio; then x; is increased (and, if increase is unsuccessful,
decreased) by one unit: If the new solution is feasible, the algorithm stops, otherwise
the procedure is repeated over x5 ...x,. If no feasible solution is found, the cycle is
repeated increasing assets by two units, then three and so on. This mechanism repre-
sents a naive VNS strategy, even if the neighborhood cardinality appears to be kept
constant over the whole process and the neighbor selection process is deterministic.

3.7 Evolutionary and Genetic Algorithms

The terms Evolutionary Strategies and Genetic Algorithms assume different mean-
ings in literature: The first is used when decision variables are represented by their
actual real value, whilst the latter is used when real decision variables are encoded
with a binary representation. We consider these differences as details of the imple-
mentation, encompassing in this section works belonging to both strategies.

The first applications of Evolutionary algorithms to the unconstrained PSP are
given by Tettamanzi et al.[1][33] [34]. Initially[1] they applied genetic algorithms
to portfolio selection (using a down-side measure of risk) in a sequential machine,
in which only one population is handled and individuals are generated according to
investor preferences: A specie is defined for each A (where A is the trade-off coeffi-
cient between return and risk); individuals are generated belonging to a specie with
a probability proportional to the investor’s interest in that species and for each new
generation a new individual replace the worst in the previous one. As both portfolio
selection problem and genetic algorithm are plenty of scope for parallelization, in a
further work[34] a distributed genetic algorithms is applied in which, using parame-
terized objective function, each A value is associated to a subpopulation. Obviously,
as AUEF is composed drawing out a point for each A, the greater the cardinality of
populations, the finer the resolution of the frontier. The algorithm is implemented so
as to permit migrations of individuals between populations referring to neighbor val-
ues of X in order to avoid premature convergence, and individuals are allowed to mate
only with individual of the same population or of adjacent ones (the same holds for
the previous sequential implementation, but in that case we handle different species
rather than populations). This implementation outperforms the previous sequential
version, and in [33] an enriched outline of implementation and risk measures is given,
even if results does not provide further novelties or improvements.

Performances of GA are generally not affected by imposing constraints: If only
cardinality constraint is imposed is it possible to search in parallel several ACEF
corresponding to each number of requested assets k we are interested in, using in-
formation from each of these to improve the search process of others. With this
approach ACEF is shown to approach UEF as k increases and a statistical test is
performed showing that constrained optimal portfolios are not significantly different
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from unconstrained ones, except for tiny number of assets and lowest level of risk.
Cardinality constrained PSP is also tackled by Streichert et al.[50][51][52] using a
two-objective optimization structure, enriching their implementation by adding an
archive in order to store the frontier obtained so far. In their work they introduce
the knapsack representation of portfolios discussed in section 3.1.1, comparing it
with the standard one and they further investigate the use of lamarckism: To better
explain the meaning of this term, we must precise that these works embed a repair
mechanism that prevents to reject infeasible solutions (The mechanism is explained
in section 3.1.2). We must recall that the genetic process provides us, for each port-
folio, a vector consisting of non-normalized values. For the sake of simplicity, we say
that this vector represents the genotype, while the normalized vector(so that their
weights sum to one) represents the phenotype. In each case mutation and crossover
operators affect each genotype components Z and X separately from each other,
simplifying asset insertion and removal in the portfolio, but in experiments without
lamarckism only the phenotype of an individual is altered by the repair mechanism,
while the genotype remains unaltered; in experiments with lamarckism the repair
mechanism modifies the genotype too, according to the phenotype. In each case,
this representation performs better than the standard one, but noticeably lamarck-
ism helps improving standard algorithms performances too. Furthermore different
variable representations (binary and real-valued) are compared and different coding
[51] and crossover operators [52] are examined. Indeed these works investigates first
the case in which cardinality constraint is imposed alone, then the case in which this
constraint is imposed in conjunction with floor and minimum lots. Strategies used
in these works can be better encompasses in memetic algorithms, as a local search
for feasible solutions is added to improve performances of EA: This approach has
been exploited in [37], comparing cases in which the local search steps are performed
by both SA and TA. It turns out that TA is more suitable when the search space
is rough, so when VaR is used as risk measure, whilst when using such a measure
as ES the search space appears smoother, and SA performs better. In this work
the introduction of elitist is investigated: With this term we refer to a strategy in
which at a certain stage of the local search procedure, the next state is determined
by comparing the the current solution (or, in cases of populations-based-algorithms,
the solution of one agent) with the best solution found so far, instead of one of its
neighbors. This strategy is used as the SA and TA acceptance criteria allows moving
away from the current optimum, in order to escape from local optima. The principle
is good, but it can be disadvantageous if the search space is smooth. The introduc-
tion of elitists, besides making the algorithms less dependent to parameter setting,
reduces this drawback, as witnessed by the fact that performances using ES as risk
measure are greatly improved.

