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Abstract. We report and discuss a series of experiments in which we compare the search
space of LABS induced by modeling the problem with and without symmetry-breaking
constraints. Furthermore, we compare the local search effectiveness in the two cases. In
most of the instances analyzed, we observe that the total basin of attraction of global
optima in the model with symmetry-breaking constraints is reduced by a factor that is
higher than the search space reduction factor. We also experimentally find that local
search is strongly affected by the size of global optima basins of attraction. To a cer-
tain extent, this behavior can explain why symmetry-breaking constraints have negative
impact on local search.
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1 Introduction

Symmetry-breaking has been proved to be very effective when combined with complete
solvers [3, 8]. This can be explained by observing that symmetry-breaking constraints con-
siderably reduce the search space. Nevertheless, the use of symmetry-breaking constraints
(hereinafter referred to as SB constraints) seem to have opposite effect on local search-based
solvers, despite the search space reduction. In [6, 7] some examples of this phenomenon are
reported. When the problem is modeled with SB constraints, the search cost! is higher than
the one corresponding to the model with symmetries.

In this work, we analyze the effect of SB constraints on local search for the problem
called Low auto-correlation binary sequences (LABS). We first briefly define a model of the
search space explored by a local search algorithm in Section 2. In Section 3, we report results
concerning the search space characteristics of small size instances of LABS. Then, in Section 4,
we compare the performance of four local search algorithms on both the original model and
the model in which some symmetric solutions have been cut.

2 The search graph and its main characteristics

The local search process can be viewed as an exploration of a landscape aimed at finding an
optimal solution, or a good solution, i.e., a solution with a quality above a given threshold.?

We define the search space explored by a local search algorithm as a search graph. The
topological properties of such a graph are defined upon the neighborhood structure, that
generate the neighborhood graph.

2.1 Neighborhood graph

A Neighborhood Graph (NG), also called Fitness Landscape (FL), is defined by a triple: £ =
(S, N, f), where:

e S is the set of feasible states;3

e N is the neighborhood function A : S — 2% that defines the neighborhood structure,
by assigning to every s € S a set of states A'(s) C S.

e f is the objective function f: § — R*

The neighborhood graph can be interpreted as a graph (see Figure 1) in which nodes
are states (labeled with their objective value) and arcs represent the neighborhood relation
between states.

The neighborhood function A implicitly defines an operator ¢ which takes a state s; and
transforms it into another state s, € N'(s1). Conversely, given an operator ¢, it is possible to
define a neighborhood of a variable s; € S:

Ny(s1) = {s2 € S\ {s1} | s2 can be obtained by one application of ¢ on s;}

'Runtime and number of variable flips

2For the rest of this paper, we will suppose, without loss of generality, that the goal of the search is to find
an optimal solution. Indeed, the same conclusions we will draw can be extended to a set including also good
solutions.

3In the field of metaheuristics, feasible states are also called solutions.
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Figure 1. Example of undirected graph representing a neighborhood graph (fitness landscape).
Fach node is associated with a solution s; and its corresponding objective value f(s;). Arcs
represent transition between states by means of ¢. Undirected arcs correspond to symmetric
neighborhood structure.

In most of the cases, the operator is symmetric: if s; is a neighbor of sy then so is a
neighbor of s;. In a graph representation (like the one depicted in Figure 1) undirected arcs
represent symmetric neighborhood structures.

2.2 Search graph

The exploration process of local search methods can be seen as the evolution in (discrete) time
of a discrete dynamical system [1, 4]. The algorithm starts from an initial state and describes
a trajectory in the state space, that is defined by the neighborhood graph. The system
dynamics depends on the strategy used; simple algorithms generate a trajectory composed
of two parts: a transient phase followed by an attractor (a fixed point, a cycle or a complex
attractor). Algorithms with advanced strategies generate more complex trajectories which
can not be subdivided in those two phases.

It is useful to define the search as a walk on the neighborhood graph. In general, the
choice of the next state is a function of the search history (i.e., the sequence of the previous
visited states) and the iteration step. Formally: s(t + 1) = ¢((s(0), s(1),...,s(t)),t), where
the function ¢ is defined on the basis of the search strategy. ¢ could also depend on some
parameters and can be either deterministic or stochastic.

