
Università degli Studi “G. D’Annunzio”

Dipartimento di Scienze

Filling knapsacks with candies:
Integer Linear Programming

in Fair Division

Marco Dall’Aglio Raffaele Mosca

First draft: July 2004
This version: November 2005

Technical Report no. R-2006-001 Research Series

Filling knapsacks with candies:

Integer Linear Programming

in Fair Division

Marco Dall’Aglio 1 Raffaele Mosca 1

1Dipartimento di Scienze
Università d’Annunzio

Viale Pindaro, 42
65127 — Pescara, Italy

maglio@sci.unich.it, r.mosca@unich.it

First draft: July 2004
This version: November 2005

Abstract. We consider the problem of allocating a finite number of indivisible
items to two players. The search for a minimax allocation can be formulated
as an Integer Linear Programming (ILP) problem, carrying some similarities
with the 0-1 knapsack problem. Typical tools of integer programming, such as
dynamic programming or the branch and bound algorithm can be successfully
adapted to design new procedures in fair division.

Keywords: Fair division, Adjusted Winner procedure, Integer programming

Contents

1 Introduction 3

2 The problem 4

3 A dynamic programming approach 5
3.1 A method from Optimization 0-1 Knapsack 5

4 Relaxing Integer Fair Division: The Adjusted Winner procedure 9
4.1 The Adjusted Winner (AW) algorithm 9
4.2 Computational efficiency of AW . 15
4.3 The maximin problem with initial endowments 17

5 A branch and bound algorithm 19
5.1 A variable elimination test . 20
5.2 The algorithm . 21

A Appendix: The examples in detail 23
A.1 Example 3.1 . 23
A.2 Example 3.2 . 25

B Acknowledgements 27

Technical Report no. R-2006-001 Research Series

1 Introduction

This paper presents two different algorithms for allocating a set of indivisible items
between two players with subjective preferences over the items.

While most of the literature in fair division theory deals with with one or more
completely divisible goods (such as cakes or pieces of land), a series of papers by
Brams with several coauthors (see [3] and [4]) drew attention on the problem of
allocating several indivisible items.

When it comes to the design of specific procedures, however, it turns out that
most of the proposals devise some technique to treat some, or all, of the contended
items as divisible. This is the case of randomization, where items are given according
to a probability distribution, or of side payments to compensate the giving up of
some item. As noted in [8], there are situations where these methods are impractical
or impossible to implement.

If we focus on methods that deal exclusively with the allocation of indivisible
items, with no side actions to mitigate the discontent of some players, we find, quite
surprisingly, a very narrow choice. A recent addition to the classical methods of
strict and balanced alternation, described in [5] and [6], was given by Herreiner and
Puppe in [8], with their descending demand procedure. Each player, in turn, declare
their most preferred bundle (i.e. a collectio0n of items) until a feasible arrangement
is met.

Equally short is the list of papers where programming techniques are used in the
design of fair division procedures. In [9] Kuhn defines a linear program that has the
Knaster rule for the efficient allocation of items with side payments as its solution.
Demko and Hill [7] define a maximin optimization problem. They show that this
problem is computationally intractable and provide a lower bound for optimal value.
The second half of the paper deals with randomized solutions for the same problem
and how these can be computes through linear programming and duality techniques.

We adopt the same framework used in [7], focusing on the case of two players.
Each player assigns a non-negative value to each item. The evaluations are additive,
but no normalization is required, so the total value of the items may differ for the
two players. As in [7] we investigate the close relationship between fair division
theory and operations research, but we take a different direction. We note that this
fair division problems bears some formal analogy with the classical 0-1 knapsack
problem. We study this resemblance with the aim of providing new procedures
in fair division. We come up with two algorithms, based respectively on dynamic
programming and branch-and-bound techniques. The former is computationally fast
and partially mitigates the negative results stated in [7], while the latter keeps the
procedural appeal of a widely used procedure in fair division: the Adjusted Winner
algorithm.

3

2 The problem

We consider the following problem.
Let M = {1, . . . , m} be a set of items which have to be divided between two

players. Let a1, a2, . . . , am (b1, b2, . . . , bm resp.) be the non-negative evaluations of
the various objects by Player 1 (Player 2, resp.).

An integer allocation for the m items is described by a vector x = (x1, . . . , xm) ∈
{0, 1}m. If xi = 1 (resp. xi = 0), then item i goes to Player 1 (resp. Player 2).

The satisfaction of the two players is given by, respectively,

v1(x) =
∑

i∈M

aixi v2(x) =
∑

i∈M

bi(1− xi) (1)

A popular interpretation of this model is the following: two children, Alice and
Bob, are given a set of m hard candies to be shared between themselves. Candies
are indivisible and each of them is assigned to one of the children. Children value
the sweets according to their personal taste. An allocation is sought that is optimal
according to the social welfare criterion. Here, the maximin criterion is considered.

The 2-player Integer Fair Division (IFD) problem is the following:
Find an integer allocation x = (x1, . . . , xm) that achieves

z∗ = max
x∈{0,1}m

min{v1(x), v2(x)} (IFD)

This problem can be written as an integer linear program

max z
s.t.

∑
i∈M aixi ≥ z∑
i∈M bi(1− xi) ≥ z

xi ∈ {0, 1} i = 1, . . . ,m

(2)

As noted in [7], (IFD) is NP-hard. In fact, assume that ai = bi for every i ∈ M :
then solving IFD gives an answer to the problem of finding a partition of a set of
positive integers in two subsets of equal sum, which is NP-complete (see for instance
[14]).

A solution for (IFD) exists, but may not be unique. Moreover, while a maximin
solution is always equitable in the divisible case, the players’ value may differ in
the present situation. In particular, we may single out the maximin allocation that
maximizes the gap between the preferences, |v1(x) − v2(x)|. This is referred to as
the equimax (or Rawls, or Dubins-Spanier) allocation. This also corresponds to the
balanced solution in [8].

In what follows, we are primarily concerned with finding a maximin solution.
Within the framework of each method we report whether we are able to find all the
maximin solutions.