The case in which floor, ceiling and cardinality constraints are imposed is the
most commonly used in literature when applying GA [32][5] [14] [15], accordingly to
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how stated in section 2. Minimum lots are noticeably encountered not only when
dealing with integer formulation ([9], where also transaction costs are taken into
account, see section 3.9 and 5) but also when dealing with the continuous model[50]
[51] [52].

The extremely high potential of GA, together with the enormous interest pro-
voked in the worldwide scientific community, caused a high degree of experimental
works also for the PSP, in which GA where also used in conjunction with formula-
tion differing from the canonical Mean-Variance one in order to define more realistic
customer oriented frameworks. An interesting example is represented by Xia and
coworkers[58|, where the objective function to maximize is given by equation 9 but
they solve this objective for different values of A rather than drawing out the whole
frontier, showing that in the obtained portfolios return is higher than the optimal one
provided by optimization software for Mean-Variance (LINGOJ[26]) even if they are
more risky. Furthermore the expected return is considered as a variable, belonging to
an interval in which arithmetical mean represents lower bound « if its recent history
trend has been increasing, the upper bound b if its trend has been decreasing. This
is explained by the following constraints:

’I”Z'ZTZ‘_H 1=1...n—1 (37)
>0 i=1...n (39)

Three ways for assessing returns and variance are described: Mean of historical
data, single-index and multi-index models. Single index relies on the correlation be-
tween stock returns and returns of a market-index, while multi-index denotes return-
correlation with several indexes (or factors) to capture non-market influences. The
genetic algorithm creates a pre-defined number of chromosomes (portfolios) in which
assets are ordered according to their expected returns (equation 37) using a weighted
sum of arithmetical mean, historical return tendency and balance-sheet based fore-
cast of future returns. Afterwards, portfolios are ranked according to their objective
value, and this rank is used to probabilistically define the crossover arguments as the
higher the position, the higher the likelihood to be selected as parents (with no re-
gard to the actual evaluation function value). Indeed crossover is performed between
an individual and its closest neighbor, and after crossover mutation is performed. At
this stage the new population is ready for the next evaluation. V-Shaped transaction
costs are also investigated for portfolio revision, but they are only considered as pro-
portional®. Transaction costs (embedded in a MAD objective function) and single A
values analysis are also exploited in Wang et al.[55] in which a sample procedure for

In a further work[56] risk-free asset are introduced and the formulation is based on a linear
program in a compromise formulation.
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stochastic returns is introduced instead of the classical scenario analysis (see section
1.1).

Other approaches are pursued, generally developing a more complex and tailored
architecture for practitioners in order to help decision making introducing other
measures either to define an ordinal-preference framework in which other measures
are added to the formulation [53] [14], or to predict the future return rate and to
obtain the uncertainty risk of the future return rate when the sample is small [42].

We must finally notice that comparative studies stated that GA represents the
best performing solver respect to other “metaheuristics” such as TS, SA and Iterative
Improvement. This is due to the fact that GA generates, in each step of the search
process, solutions in different areas of the search landscape, allowing to exploit a
better diversification: This feature is compelling when using a multi-objective for-
mulation and indeed the most used genetic algorithm for the PSP are encompassed
in the family of MOEAs (MultiObjective Evolutionary Algorithms) [10] [50] [51] [52]
[9] [42].

3.8 Particle Swarm

The new nature-inspired paradigm referred to as Particle swarm represents a teasing
alternative to other search paradigms. Indeed, its application to the PSP is nowadays
still limited, and the few works on this topic does not tackle the standard formulation,
being rather oriented in finding an unique portfolio optimal w.r.t a measure (the
reward-to-variability ratio, referred to as Sharpe ratio) out of a given set of assets
than drawing out the whole efficient frontier[29][39].