For instance, let us consider a deterministic version of the Iterative Improvement local
search. The trajectory starts from a point sy, exhaustively explores its neighborhood, picks
the neighboring state s’ with minimal objective function value* and, if s’ is better than s, it
moves from sy to s’. Then this process is repeated, until a minimum § (either local or global)
is found. The trajectory does not move further and we say that the system has reached a
fixed point (§). The set of points from which § can be reached is the basin of attraction of s.

Once we have introduced also the search strategy, the edges of the graph can be oriented
and labeled with transition probabilities (whenever it is possible to evaluate them). This will
lead to the definition of concepts such as basins of attraction, state reachability and graph
navigation. In the following, this resulting graph will be referred to as search graph.

We would like to remark that, while the neighborhood graph topology is only dependent
on the neighborhood structure and the problem model, the basins of attraction and other

“Ties are broken by enforcing a lexicographic order of states.



related search graph characteristics depend also on the particular algorithm used.

2.3 Basins of attraction

The concept of basin of attraction (BOA) has been introduced in the context of dynamical
systems, in which it is defined referring to an attractor. Concerning our model of local search,
we will use the concept of basin of attraction of any node of the search graph. Moreover, for
this definition to be valid for any state of the search graph, we have to relax the requirement
that the goal state is an attractor. Therefore, the basin of attraction will also depend on the
particular termination condition of the algorithm. In the following, we will suppose to apply a
termination condition such that the algorithm is stopped as soon as a stagnation condition is
detected, that is when no improvements to the solutions are found after a maximum number
of steps. This termination condition corresponds to the concept of steady state in dynamical
systems. We will initially consider the case of deterministic systems, then we will relax this
hypothesis and extend the definition to stochastic systems.

Definition Given a deterministic algorithm A, the basin of attraction B(.A|s) of a point s, is
defined as the set of states that, taken as initial states, give origin to trajectories that include
point s. The cardinality of a basin of attraction represents its size (in this context, we always
deal with finite spaces).

Given the set S* of the global optima, the union of the BOA of global optima I* =
U,cs- B(Ali) represents the set of desirable initial states of the search. Indeed, a search
starting from s € I will eventually find an optimal solution. Since it is usually not possible
to construct an initial solution that is guaranteed to be in I'*, the ratio rGBOA = |I*|/|S| can
be taken as an indicator of the probability to find an optimal solution. On the extreme case, if
we start from a random solution, the probability to find a global optimum is exactly |I*|/|S].
Therefore, the higher this ratio, the higher the probability of success of the algorithm.

In the case of stochastic local search, we may define a probabilistic basin of attraction, as
a generalization of the previous case.

Definition Given a (stochastic) algorithm A, the basin of attraction B(A|s;p*) of a point
s, is defined as the set of states that, taken as initial states, give origin to trajectories that
include point s with probability p > p*. Also in this case, we define the union of the BOA of
global optima: I*(p) = |J;cg- B(A[i;p). For simplicity, in the following we will write B(s;p*)
instead of B(A|s; p*) when the algorithm involved is clear from the context.

This definition includes the previous one as a special case. Indeed, if p* = 1 we are in-
terested in finding the states generating trajectories that will eventually reach to s. It is also
important to note that if p; > po, then B(s;p1) C B(s;p2)-

Given a local search algorithm A, the topology and structure of the search graph determine
the effectiveness of A. In particular, the reachability of optimal solutions is the key issue.
Therefore, the characteristics of the BOA of optimal solutions are of dramatic importance.
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Figure 2. Node degree frequency of the neighborhood graph in the case of n = 10 and the
model with SB constraints.

2.4 A conjecture on the effect of symmetry-breaking constraints

We conjecture that the main reason for SB constraints being harmful for local search has to be
found in the reduction of rGBOA defined on the basis of a simple iterative improvement local
search. In fact, even the most complex local search algorithms incorporate a greedy heuristic
which is the one that characterizes iterative improvement. Therefore, if SB constraints reduce
rGBOA, then the more a local search is similar to iterative improvement, the more it should be
affected by SB constraints. Furthermore, we should also observe that local search algorithms
equipped with complex exploration strategies are less affected by SB constraints. In this
work, we aim at experimentally verifying this conjecture.