4

3 A dynamic programming approach

3.1 A method from Optimization 0-1 Knapsack

We refer to a method introduced in [13], p. 420, for Optimization 0-1 Knapsack
problem. For k = 1, ..., m, define M(k) = {1, ..., k} ⊆ M . Let A(m) =

∑
i∈M ai

and B(m) =
∑

i∈M bi. Consider

zk(d) = max
x∈Bk

{
∑

i∈M(k)

aixi :
∑

i∈M(k)

bi(1− xi) ≥ d} for d = 0, 1, ..., B(m) (3)

Let z∗ be the value of an optimal solution of IFD. Then one has that

z∗ = max {min{zm(d), d} : d = 0, 1, ..., B(m)} . (4)

Therefore z∗ can be computed once the values zm(d) for d = 0, 1, ..., B(m) are known.
We proceed recursively, initializing the recursion with

z1(d) =

a1 if d ≤ 0
0 if 0 < d ≤ b1

−∞ otherwise (i.e., the problem is meaningless) .
(5)

Note that if xk = 1 in an optimal solution of (3) then

zk(d) = ak + max
x∈Bk

∑

i∈M(k−1)

aixi :
∑

i∈M(k−1)

bi(1− xi) ≥ d

 = ak + zk−1(d)

On the other hand, if xk = 0 in an optimal solution of (3) then

zk(d) = max
x∈Bk

∑

i∈M(k−1)

aixi :
∑

i∈M(k−1)

bi(1− xi) ≥ d− bk

 = zk−1(d− bk)

Hence for k = 2, ..., m and d = 0, 1, ..., B(m), we obtain

zk(d) = max{ak + zk−1(d), zk−1(d− bk)} (6)

A backtracking procedure yields the optimal solution. The basic idea is to start
with m and d∗, an integer that attains optimality in (4) and plug zm(d∗) in (6).
Set xm = 1 or xm = 0 depending on which member attains the maximum in the
recursion formula. Continue recursively, starting with zm−1(d∗) or zm−1(d∗ − bm),
depending on the value of xm.

Example 3.1. Suppose Alice and Bob share 8 hard candies with the following pref-
erences

5

candy 1 2 3 4 5 6 7 8
Alice 12 18 50 40 20 20 10 5
Bob 5 10 35 30 15 22 30 28

The dynamic procedure yields the optimal value

z∗ = max {min{z8(d), d}, d = 0, 1, . . . , 175} = 102

The backtracking procedure returns the optimal solution

x∗1 = x∗3 = x∗4 = 1 x∗2 = x∗5 = x∗6 = x∗7 = x∗8 = 0

It will be shown later that this optimal solution is also unique.

In order to obtain all the maximin solutions, the symmetric problem with the
roles of the two players reversed, should be considered as well.

Example 3.2. Suppose that 4 candies are to be shared, with values,

candy 1 2 3 4
Alice 32 28 22 18
Bob 25 25 25 25

The dynamic programming approach to (IFD) returns the following solution

x∗1 = x∗2 = 1 x∗3 = x∗4 = 0 (7)

with value z∗ = 50. This solution is not unique. In fact, if we swap the objective
function and the constraint in (3) (and let d range within 0 and A(m)), we obtain
a whole set of new solutions

x∗1 = x∗3 = 1 x∗2 = x∗4 = 0
x∗2 = x∗3 = 1 x∗1 = x∗4 = 0
x∗1 = x∗4 = 1 x∗2 = x∗3 = 0

It is easy to check the the solution (7) is the unique equimax solution.

The method based on dynamic programming does not seem to lend itself easily to
a procedural interpretation. Instead, it offers good results in terms of computational
efficiency. Assume for the rest of the section that all the evaluation scores ai and bi

(i ∈ M) are non-negative integers. In a fashion similar to [13], it easy to show that
each zm(d) can be computed in time O(mB(m)), and z∗ can be computed in the
same order of time. Equivalently, we may define

amax = max{ai, i ∈ M} bmax = max{bi, i ∈ M} .

6

Since B(m) ≤ mbmax, the computational time needed to solve (IFD) is of order
O(m2bmax). Consequently, the computational effort needed for a large number m of
items, depends on the growth rate of bmax, or, equivalently, of B(m). If the growth
of bmax is bounded by a polynomial, dynamic programming works efficiently, even
for a large m.

As already noted in the examples, the roles of the players in the optimization
problem may be reversed. Thus, if bmax grows too fast, one may swap the roles
of the two players in (3) in the hope that the growth of amax is slower. The
time needed for completing the whole procedure can be more properly stated as
O(m2 min{amax, bmax}).

What happens if both amax and bmax grow fast with m? Under an additional
assumption little is lost: we can still use a polynomial time dynamic programming
procedure that approximates the solution of the original problem to any fixed degree
of precision. The additional assumption requires the existence of a p ∈ (0, 1) such
that, eventually in m,

z∗ ≥ p min{amax, bmax} . (8)

A sufficient condition for (8) to hold is that amax and bmax always refer to different
items. Alternatively, we may require that for some p′ ∈ (0, 1) and eventually in m

either amax ≤ p′A(m) or bmax ≤ p′B(m) . (9)

In fact, suppose that the first inequality holds and amax and bmax are both
associated to the same item. That item is assigned to Player 2, while Player 1 gets
the rest, scoring A(m)− amax ≥ (1

p′ − 1)amax. Thus

z∗ ≥ min
{

1− p′

p′
, 1

}
min{amax, bmax} .

The same is true when the second inequality in (9) holds.
For an overview on results in approximation we refer to [2], [11] and [13]. The

following result, in particular, is based upon a truncation technique: the least signif-
icant digits of each (integer) coefficient ai and bi are replaced by zeroes. This result
is an adaptation of Theorem 11.5 in [2].

Proposition 3.3. Suppose (8) holds for some p ∈ (0, 1). For any ε > 0, there exists
an algorithm that runs in time O

(
m3

ε p

)
and returns a feasible solution with value z̄∗

such that
z̄∗ ≥ (1− ε)z∗

Proof. For a fixed nonnegative integer t we proceed with the truncation of the t least
significant digits of each coefficient. With i ∈ M let âi = bai/10tc and āi = 10tâi.
Similarly, define b̂i = bbi/10tc and b̄i = 10tb̂i. Next, we obtain B̄(m), z̄m(d), z̄∗ and

7

x̄∗ by replacing ai and bi with āi and b̄i on the original definitions of, respectively,
B(m), zm(d), z∗ and x∗.