3.9 Ant Colony Optimization

ACO has found not yet enough application to the PSP, if we think about excellent
results achieved in combinatory optimization. Initially conceived for discrete spaces,
ACO has been tailored for continuous spaces too[47] so it can be applied to handle
the Markowitz PSP formulation. Anyway little efforts was made in that direction.

ACO can be successfully applied when cardinality constraint is imposed: The
common approach is to define populations of n ants in order to explore a completely
connected graph composed of n nodes, so as they can easily move from an asset
to another. The number of populations can be related to the number of objective
functions to optimize[40] or, if there is one only function, can be just defined to
optimize parameter-tuning[36]. In [40] when satisfying the convergence criterion, a
greedy search refines the solution. Noticeably, compared with other techniques (SA
and IT) this approach seems to find best solutions in the upside part of the frontier,
where risk and profits are kept big.

ANT colony optimization has found application in problems similar to portfolio
selection one like the so-called multi-objective project portfolio selection, a general-
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ization of the bin-packing problem in which we want to choose a portfolio of project
proposals (e.g. research and development projects) constraining the problem so as
to ensure that the portfolio will contain no more than a given maximum number of
projects out of a certain subset (e.g. projects pursuing the same goal) and imposing
resource limitations and minimum benefit requirements[11][12].

We must recall that Ant Colony Optimization was initially conceived for discrete
search space, while in the problem we are considering variables can assume any con-
tinuous value belonging to [0, 1] range. If we would like to use this technique for our
problem, the basic idea would be to discretize the space: This operation might not be
conceptually sound since we only consider that assets weights must sum up to one,
regardless of the total amount to be invested. We might decide to apply a discretiza-
tion at 0.000005 intervals, without any trouble for the formulation, but it is clear that
if we have to invest 1,000,000,000 euros the discretized minimum admissible lot will
be 5,000 euros, while if we consider 10 euros to be invested it will amount to 0.00005
euros. This will not turn into errors or warnings, but it is clear that the meaning of
the efficient frontier could be strongly misleading depending on the invested amount.
We already stated that a version of ACO was tailored for continuous space, so the
issue is not so heavy, but it is important in order to understand the importance of
the formulation; the trouble is more marked if we consider transaction costs (they
are often not taken into account in works about “metaheuristics”): If they are con-
sidered only as proportional they can be easily inserted in the formulation, while
a cost function as defined in [30] requires formulation efforts that, to date, did not
bring satisfactory results. In our opinion further research must be aimed at trying
to define a standard-formulation in order to take into account transaction costs and
to define a versatile “metaheuristic” approach, so that different risk measures can be
used (a comparison amongst several risk measures should also be extensively pursued
in further research). The dilemma is about the integer formulation (as defined in
section 5) versus continuous fractional formulation (in which weights must sum up
to one), universally used as standard approach in “metaheuristics” formulation.

The local search approach is, in our opinion, robust w.r.t the formulation, so
it is able to handle the integer version too, ensuring important advantages: Lack
of necessity of discretisation, correctness of meanings of formulation, easiness in
including transaction costs and rounds and we hope researchers will switch their
attention in this direction.

4 Comparative studies

Comparing works and implementation by different authors turns out to be a difficult
task: The most common trouble is that each author claims the superiority and the
advantages of his model, but too often it is not possible to fully justify this assertion
as too many factors enter into account: Data-sets are not the same, algorithm imple-
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mentations can be different and lead to wrong comparison, shortcomings of actual
implementation are not clearly stated, utility and performances measures are differ-
ent; furthermore ad-hoc implementations are created to fit a data at hand and the
model performs well over those data, without guarantee of robustness to data-set-
features (say, without warranty that this model can be successfully applied to other
data-sets). We must indeed note that different works can pursue different goals: One
can just test the efficiency of his algorithms; others can aim to test the suitableness
regard to the problem formulation; others can aim to discard the standard problem-
formulation (because it is not able to capture real-world-features) and to claim their
formulation and algorithm are more appropriate; others wants to create a model with
good performances to help decision making in professional activities.

Due to those factors, comparison amongst several works is not possible: Our
sole valuable resources in that goal are works comparing different algorithms on the
(purportedly) same instance.