3 LABS search space

LABS consists of finding an assignment to binary variables such that an energy function

defined upon them is minimized. Given n binary variables z1,...,z,, which can assume a

value in {—1,+1}, we define the k-th correlation coefficient of a complete variable assignment

s Ci(s) = E?;lk Z; Tivk, kK =1,...,n — 1 and the total function to be minimized is FE(s) =
w1 Ch(s).

We exhaustively explored the search space of LABS, for n ranging from 6 up to 18.5 As
neighborhood function we chose the one defined upon unitary Hamming distance, that is the
most used one for problems defined over binary variables. (We emphasize that this choice
determines the fundamental topological properties of the search space.) In the model with
SB constraints (hereinafter referred to as Mg, while the original model will be referred to as
M), only a subset of symmetric solutions has been cut, by enforcing constraints on the three
left-most and right-most variables [5].

We first have to study how the neighborhood graph changes upon the application of SB
constraints. In M, the neighborhood graph induced by single variable flips is a hypercube in
which each node is connected to other n nodes. This graph has a constant degree equal to n.
The neighborhood graph associated to M is characterized by a node degree frequency that
varies in a small range, around a mean value slightly small than n (see an example in Figure 2).
The topological characteristics of this graph are not affecting the search, since the reachability

5The size limit is due to the exhaustiveness of the analysis.



Table 1. Search space characteristics of LABS instances.

‘ n ‘ feasible states ‘ global optima ‘ local optima ‘ global BOA ‘

no SB | with SB | no SB | with SB | no SB | with SB no SB | with SB

6 64 12 28 5 0 0 1.0 1.0
7 128 24 4 1 24 51 0.40625 | 0.33333
8 256 48 16 3 8 2 | 0.86328 | 0.77083
9 512 96 24 4 84 16 | 0.42969 | 0.37500
10 1024 192 40 7 128 29 | 0.54590 | 0.45833
11 2048 384 4 1 240 52 | 0.03906 | 0.04427
12 4096 768 16 3 264 61 | 0.07544 | 0.06901
13 8192 1536 4 1 496 111 | 0.01831 | 0.01953
14 16384 3072 72 11 664 177 | 0.21240 | 0.15202
15 | 32768 6144 8 2 1384 326 | 0.01956 | 0.01742
16 | 65536 12288 32 8 1320 332 | 0.05037 | 0.04972
17 | 131072 24576 44 9 3092 721 | 0.05531 | 0.04073
18 | 262144 49152 16 2 5796 1372 | 0.02321 | 0.01068

of nodes is not significantly perturbed. Therefore, we can exclude that SB constraints in LABS
affect local search by perturbing the topological properties of the neighborhood graph.

We have now also to consider the features of the search graph, which, in general, can
be algorithm dependent. (This is the case for basins of attraction, while local and global
optima only depend on the objective function and the neighborhood.) The search space
characteristics of interest are the number of feasible states, the number of global and local
optima and the value rGBOA. These values are reported in Table 1. The basins of attraction
are defined with respect to deterministic iterative improvement. Observe that in all the cases,
except for n = 11,13, rGBOA(M;)<rGBOA(M).

In Figures 3 and 4, we plotted the number of global (resp. local) optima versus n. We
observe that the global optima have no apparent correlation with n, whilst the number of
local optima seems to increase exponentially with n. (The relation between number of local
optima and n can be fitted with a very good approximation by a line in a logarithmic plot.)

An interesting perspective of the search space can be given by plotting the ratio of the
number of global (resp. local) optima to the search space size. This ratio is plotted in
Figures 5 and 6. These plots show that the density of global optima decreases exponentially
with n, while the density of local optima decreases much slower and, for the highest values of
n, it is almost constant.5

In Figure 7, we plotted rGBOA against n. We can note that this quantity decreases with
n, approximately following a negative exponential. In Figure 8, rGBOA is plotted against
the number of global optima. From the plot we observe no (evident) correlation between the
two quantities.