The following inequalities are trivial:
∑

i∈M

aix
∗
i ≤

∑

i∈M

āix
∗
i + m10t (10)

∑

i∈M

bi(1− x∗i) ≤
∑

i∈M

b̄i(1− x∗i) + m10t (11)

Let x̄′ be the solution corresponding to z̄m(
∑

i∈M b̄i(1− x∗i)). By the optimality of
x̄′ it follows that ∑

i∈M

āix
∗
i ≤

∑

i∈M

āix̄
′
i (12)

and by the feasibility of the same solution
∑

i∈M

b̄i(1− x∗i) ≤
∑

i∈M

b̄i(1− x̄′i) (13)

Also, since z̄∗ is the solution of (4) (with the appropriate coefficients), we have

min

{∑

i∈M

āix̄
′
i,

∑

i∈M

b̄i(1− x̄′i)

}
≤ z̄∗ (14)

The inequalities (10), (11), (12), (13) and (14) merge into

z∗ = min

{∑

i∈M

aix
∗
i ,

∑

i∈M

bi(1− x∗i)

}
≤ min

{∑

i∈M

āix
∗
i ,

∑

i∈M

b̄i(1− x∗i)

}
+

m10t ≤ min

{∑

i∈M

āix̄
′
i,

∑

i∈M

b̄i(1− x̄′i)

}
+ m10t ≤ z̄∗ + m10t

Therefore, z∗ ≤ z̄∗ + m10t.
Since (8) holds,

z∗ − z̄∗

z∗
≤ m 10t

p min{amax, bmax} .

Two cases may occur:

1. m/(p min{amax, bmax}) > ε. Then,

min{amax, bmax} <
m

ε p

and we can solve (IFD) with the exact algorithm, in time

O
(
m2 min{amax, bmax}

)
= O

(
m3

ε p

)

8

2. m/(p min{amax, bmax}) ≤ ε. We find a nonnegative integer t such that

ε

10
<

m 10t

p min{amax, bmax} ≤ ε

Here we apply the exact algorithm to the instance where ai and bi are replaced
by âi and b̂i, respectively. This is called the scaled instance. Since

min{âmax, b̂max} = 10−t min{āmax, b̄max} ≤ 10−t min{amax, bmax} <
10m

ε p
,

we conclude that

O
(
m2 min{âmax, b̂max}

)
= O

(
m3

ε p

)

4 Relaxing Integer Fair Division: The Adjusted Winner
procedure

Suppose now that children are given muffins (with different flavors), instead of hard
candies. Each muffin can be given in its entirety to one of the children – or it can
be split (not necessarily in equal parts). We are now dealing with the division of
m divisible items between two players. We introduce a linear program which is a
relaxation of (IFD). No general method – such as the simplex – is needed to solve
this linear program. Instead, we will show that a popular procedure, known as
Adjusted Winner, (AW) does the job.

4.1 The Adjusted Winner (AW) algorithm

It is assumed that all items i ∈ M are completely divisible and homogeneous. Thus
player 1 can receive a part xi ∈ [0, 1] of item i, while player 2 gets the rest. The
two players will benefit, respectively, by xiai and (1− xi)bi from the splitting. The
overall satisfaction of each player is still given by (1).

We look for an allocation x ∈ [0, 1]m that achieves

z+ = max
x∈[0,1]m

min{v1(x), v2(x)} (DFD)

Problem (DFD) can be written as a linear program

max z
s.t.

∑
i∈M aixi ≥ z∑
i∈M bi(1− xi) ≥ z

0 ≤ xi ≤ 1 i = 1, . . . ,m

(15)

9

An allocation x ∈ [0, 1]m is equitable if

v1(x) = v2(x) ,

and is (strong) Pareto optimal (or efficient) if there is no other allocation that weakly
dominates x, i.e., there is no other allocation x̃ such that vi(x̃) ≥ vi(x), i = 1, 2, with
a strict inequality for at least one of the players. Equivalently, x is Pareto optimal
if, whenever x̃ is any other allocation for which

vi(x̃) ≥ vi(x) i = 1, 2 ,

then
vi(x̃) = vi(x) i = 1, 2 .

The Adjusted Winner (AW) algorithm was introduced by Brams and Taylor in [5]
(with many applications analyzed in [6]). Their aim was to provide a step-by-step
procedure returning a partition that is equitable, Pareto optimal and envy-free (in
the sense that none of the player feels that the other player has received more than
him/herself). Here we show that the very same solution solves (DFD). A brief
sketch of the algorithm follows – for a more detailed account we refer to [5] and [6].
There are two phases:

the “winning” phase. each player temporarily receives the items that he/she val-
ues more than the other player. The total score of each player is computed

the “adjusting” phase. Items are transferred, one at a time from the “richer”
player to the “poorer” one, starting with the items with ratio ai/bi closer to
1. To reach equitability one item may be split into two parts, the fraction
assigned to each player being determined by an equation (see p.70 in [5] or
p.74 in [6])

In order to show how the AW algorithm solves (DFD) we restate it. The aim is to
enhance its mathematical structure. The price we pay with this translation is the
loss of the procedural appeal of AW. We keep in mind, however, that the solution
for (DFD) can always be implemented as a step-by-step procedure that does not
require external referees, nor obscure computer programs.

an alternative version of the Adjusted Winner

Labelling Re-label the items according to the decreasing order of the preferences’
ratio. The m items are numbered 1 to m so that

a1

b1
≥ a2

b2
≥ . . . ≥ am

bm
(16)

10

Splitting Look for the index r ∈ M such that
r−1∑

i=1

ai ≤
m∑

i=r

bi

and
r∑

i=1

ai >
m∑

i=r+1

bi

with the assumptions
0∑

i=1

ai =
m∑

i=m+1

bi = 0 . (17)

Pick the solution x∗ = (x∗1, . . . , x
∗
m)

x∗1 = · · · = x∗r−1 = 1
x∗r+1 = · · · = x∗m = 0 (18)

x∗r =
∑m

i=r bi −
∑r−1

i=1 ai

ar + br

The value of the procedure is

z+ =
r−1∑

i=1

ai + xrar

Proposition 4.1. The AW algorithm solves (DFD) solves (15). Therefore, the AW
solution is also minimax.

We will show that the allocation (18) solves (DFD).
Some preliminary results are required. First of all consider the allocation range.

D = {(v1(x), v2(x)) : x ∈ [0, 1]m}
Lemma 4.2. D is a convex and compact set in R2.