One of the first works of this kind was by Catanas[4], but his paper is more ori-
ented in investigating properties of the proposed neighborhoods (see section 3.1.2)
than to develop a solution for the portfolio problem. He uses T'S and SA, imple-
mented in both robust and dynamic way: In the robust implementation step is kept
fixed during all iterations, while in dynamic one it is let decreasing as to tend to
zero during the execution. Furthermore he defines a schema for the variation of step,
letting its value to increase if solution quality worsens, to decrease if solution quality
improves, and defines a threshold on the minimum value of step, as tiny values can
make the search stagnate. The variation scheme is the following:

in | - L1 N
step = min (n_lqutep RN step> fA<O

min (L Fitep - (1 +|A]) - step) otherwise

n—1’

(40)

where Flep is a given number belonging to the range (0, 1] and A is the difference
between values of the objective function at runtime ¢, and ¢,y1. Results show that
SA performs better than TS and dynamic implementation is more performing than
robust in both SA and TS; furthermore robust T'S performances are extremely sen-
sitive to step values and dynamic version performs better when Fg., = 1 for both
TS and SA.

Chang et al.[5] introduce cardinality and minimum and maximum holding con-
straints. They state that when introducing those constraints, CEF becomes dis-
continuous: This is due to the fact that feasible proportions of assets are dominated
(because of the existence of portfolios with lower variance and higher return); further-
more portions of frontier may be invisible (due to minimum proportion constraints)
for a classical A-weighting drawing approach. They use an evaluation procedure to
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ensure feasibility of all solutions and use GA, TS and SA to solve the problem. Re-
sults show that GA is able to better approximate the UEF with lowest average mean
percentage error. Regarding the constrained problem, GA seems to perform better
than SA and TS, but differences are not as clear as in the unconstrained case, so
they use portfolios from three heuristics to draw out the ACEF. Their approach is to
store, for each heuristic, all the improving solutions found in the search process and,
finally, deleting the dominated ones. Sets obtained by the three heuristics are then
pooled to draw the ACEF. This approach shows that for the constrained problem
ACEF approximate UEF one when increasing the asset cardinality k (as already
stated in [23], see section 3.7).

Results obtained by [5] are compared, in Jobst et al.[24], with two heuristic
methods: The first is an integer-restart procedure drawing out CEF starting from
the highest return and its corresponding risk to lower return and reduced risk, in
which the result obtained is supplied as starting point to the next (lower return)
iteration, considering it as first feasible and upper bound value’; the second, following
an idea similar to [48] (see section 5), first solves a continuous relaxation without
any constraints, then uses the k highest weights as input of a problem in which
constraints are imposed (this heuristic is referred to as re-optimization heuristic).
Both heuristics are embedded in a branch-and-bound and are said to outperform
“metaheuristics” used in [5]. Anyway, if this assertion can be shown to be true for
integer-restart heuristic, we must note that re-optimization heuristic is not able to
draw the whole frontier: Points are missing when the first continuous relaxation
produces a portfolio with less than k assets, and this should be noted as drawback,
even if the obtained performance measure overall drawn points is better than all
procedure introduced in [5].

Schaerf]45] takes into account floor, ceiling and cardinality constraints. He de-
fines three neighborhood relations, in which all but the budget constraints are to be
satisfied, defining the objective function as mentioned above (see section 3.1.4). The
initial state is selected as the best amongst 100 randomly generated portfolios with
k assets. Initially he uses best and first Iterative improvement, SA and TS as single
solvers, then he uses TS (said to be the most promising solver in his implementation)
combining neighborhood relationships in various token-ring strategies. In this case
the step length has a great impact in the first solver to attain diversification, while
is set at a smaller value in the last solvers to attain intensification; furthermore the
step length assessment can either have a fixed value for each iteration or include
a random component. Experimental results show that the best performances are
obtained by token ring solvers with random steps, even if fixed steps seem to behave
well too. Single solvers do not attain comparable good results.

Armananzas and Lozano[40]compare II, SA and ACO in a multiobjectives formu-

"The process of providing the actual solution as input of the next search iteration is defined as
warm-start.
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lation with cardinality, floor and ceiling constraints. Algorithms used are tailored to
the multiobjective problem, and ACO seems to outperform other techniques, whilst
the simple greedy search (II) offer poor performances if used alone, while its use is
valuable when refining solutions provided by ACO. Interestingly, ACO and SA best
performances are found in different areas of the frontier: The first in the upside part
of the frontier, the latter downside.

Also Ehrgott et al.[14] proposes a multi-objective framework with cardinality,
floor and ceiling constrains in which utility functions are interpolated over utility
values for a set of points. They use SA, TS, GA and a heuristic local search similar
to a VNS embedding a random escape mechanism to avoid stagnation at a local
minimum, testing them over both random and real instances. Results on both in-
stance classes show that GA appears to be the most performing solver. Even the
heuristic-local search and SA obtain good results, while TS performances appear to
be the worst ones.

Different judgement can be found comparing those studies: In Schaerf Tabu
Search appears to be the most promising solver, while in Ehrgott et al. is said to be
the less reliable. It worths to notice here that in both Ehrgott et al. and Chang et al.
GA represents the most performing solver, whilst unluckily there is no possibility for
a thoroughly evaluation of ACO due to the lacking of comparative studies applying
it.

A further interesting comparison is made by Fernandez and Gomez[15], in which
“metaheuristics” by Chang et al. are compared with a neural net approach: An Hop-
field network® is used to draw out the ACEF when cardinality constraint and bounds
(lower and upper bounds) are imposed in the formulation. Their results show that
there is no significative difference between their neural network and “metaheuristics”
such as GA, TS and SA. In order to improve performances, portfolios from the four
approaches are pooled and dominated ones are deleted, so obtaining a better ACEF
(the same approach pursued by Chang). Noticeably, the portion of this frontier
composed of portfolios formerly obtained by neural net are strongly higher than the
portion composed of portfolios by other heuristics: This give us evidence about the
quality of neural net results?. Nevertheless, the total amount of portfolios computed
by neural net is strongly lower than the total portfolios computed by other heuristics
so, even if the quality is high, stand-alone results by neural nets are not suitable for
a complete analysis.

8Hopfield networks[22] are neural network composed of a single layer of neurons fully connected
and are widely applied in combinatorial optimization[46].

®The neural net skill of grasping non linear and underlying-model-lacking relations amongst
variables is well suited for forecasting future returns without relying on the assumption of normally
distributed stock returns. This idea has been exploited in [49] and [59] in order to optimize portfolio-
management, even if the two implementation are different.
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5 Other heuristic approaches

For sake of completeness, in this section we briefly review works that cannot be
said belonging to local search, being oriented to linear programming. Indeed their
algorithms seems to be too problem-specific instead of defining a general strategy,
but these approaches are useful to understand the problem and can serve as compo-
nents of more robust strategies. These works are important because they introduce
the integer formulation, in which assets assume integer (or anyway discrete) values
corrisponding to the actual amount of money to be invested in each asset. This
formulation can easily obtained from the continuous Mean Variance formulation re-
placing (2) and (3) by other equations in order to impose that the return of the
portfolio must be equal to an amount of money obtained by multiplying the initial
wealth times the expected return (42) and that asset weights must sum up to the
initial weight C' (43), even if in the works we consider in this section this requirement
is relaxed allowing that assets weight can be included between a lower and upper
bound (see section 2.1).

n o n
minZZoijxiwj (41)

i=1j=1

subject to

n
Z rix; =1y C (42)
i=1

Y zi=C (43)

x; integer i=1,....,n (44)

Besides works we are going to introduce, integer formulation was also applied in con-
junction with proper meta-heuristics[9][13][17][18], even if the continuous Markowitz
model is the most commonly and widely used. Speranza[48] models the problem
including transaction costs, minimum lots, cardinality, floor and ceiling constraints,
introducing two dummy (binary) variables to determine if a security has fixed trans-
action costs and if it belongs to the portfolio. As the introduction of integer variables
make this problem difficult to solve when the number of assets or desired return rate
increases, the idea is to relax the integer constraint on quantities, transforming the
problem to a linear programming one (to be solved efficiently even when the number
of securities is high) and finding a solution to it. Obtained asset weights are after-
wards rounded to the closest integer and heuristics are applied to force the solution
satisfying capital and rate of return requirements. If the algorithm ends without
solutions, bounds on capital are iteratively re-defined in less restrictive way: In this
way solutions are easier to find. The algorithm (referred to as ROUND-LP) shows
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good performances when the total number of assets is low and when the capital is
large this heuristic method obtains a solution close to the optimal one.