Proof. Pick x, y ∈ [0, 1]m and γ ∈ [0, 1]. Then, for i = 1, 2

vi(γx + (1− γ)y) = γvi(x) + (1− γ)vi(y)

and D is convex. Compactness is a consequence of the compactness of [0, 1]m and
the continuity of the vi’s. More in detail, D ⊂ [0, A(m)]×[0, B(m)], so D is bounded.
Consider now a sequence {xn} in [0, 1]m for which (v1(xn), v2(xn)) converges. Since
[0, 1]m is compact, there exists a subsequence {xn′} converging to some x∗ ∈ [0, 1]m.
Since v1 and v2 are continuous, we have

(v1(xn′), v2(xn′)) → (v1(x∗), v2(x∗)) ∈ D
and D is closed.

11

Next we characterize the maximin solutions.

Lemma 4.3. A minimax solution always exists. An allocation is maximin if and
only if it is Pareto optimal and equitable.

Proof. The proof relies partly on graphical arguments. We draw the set D of all
the allocations’ values. An allocation x is Pareto if there is no other point of D in
the upper quadrant pointed on (v1(x), v2(x)) (with the exception of x itself). The
allocation is equitable if (v1(x), v2(x)) lies on the bisector of the positive quadrant.

Figure 1. Maximin (x∗), Pareto (x1), Equitable (x2) allocations

Let Q be the family of upper quadrants pointed on the equitable allocations. A
maximin solution is obtained by considering the supremum of the quadrants in Q
that intersects D (See Figure 1). Since D is compact, the supremum is attained, and
a maximin solution x∗ exists. This solution is also equitable. Argue by contradiction
and suppose, without loss of generalilty, that v1(x∗) < v2(x∗). Since D is convex, it
contains the segment with endpoints (v1(x∗), v2(x∗)) and (A(m), 0). This segment
intersects the bisector of the positive quadrant at some point (t, t) with t > v1(x∗)
(see Figure 2). Therefore x∗ cannot be maximin.

Also, a maximin, equitable solution must be Pareto as well. In fact, the upper
quadrant pointed on this solution is a member of Q (see Figure 3). No other point
of D lies on the border (for the above argument on equitability) nor on the interior
of the quadrant (for the allocation is maximin). To prove the converse implication,
suppose x is Pareto and equitable. No other point of D lies on the upper quadrant
pointed on (v1(x), v2(x)) (see Figure 3). Since this quadrant is in Q, x is maximin.

12

Figure 2. A maximin allocation is equitable

Following Akin [1], we give an operational description of the Pareto optimal
allocations. For any w ∈ [0, 1] and i = 1, . . . , m define

qi(w) = max {w ai, (1− w) bi}

Lemma 4.4. For any allocation x = (x1, . . . , xm) ∈ [0, 1]m

w ai xi + (1− w) bi (1− xi) ≤ qi(w) for all i = 1, . . . , m (19)

and
w v1(x) + (1− w) v2(x) ≤

∑

i∈M

qi(w). (20)

Moreover
w v1(x) + (1− w) v2(x) =

∑

i∈M

qi(w) (21)

if and only if

xi = 1 whenever w ai > (1− w) bi (22)
xi = 0 whenever w ai < (1− w) bi

13

Figure 3. A maximin allocation is equitable

Proof. Since xi, 1 − xi ≥ 0, then w ai xi ≤ qi(w) xi and (1 − w) bi (1 − xi) ≤
qi(w) (1 − xi) for all i ∈ M . Add the two inequalities to obtain (19). Sum over
all i’s to obtain (20). If (22) holds, then (19) holds with a strict equality sign for
each i and, therefore (21) holds true. Conversely, suppose that (21) holds and,
without loss of generality, that for some j, w aj > (1 − w) bj but xj < 1. Then
w aj xj + (1−w) bj(1− xj) < qj(w) and w v1(x) + (1−w) v2(x) <

∑
i∈M qi(w). A

contradiction.

Lemma 4.5. If (21) holds for some w ∈ (0, 1), then x is Pareto optimal.

Proof. Consider another allocation x̂ that dominates x. Since w, 1 − w > 0 this
implies

w v1(x̂) ≥ w v1(x) and (1− w) v2(x̂) ≥ (1− w) v2(x) (23)

If we apply (20) to x̂ and (21) to x, we obtain

w v1(x̂) + (1− w) v2(x̂) ≤
∑

i∈M

qi(w) = w v1(x) + (1− w) v2(x)

A comparison with (23) yields

v1(x̂) = v1(x) and v2(x̂) = v2(x)

Thus x is Pareto optimal.

14

Lemma 4.6. The AW procedure yields an equitable allocation

Proof.

v1(x∗) =
r−1∑

i=1

ai + ar

(∑m
i=r bi −

∑r−1
i=1 ai

ar + br

)
=

br
∑r−1

i=1 ai + ar
∑m

i=r bi

ar + br

and

v2(x∗) =
m∑

i=r+1

bi + br

(
1−

∑m
i=r bi −

∑r−1
i=1 ai

ar + br

)
=

m∑

i=r+1

bi + br

(∑r
i=1 ai −

∑m
i=r+1 bi

ar + br

)
=

ar
∑m

i=r+1 bi + br
∑r

i=1 ai

ar + br
=

ar
∑m

i=r bi + br
∑r−1

i=1 ai

ar + br
= v1(x∗)

Proof of Proposition 4.1. By Lemma 4.6, the AW procedure yields an equitable pro-
cedure. By virtue of Lemma 4.3 it only remains to show that x is also Pareto optimal.
The AW procedure finds a λ > 0 such that

xi = 1 whenever
ai

bi
> λ (24)

xi = 0 whenever
ai

bi
< λ

Since there exists a unique w ∈ (0, 1) such that

λ =
1− w

w

then (24) is equivalent to (22), and, by Lemma 4.5, x is Pareto optimal.

4.2 Computational efficiency of AW

The first step of the alternative version of AW a sorting of the m items is required.
Since this is the most time-consuming operation in the algorithm and since sorting
m items can be done in time O(m log m), the whole algorithm requires the same
order of time. It is easy to verify, however, that the essence of the AW procedure is
to define a λ∗ > 0 such that if

if ai
bi

> λ∗ then xi = 1
if ai

bi
< λ∗ then xi = 0

if ai
bi

= λ∗ then xi is split
(25)

15

and the splitting occurs so that the resulting partitions are equitable. Therefore, if
λ∗ is known, the linear programming relaxation can be solved in linear time. We now
give an algorithm that finds this λ∗ and solves the linear programming relaxation in
O(m) time.

An efficient version of the Adjusted Winner Let M1 and M0 denote the
variables fixed to 1 and 0 respectively, and let Mf be the free variables. Given a
candidate value λ, let M> = {j ∈ Mf : aj/bj > λ}, M= = {j ∈ Mf : aj/bj = λ},
and M< = {j ∈ Mf : aj/bj < λ}. Also let

S1(λ) =
∑

j∈M1∪M>

aj T1(λ) =
∑

j∈M\(M1∪M>)

bj

S2(λ) =
∑

j∈M1∪M>∪M=

aj T2(λ) =
∑

j∈M\(M1∪M>∪M=)

bj .

Inizialization: M1 = M0 = ∅; Mf = M .

Step 1: Let λ be the median of {aj/bj : j ∈ Mf}.

Step 2: Construct the sets M>, M=, M<, and calculate S1(λ), T1(λ), S2(λ), T2(λ).

i. S1(λ) > T1(λ) implies that λ is too small. Set M0 := M0 ∪M= ∪M< and
Mf := M>. Return to Step 1.

ii. S2(λ) < T2(λ) implies that λ is too large. Set M1 := M1 ∪M> ∪M= and
Mf := M<. Return to Step 1.

iii. If S1(λ) = T1(λ) or S2(λ) = T2(λ), then one immediately obtains an
optimal integer solution (for example, if S1(λ) = T1(λ) then an optimal
solution is obtained by setting M1 := M1 ∪M> and M0 := M0 ∪M= ∪
M<). Otherwise, if S1(λ) < T1(λ) and S2(λ) > T2(λ) take the elements
of M= in arbitrary order. If M= = {j(1), ..., j(p)}, find q such that:

S1(λ) +
q−1∑

i=1

aj(i) ≤ T2(λ) +
p∑

i=q

bj(i)

and

S1(λ) +
q∑

i=1

aj(i) > T2(λ) +
p∑

i=q+1

bj(i) .

Set M1 := M1 ∪ {j(1), ..., j(q − 1)}, r = j(q), and M0 := M0 ∪ {j(q +
1), ..., j(p)}.

16

The algorithm terminates with an optimal solution to AW with xj = 1 for j ∈ M1,
xj = 0 for j ∈ M0, and xr = (

∑
j∈M0∪{r} bj −

∑
j∈M1 aj)/(ar + br). To verify

that the algorithm has O(m) running time, one can use the corresponding argument
introduced in [13], based on the fact that the median of k numbers can be found in
O(k) time.

4.3 The maximin problem with initial endowments

The AW procedure is flexible enough to cover the situation where the two players
own initial endowments. This variation is interesting in its own rights. An optimal
allocation is sought when the utility of each player is the sum of the initial endowment
and the values of the items (or fractions thereof) received. Our interest in this
problem, however, is mainly instrumental. In order to implement a branch-and-
bound method for the indivisible items’ case we need to solve several instances
of the linear relaxed problem in which certain items are forcedly assigned to the
players. These items represent their initial wealth. Let α > 0 (resp. β > 0) the
initial endowment of player 1 (pl.2, resp.) The utility is now given by

w1(x) = α +
∑

i∈M

xiai = α + v1(x)

w2(x) = β +
∑

i∈M

(1− xi)bi = β + v2(x)

The LP problem of interest is now:

max z
s.t. α +

∑
i∈M aixi ≥ z

β +
∑

i∈M bi(1− xi) ≥ z
0 ≤ xi ≤ 1 i = 1, . . . ,m

(DFD-ie)

Once again the maximin solution coincides with the Pareto and equitable solution,
but only when the value of the assignable items according to the poorer player is
larger or equal to the difference between the initial endowments. We propose the
following:

The Adjusted Winner procedure with initial endowments (AW-ie)

1. Label the items according to the preferences ratios as in (16)

2. If
α +

∑

i∈M

ai ≤ β

then x∗1 = x∗2 = . . . = x∗m = 1 and z+ = α +
∑

i∈M ai

17

3. If
β +

∑

i∈M

bi ≤ α

then x∗1 = x∗2 = . . . = x∗m = 0 and z+ = β +
∑

i∈M bi

4. Otherwise

• look for the index r ∈ M such that

α +
r−1∑

i=1

ai ≤ β +
m∑

i=r

bi

and

α +
r∑

i=1

ai > β +
m∑

i=r+1

bi

with the usual assumptions (17) when r = 1 or r = m.

• The solution in this case will be

x∗1 = · · · = x∗r−1 = 1
x∗r+1 = · · · = x∗m = 0 (26)

x∗r =
β − α +

∑m
i=r bi −

∑r−1
i=1 ai

ar + br

and

z+ = α +
r−1∑

i=1

ai + xrar

Proposition 4.7. The allocation (26) solves (DFD-ie).

In this case the utility of the two player is given, respectively, by w1(x) = α + v1(x)
and w2(x) = β + v2(x) and the allocation range D̃ is simply a translation of the
allocation range D by (α, β), and is thus convex and compact by Lemma 4.2.

Proof. Case 1. Since α +
∑

i∈M a1xi ≤ β, then x ≤ y for any (x, y) ∈ D̃. Therefore,
(α +

∑
i∈M a1xi, β) obtained when x ≡ 1, maximizes the minimax criterion. A

similar reasoning applies for case 2.
For case 3 we only need to show that the AW-ie algorithm yields an equitable,

Pareto-optimal allocation. The initial endowment does not change the characteri-
zation of Pareto-optimality . As for the AW procedure, the AW-ie algorithm fixes
a λ > 0 such that (24) holds. Therefore, by Lemma 4.5 the allocation returned by
AW-ie is Pareto-optimal.

18

Equitability of the allocation is obtained in a manner similar to Lemma 4.6. In
fact,

w1(x∗) = α +
r−1∑

i=1

ai + ar

(
β − α +

∑m
i=r bi −

∑r−1
i=1 ai

ar + br

)
=

αbr + br
∑r−1

i=1 ai + βar + ar
∑m

i=r bi

ar + br

and

w2(x∗) = β +
m∑

i=r+1

bi + br

(
1− β − α +

∑m
i=r bi −

∑r−1
i=1 ai

ar + br

)
=

β +
m∑

i=r+1

bi + br

(
α− β +

∑r
i=1 ai −

∑m
i=r+1 bi

ar + br

)
=

αbr + βar + ar
∑m

i=r+1 bi + br
∑r

i=1 ai

ar + br
=

αbr + βar + ar
∑m

i=r bi + br
∑r−1

i=1 ai

ar + br
= w1(x∗)

5 A branch and bound algorithm

When solving the maximin allocation problem (IFD) there is a finite number of
possible candidates to choose from. In principle the solution can be obtained in finite
time by computing the value of each allocation for the two players. This process
can be considerably speeded up if we consider a branch-and-bound technique that
splits the original problem into smaller subproblems and uses upper bounds to avoid
exploring certain parts of the set of feasible integer solutions. This approach may
be not as fast as the one based on dynamic programming, but it makes repeated use
of the Adjusted Winner procedure with initial endowment and keeps the procedural
character of the latter.