In Mansini and Speranza|35], the formulation of the problem includes minimum
lots and proportional taxes. After stating that in presence of minimum lots the
problem of finding a feasible portfolio is NP-complete, they provide three heuristic
algorithm based upon the idea of solving sub-problems of the original formulation,
involving subsets of initial universe of assets.

In the first heuristic (referred to as SINGLE-LP) they solve the relaxation of the
problem, then using the vector of asset quantities as input of MILP procedure.

As desirable assets can be excluded from the final solution, the second heuristic
(referred to as Reduced—cost—-MILP-heuristic) considers a number of assets greater
than the vector xp of assets i s.t. z; # 0 as input of MILP-procedure, so including
also assets whose quantity in the solution of the relaxed problem is 0.

The third method consists in an iterated routine: After solving the relaxed problem,
the vector xp (previously defined) is used as input of a MILP procedure. After each
step, half of assets ¢ s.t. x; = 0 is deleted and half is replaced in the solution. Process
ends when a limit number of securities has been considered. This third heuristic is
the most effective but requires more computational time, even if the best solution
found with these heuristics methods is obtained after less time than exact ones.
These heuristics performs reasonably better than simple problem specific heuristics
proposed in [48] and they have the advantage of being more general and are also
used in Kellerer et al.[27] in a formulation enriched by introducting fixed transaction
costs and minimum lots. Heuristics are applied over different models:

e the first refers to the case in which investors pay a fixed amount (> 0) for each
security in the portfolio;

e in the second the previous model is enriched because of the introduction of
rounds;

e the third refers to the case in which fixed cost is applied if the amount of money
invested in a security exceeds a minimum threshold (this is a way to facilitate
small investors);

e the fourth represents the generalization of the third by introducing rounds.

The conclusion of this work is that the introduction of fixed costs reduces the number
of securities in the optimal portfolio, and this effect is more evident when introducing
rounds. Increased fixed costs lead to a more risky portfolio as this will include more
risky securities with higher rate of return, but diversification depends more on the
introduction of fixed costs rather than their increase, as the investor bears their
burden when they are introduced, independently from the quantity of assets.
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The same heuristic approach can be used to solve the mutual funds portfolio
selection problem: Mutual funds are portfolios of assets and securities, and they
have become a strong form of saving. As several funds are available on the market,
being generally offered by banks as a form of fidelization, the investor is asked to
choose which funds to select and how much money to invest in each of them in or-
der to achieve the lowest risk for each given return rate. Chiodi et al.[6] tackle this
problem considering minimum lots, entering and management commissions, imple-
menting round-lp, single-lp and another heuristic referred to as mult-lp. In this last
heuristic they define a set of pairs of capital and return rate, solving the relaxed
continuous formulation for each of them. Selected funds for each pair (funds appear-
ing in the solution of the relaxed problem) are pooled in a set S: This set is used
to solve the original integer formulation for each pair capital-return. Using monthly
data, this procedure almost always finds the optimal solution, and error does not
increase significantly when the size increases but decreases when required return (or
capital) increases. This heuristic performs better than round-Ip and single-Ip, even
if the computational cost is higher. Notably, the average number of selected funds
decreases when expected return rate increases.

The shortcoming of these works is the heuristic error measurement: This is de-
fined measuring the deviation from the optimal solution supplied by exact methods
for the same instance. When exact method fail in finding optimal solutions, the
deviation is measured referring to the solution of the relaxed formulation, entailing
an overestimation of error. For low levels of capital this solution does not represent
a good approximation of the optimum, but the higher the invested capital (or the
expected rate of return) the higher the explanating power of this value. We must fi-
nally consider that the more complex the heuristic, the more accurate the result, but
at the same time, the higher the computational time: This can represent a crucial
point for the choice of the heuristic to use, as for lower values of capital or return
rate simpler heuristics seem to provide good performance. In this case the use of
a more complex strategy can reveal itself useless, just improving the performance
measurement of few decimal digits and increasing the running time of more than one
order of magnitude.