In what follows, we will consider a series of constrained subproblems in which
some of the items have already been assigned to the players. Let A,B ⊂ M , with
A ∩ B = ∅. Let S(A,B) be the constrained problem in which the items in A (B,
resp.) are assigned to player 1 (pl.2, resp.), i.e., xi = 1 for each i ∈ A (xi = 0 for
each i ∈ B). S(∅, ∅) denotes the original (unconstrained) problem.

For a given couple of disjoint index sets, A,B in M , let x̄(A,B) denote a feasible
allocation for the constrained problem and let z̄(A,B) denote the corresponding

19

value. Moreover, let x∗(A,B) and z∗(A,B) denote the solution and the value of
S(A,B). Finally let x+(A,B) and z+(A,B) be, respectively, the solution and value
for the linear relaxation of S(A,B), i.e. for the case where splitting of the contended
items is allowed. Clearly, the following holds for each couple of A and B:

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) (27)

The results in Section 4 can be used to compute x+(A,B) and z+(A,B). In par-
ticular we set α =

∑
i∈A v1(xi) and β =

∑
i∈B v2(xi), and divide the remaining

m′ = |M ′| items according to the AW-ie procedure. Since x+(A,B) contains at
most one fractional component, x̄(A,B) may be obtained by approximating the
fractional coordinate to the nearest integer, 0 or 1.

5.1 A variable elimination test

The branch-and-bound procedure defines a series of subproblems in which an increas-
ing numbers are forcedly assigned to one player or the other. Since the procedure
becomes simpler as the number of pre-assigned items increases,and following [13],
p.452, we consider a variable elimination test that, for any given subproblem, checks
whether additional items can be assigned priori to any further analysis.

Let A,B ⊂ M be a couple of disjoint sets of items and take i ∈ M ′ = M \(A∪B).

Proposition 5.1. (a) If
z+(A ∪ {i}, B) < z̄(A,B) (28)

then x∗(A,B ∪ {i}) solves S(A,B), while x∗(A ∪ {i}, B) does not.

(b) If
z+(A,B ∪ {i}) < z̄(A,B) (29)

then x∗(A ∪ {i}, B) solves S(A,B), while x∗(A,B ∪ {i}) does not.

Proof. By assumption and (27) we have

z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B) < z̄(A,B) ≤ z∗(A,B)

So x∗(A∪{i}, B) cannot be a solution for S(A,B). If this is the case, then x∗(A,B∪
{i}) must be a solution for the same problem. Part (b) is established symmetrically.

The result simply states that whenever condition (28) ((29), resp.) occurs, then
S(A,B) can be replaced by S(A,B∪{i}) (S(A∪{i}, B), resp.). When the two sides
of (28), or (29), attain equality, there is a partial extension of the previous result:

Proposition 5.2. (a) If z+(A ∪ {i}, B) ≤ z̄(A, B), then either x∗(A,B ∪ {i}) or
x̄(A, B) solve S(A,B).

20

(b) If z+(A,B∪{i}) ≤ z̄(A,B), then either x∗(A∪{i}, B) or x̄(A,B) solve S(A,B).

(c) If z+(A ∪ {i}, B) ≤ z̄(A,B) and z+(A,B ∪ {i}) ≤ z̄(A,B), then x̄(A,B) solves
S(A,B).

Proof. (a) By assumption

z+(A ∪ {i}, B) ≤ z̄(A, B) ≤ z∗(A,B)

Assume now that x∗(A,B ∪ {i}) does not solve S(A,B). Then x∗(A ∪ {i}, B) will
work instead, and thus

z∗(A,B) ≤ z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B)

Comparing the two inequalities, we conclude that z̄(A, B) = z∗(A,B) and x̄(A,B)
solves S(A, B). Part (b) is proved with a symmetrical argument.

(c) By definition

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) ≤ max{z+(A ∪ {i}, B), z+(A,B ∪ {i})}

while the hypotheses reads

max{z+(A ∪ {i}, B), z+(A,B ∪ {i})} ≤ z̄(A,B)

Thus x̄(A,B) solves S(A,B).

The use of Proposition 5.2 is more subtle: when situation (a) occurs than we
replace S(A,B) with S(A, B∪{i}) and continue with the sub-partitioning to obtain
a solution x̃. This solution is then compared with x̄(A, B). The one with the higher
value is the solution for (IFD).

At first sight, Proposition 5.2 is more powerful than Proposition 5.1 since it
binds more items to the players, thus making the problem simpler. Using this result,
however, may result in the loss of some solutions. Part (a) of the statement does not
prevent x∗(A ∪ {i}) from being a possible solution for S(A,B) (and a symmetrical
conclusion holds for part (b). So, if the goal is to capture all the solutions for (IFD),
Proposition 5.1 is the one to choose.

The problem remaining after the elimination test has been carried out is called
the reduced problem. Note that λ∗ for the reduced problem is the same as that for
the original problem.

5.2 The algorithm

All the elements are set to formulate a branch-and-bound algorithm for the maximin
problem with indivisible items (IFD). The algorithm follows the general scheme for

21

branch-and-bound, where the original problem S(∅, ∅) is recursively split into a series
of constrained problems with some of the items assigned in advance to one player
or the other. As usual for this kind of algorithms, it is convenient to represent
the splitting process with a tree graph. When a subproblem cannot yield any more
candidates for the solution of the original problem, the branch corresponding to that
subproblem is cut (or pruned) and no other branch generates from that node of the
tree.

The general framework is adapted to the peculiar features of the problem in
question. For instance, the linear relaxation of each subproblem has a twofold pur-
pose: on one hand it gives an upper bound for the value of the integer solution, but
when the solution for the linear relaxation is not integer, it also suggests how to
operate the splitting, by assigning the item corresponding to the unique fractional
component to one player or the other.

In building the tree, several integer solutions are met and the best of them (in
terms of objective function) are recorded. Here we are interested in finding all the
solutions to (IFD). Therefore X̄ will denote the set of best solutions met so far,
while z̄ is their common value.

Each subproblem S(A,B) may have three different labels attached to it: “new”,
“open” or “close”: a subproblem is new when its linear relaxation has not been
computed yet; once the computation occurs, the problem is open or close depending
on whether the solution for the relaxation is integer or not. Furthermore, a sub-
problem may also be closed when its upper bound is smaller than the best current
admissible solution. Open problems are split according to the above mentioned rule.
The algorithm ends when all the subproblem are closed.

The algorithm runs as follows:

Initialization. Set X̄ = ∅ and z̄ = −∞. Label S(∅, ∅) as new.

The generic cycle is made of the following steps

Compute bounds. For any new subproblem S(A,B) perform the variable
elimination test derived from Proposition 5.1 and denote with S(A′, B′)
the resulting subproblem with (possibly) more items preassigned to the
players.

• Compute x+(A′, B′) and z+(A′, B′) using the AW-ie algorithm.
• Examine x+(A′, B′).

– If x+(A′, B′) is integer then set x̄(A′, B′) = x+(A′, B′) and z̄(A′, B′) =
z+(A′, B′). Label S(A′, B′) as close.

– If x+(A′, B′) has a fractional component then set x̄(A′, B′) =
rnd(x+(A′, B′)) with corresponding value z̄(A′, B′). Label S(A′, B′)
as close.

22

• Update the optimal set

– If z̄(A′, B′) > z̄ then set z̄ = z̄(A′, B′) and X̄ = {x̄(A′, B′)}.
– If z̄(A′, B′) = z̄ and x̄(A′, B′) /∈ X̄ then add this solution to X̄.

List and close List the open subproblems. Close all the S(A,B) such that

z+(A,B) < z̄ . (30)

If there is no open subproblem left than exit the algorithm and return X̄
as the optimal solution set with value z̄.

Choose and split Choose the open problem S(A,B) with higher upper bound
z+(A,B). The relaxed solution x+(A,B) has one fractional component
i ∈ M \ (A ∪B). Replace S(A, B) (labelled close) with two subproblems
S(A ∪ {i}, B) and S(A,B ∪ {i}), labelling them as new. Continue with
the next cycle.

Some of the rules in the algorithm may be changed. For instance another criterion
may be selected to pick an open problem. A naive motivation for the chosen rule is
that the higher the bound, the more likely is the subproblem to deliver an optimal
solution.

As noted previously, we may use a variable elimination test based on Proposition
5.2. The algorithm will be quicker, but some solutions may be left off of the solution
set X̄.

We go back to the examples in Section 2. The same data can be used as the
input for the branch-and-bound algorithm. The graph trees for these instances are
shown in Fig. 4 and 5.

If we try to replace Proposition 5.1 with the stronger Proposition 5.2 in the
elimination test for the data in Example 3.2, the graph tree in Fig. 6 shows that
only 3 subproblems are examined (in place of 7), but the algorithm fails to capture
2 out of the 4 solutions of the example.

A Appendix: The examples in detail

A.1 Example 3.1

The branch-and-bound algorithm begins with

Initialization. Set X̄ = ∅ and z̄ = −∞. Label S(∅, ∅) as new.

23

Cycle 1: Compute bounds. The elimination test on the new subproblem S(∅, ∅)
yields a reduced subproblem S(∅, {7, 8}) with upper and lower bounds:

x+(∅, {7, 8}) = (1, 1, 1, 0.6429, 0, 0, 0, 0) z+(∅, {7, 8}) = 105.714
x̄(∅, {7, 8}) = (1, 1, 1, 1, 0, 0, 0, 0) z̄(∅, {7, 8}) = 95

Therefore, the solution set is updated: X̄ = {(1, 1, 1, 1, 0, 0, 0, 0)} and z̄ = 95.

List and close. The list of open problems is S = {S(∅, {7, 8}}. Since the only
subproblem fails test (30), the algorithm continues.

Choose and split. The unique problem is split into the following new sub-
problems: S({4}, {7, 8}) and S(∅, {4, 7, 8}).

Cycle 2: compute bounds. After the elimination tests for the two new sub-
problem, we obtain the following subproblems:

• Subproblem S({4}, {7, 8}) with bounds:

x+({4}, {7, 8}) = (1, 1, 0.7059, 1, 0, 0, 0, 0) z+({4}, {7, 8}) = 105.294
x̄({4}, {7, 8}) = (1, 1, 1, 1, 0, 0, 0, 0) z̄({4}, {7, 8}) = 95

so no update occurs.

• Subproblem S({3}, {4, 7, 8}) with bounds:

x+({3}, {4, 7, 8}) = (1, 1, 1, 0, 1, 0.2381, 0, 0) z+({3}, {4, 7, 8}) = 104.762
x̄({3}, {4, 7, 8}) = (1, 1, 1, 0, 1, 0, 0, 0) z̄({3}, {4, 7, 8}) = 100 .

Therefore X̄ = {(1, 1, 1, 0, 1, 0, 0, 0)} and z̄ = 100

List and close. The open problems are S = {S({4}, {7, 8}), S({3}, {4, 7, 8})}
and none of them is closed. The algorithm continues.

Choose and split. Subproblem S({4}, {7, 8}) is picked and split into the new
subproblems S({3, 4}, {7, 8}) and S({4}, {3, 7, 8}).

Cycle 3: compute bounds. The two new subproblems enter the elimination
test.

• Subproblem S({3, 4}, {7, 8}) becomes S({3, 4}, {2, 5, 6, 7, 8}) and

x+({3, 4}, {2, 5, 6, 7, 8}) = (1, 0, 1, 1, 0, 0, 0, 0) z+({3, 4}, {2, 5, 6, 7, 8}) = 102

so X̄ = {(1, 0, 1, 1, 0, 0, 0, 0)} and z̄ = 102 and the subproblem is closed.

24

• Subproblem S({4}, {3, 7, 8}) becomes S({2, 4, 5, 6}, {3, 7, 8}) and

x+({2, 4, 5, 6}, {3, 7, 8}) = (0, 1, 0, 1, 1, 1, 0, 0) z+({2, 4, 5, 6}, {3, 7, 8}) = 98

No update occurs and the subproblem is closed.

List and close. The list of open problems is now S = {S({3}, {4, 7, 8})} and
the algorithm continues.

Choose and split. Subproblem S({3}, {4, 7, 8})} is picked and split into the
new subproblems S({3, 6}, {4, 7, 8}) and S({3}, {4, 6, 7, 8}).