The best advantages of these works is their clear approach and formulation, as
they give a good explanation of models, variables, constraints: Generally “meta-
heuristic” oriented papers show lack of clarity in these points that are instead es-
sential for a better understanding of the problem. However the greatest difference
with the literature is the introduction of integer variables and in our opinion this
formulation better captures the underlying problem and facilitates the introduction
of additional features.
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5.1 Effect of costs

We decide to present here a short overview about costs because they have been
discussed in the above cited works, but there are just a few works in the literature
giving a sufficient outlook and treating them correctly in proposed “metaheuristics”.
As stated in Konno and Wijayanayake[30] the total costs follow a non-convex function
on the size of the transaction: At the beginning it is concave up to a certain point
(unit-transaction cost gradually decrease as size increase), then increases linearly to
another certain point (unit-transaction costs are here constant) and then becomes
convex due to the illiquidity premium (unit prices increases due to the shortage of
supply). Total transaction costs are function of several variables: VAT rate, fixed
costs, brokerage rate, illiquidity premium,transaction size,marketable securities, tax
rate. In this scheme an important role is played by illiquidity premium: It can
be introduced in different ways in the formulation but there is empirical evidence
that it is discontinuous over the amount of transaction. Indeed it is general opinion
illiquidity premium function being smooth, but this assumption simplifies real-world
features.

Transaction costs can be plotted as a V-Shaped function and this representation
provide us with a realistic way for taking global transaction costs into account.
Nevertheless just a few authors embedded it in their formulation (e.g. [9], [54], [58]).
More in general, the statum-of-the-art “metaheuristics” literature lacks in including
transaction costs.

We must consider that, even if Modern Portfolio Theory states that diversified
portfolio are preferable to undiversified ones, there is evidence that investors choose
undiversified portfolios. This is due to the action of transaction costs, since they
were not included in the original model. Considering all typologies, global transaction
costs tend to reduce portfolio diversification: This is partially due to the introduction
of fixed costs, while proportional ones do not have effects because they generate only
a decrease in returns rate. Note that this assertion must be taken cum grano salis,
because investor behavior depends on subjective factors too: In Glover et al.[19]
it is explicitly stated that if the investor is risk-averse the portfolio held is more
diversified with taxes and transaction costs, whilst diversification is not requested
by investors with low risk-aversion if taxes an transaction costs are included in the
model. It is clear however that only proportional costs are suitable to be included
in the continuous model, as the remainder is sensitive to the invested amount.

Conclusions
In this work we defined a framework for classifying metaheuristic approaches for

the PSP, introducing the main aspects of the problem (objective function and con-
straints), the general concepts about the application of local search techniques to
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this problem and the main strategies used to solve the problem.

The PSP is only a representative of a class of problem consisting on the man-
agement of portfolio of several nature. There is plenty of scope for applying “meta-
heuristic” techniques to this classes of problems as to date they appear to be not
investigated enough: Indeed features of “metaheuristics” make them suitable to solve
several problems concerning “portfolios”, since the usual PSP can be viewed in dif-
ferent functions and at different abstraction levels (portfolio of assets, optimal funds
consisting in several portfolios, combining mutual funds with different risk profiles
etc.). These problems can be viewed either in a static formulation (as the Markowitz
one) or over a temporal line, hence issues of re-balancing, indez-tracking and re-
optimization arise; furthermore we can consider also financial portfolios, in which
the risk-assessment plays an important role as they consist of credits. Considering
also slightly different classes of problems we find the project-portfolio problem, the
product-portfolio problem (in which a firm must chose the mix of products to be
manufactured or sold on the market). Due to several constraints imposed in order
to satisfy management requirements and to make the model the most realistic as
possible, conventional methods are not able to solve exactly the problem, so each of
this classes can be successfully attacked with “metaheuristics”.

Indeed a further effort must be tackled in order to ground metaheuristics ap-
proaches with theoretical and empirical achievements about the PSP. It may turns
to be useful to move away from the canonical Mean-Variance approach in order to
include real-world features and to help the analysis of markets: To this extent it is
necessary to develop a framework in order to reflect customer behaviour, also includ-
ing transaction costs, recalling that statum-of-the-art literature lacks in including
them in the analysis.
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