Cycle 4: compute bounds. The elimination tests is performed and the two new
subproblem with the following results

• Subproblem S({1, 2, 3, 6}, {4, 5, 7, 8}) with bounds:

x+({1, 2, 3, 6}, {4, 5, 7, 8}) = (1, 1, 1, 0, 0, 1, 0, 0) z+({1, 2, 3, 6}, {4, 5, 7, 8}) = 100

Since z+({1, 2, 3, 6}, {4, 5, 7, 8}) < z̄, no update occurs and the problem is
closed.

• Subproblem S({1, 2, 3, 5}, {4, 6, 7, 8}) with bounds:

x+({1, 2, 3, 5}, {4, 6, 7, 8}) = (1, 1, 1, 0, 1, 0, 0, 0) z+({1, 2, 3, 5}, {4, 6, 7, 8}) = 100

No update occurs and the problem is closed

List and close. The list of open problems S is empty and the algorithm returns
the unique optimal solution (1, 0, 1, 1, 0, 0, 0, 0) with value 102.

A.2 Example 3.2

Here we show that the branch-and-bound algorithm captures all the solutions to
this instance.

Initialization. Set X̄ = ∅ and z̄ = −∞. Label S(∅, ∅) as new.

Cycle 1: compute bounds. The elimination test does not add any constraint,
so the bounds for S(∅, ∅) are:

x+(∅, ∅) = (1, 0.8132, 0, 0) z+(∅, ∅) = 54.717
x̄(∅, ∅) = (1, 1, 0, 0) z̄(∅, ∅) = 50

and the solution is updated: X̄ = {(1, 1, 0, 0)} and z̄ = 50.

25

List and close. The list of open problems is S = {S(∅, ∅)}. Since the only
available problem fails test (30) the algorithm continues.

Choose and split. Problem S(∅, ∅) is split as S({2}, ∅) and S(∅, {2}).

Cycle 2: compute bounds The two new subproblems undergo the elimination
test and become, respectively

• S({2}, {4}) with bounds:

x+({2}, {4}) = (0.8246, 1, 0, 0) z+({2}, {4}) = 54.386
x̄({2}, {4}) = (1, 1, 0, 0)

with no update.

• S({1}, {2}) with bounds:

x+({1}, {2}) = (1, 0, 0.9149, 0) z+({1}, {2}) = 52.1277
x̄({1}, {2}) = (1, 0, 1, 0) z̄({1}, {2}) = 50

Here (1, 0, 1, 0) is appended to the set of solutions X̄.

List and close. The list of open problems becomes S = {S({2}, {4}), S({1}, {2})}
and none of them is closed.

Choose and split. Subproblem S({2}, {4}) is split as S({1, 2}, {4}) and S({2}, {1, 4}).

Cycle 3: compute bounds. The new subproblem enter the variable elimination
test which yield:

• problem S({1, 2}, {3, 4}) with bound

x+({1, 2}, {3, 4}) = (1, 1, 0, 0)

which is already in X̄, while the problem is closed.

• problem S({2, 3}, {1, 4}) with bound

x+({2, 3}, {1, 4}) = (0, 1, 1, 0) z+({2, 3}, {1, 4}) = 50

this solution is appended to X̄ and the subproblem is closed.

List and close. The list S contains only S({1}, {2}), but it is not closed.

26

Choose and split. Problem S({1}, {2}) is split into S({1, 3}, {2}) and S({1}, {2, 3}).

Cycle 4: compute bounds. After the elimination test we have

• Problem S({1, 3}, {2, 4}) with

x+({1, 3}, {2, 4}) = (1, 0, 1, 0)

which is already in X̄.

• Problem S({1, 4}, {2, 3}) with

x+({1, 4}, {2, 3}) = (1, 0, 0, 1) z̄({1, 4}, {2, 3}) = 50

and this solution is appended to X̄.

Both problems are closed

List and close. The list of open problems is empty, so the algorithm ends
with solution set

X̄ = {(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1)} and z̄ = 50

B Acknowledgements

The authors wish to thank Erio Castagnoli. The work was presented in a preliminary
version at the 20th EURO conference held in Rhodes (Greece), July 4-7, 2004.

References

[1] Akin, E., 1995, Vilfredo Pareto cuts the cake, Journal of Mathematical Eco-
nomics, 24, 23–44.

[2] Bertsimas, D., and J.N. Tsitsiklis, 1997, Introduction to linear optimization,
Athena Scientific, Belmon, Massachusetts, U.S.A.

[3] Brams, S.J., P.H. Edelman and P.C. Fishburn, 2003, Fair division of indivisble
items, Theory and Decision, 55(2), 147–180.

[4] Brams, S.J. and P.C. Fishburn, 2000, Fair division of indivisble items between
two people with identical preferences: Envy-freeness, Pareto-optimality, and eq-
uity, Social Choice and Welfare, 17, 247–267.

[5] Brams, S.J., and A.D. Taylor, 1996, Fair division: from cake-cutting to dispute
resolution, Cambridge University Press

27

[6] Brams, S.J., and A.D. Taylor, 1999, The win-win solution, guaranteeing fair
shares to everybody, W.W.Norton.

[7] Demko,S., and T.P. Hill, 1988, Equitable distribution of indivisible objects,
Mathematical Social Sciences, 16, 145–158.

[8] Herreiner, D., and C. Puppe, 2002, A simple procedure for finding equitable
allocations of indivisible goods, Social Choice and Welfare, 19, 415–430.

[9] Kuhn, H.W. 1967, On games of fair division, In M. Shubik (ed.), Essays in
Mathematical Economics in Honor of Oskar Morgenstern. Princeton University
Press.

[10] Legut, J., and M. Wilczyński, 1988, Optimal partitioning of a measurable space,
Proceedings of the American Mathematical Society, 104, 262–264.

[11] Papadimitriou,C.H., and K. Steiglitz, 1982, Combinatorial optimization: algo-
rithms and complexity, Prentice & Hall.

[12] Sassano, A., 1999, Modelli e algoritmi della ricerca operativa, Franco Angeli

[13] Wolsey, L.A., and G.L. Nemhauser, 1988, Integer and combinatorial optimiza-
tion, Wiley-Interscience.

[14] Vazirani, V.V., 2001, Approximation algorithms, Springer-Verlag.

28

Figure 4. The branch-and-bound algorithm for Example 2.1

29

Figure 5. The branch-and-bound algorithm for Example 2.2

30

Figure 6. Example 2.2 with the elimination test derived from Proposition 5.2

31