5The latter observation is in accordance with the plot in Figure 4 and the analysis of larger instances may
enable us to model the asymptotic behavior.
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4 Local search behavior

We attacked LABS (with n = 6,...,18) with four different local search algorithms: Best
improvement with randomly broken ties (BI), First improvement with random order among
neighbors (FI), Simulated annealing (SA) and Tabu search (TS).” From the perspective of
search space exploration, the algorithms chosen exhibit a varying explorative attitude, starting
from the lowest of BI to the highest of TS, while all keeping a ‘greedy’ character.® We run each
algorithm on the original model and on the model with SB constraints. The algorithms are
stopped after 10n non-improving moves. This termination condition enables us to compare
the algorithms on the basis of the best solution the returned once a steady state is reached.
(In the literature of metaheuristics, this state is also commonly called stagnation.) Table 2
gives a synoptic view of the algorithm performance in term of success ratio (out of 1000 runs).

A comparison of the performance of each algorithm on the two problem models is given
in Figures 9, 10, 11, 12, in which we plotted the difference of solved instances (perc.) against
n, i.e., Ay = (solved(noSB)—solved(SB))/10. Note that the performance on M dominates
the one on M in all but the TS case.

The correlation between number of successes and rGBOA is particularly interesting. From
the plots in Figures 13, 14, 15 and 16, we observe that for BI and FI the number of successes
is proportional to the size of the global optima basin of attraction. In the case of SA and
TS, while the correlation is still observable, we note that the performance remains quite high
even for low values of rTGBOA, especially in the case of TS. The value of rGBOA have been
measured on the basis of deterministic best improvement, therefore it is not surprising that
both BI and FI show a proportional relation between successes and fraction of states that
make the search converging to a global optimum. SA performs a more effective search space

"The parameters of the two metaheuristics SA and TS have not been optimized. The initial temperature
in SA has been set after a simple trial-and-test procedure. The tabu tenure in TS is randomly restarted each
iteration in a range between 1 and n/2, in the spirit of robust tabu search [9].

8 A deep discussion on this topic, involving also intensification and diversification, can be found in [2].
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Table 2. Synopsis of the number of solved instances (out of 1000 runs) of the four local search
algorithms on the original model and the model with SB constraints.

(o] BI | Fi T SA | TS |

no SB | with SB | no SB | with SB | no SB | with SB | no SB | with SB

6 1000 1000 1000 1000 1000 1000 1000 1000

7 417 324 530 484 1000 999 1000 1000

8 875 751 825 728 1000 960 1000 1000

9 438 342 266 267 913 834 1000 1000

10 561 426 995 720 996 920 1000 1000

11 42 41 47 30 101 136 528 928

12 7 63 39 37 308 318 835 895

13 16 17 3 5 105 111 283 251

14 200 125 202 142 857 731 992 1000

15 25 24 22 20 157 179 363 599

16 66 52 29 39 336 307 819 919

17 60 43 71 45 508 388 909 916

18 25 6 35 8 270 131 678 412
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Figure 13. Best improvement. Solved instances (perc.) plotted against the size of the
global optima BOA. Linear scale (left) and log-scale (right).

exploration than iterative improvement procedures, and even more TS, therefore the number
of successes they achieve is much higher than that of BI and FI. It is interesting to note that
the performance of both SA and TS starts to degrade (quite abruptly) when the normalized
size of the global optima basin of attraction approaches a threshold value. Moreover, for
TS this value is smaller than for SA, in other words, the more sophisticated an exploration
strategy is, the lower the value of rGBOA at which the performance starts to be strongly
affected.

The relation between rGBOA and local search performance can also be observed by plot-
ting the ratio of solved instances solved(M)/solved(M;) against the ratio of the basins of
attraction rGBOA(M)/rGBOA(M;). These graphs are plotted in Figures 17, 18, 19 and 20.
As we can see, in the case of relatively simple local search procedures, such as BI and FI, the
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points in the plot are approximately positioned around the line that bisects the quadrant.
The cases of SA and TS diverge with respect to the previous results, providing evidence for
the fact that the higher the exploration, the lower the negative impact of SB constraints.

5 Discussion

The available data are still not sufficient to draw strong conclusions on the subject, however we
have experimental results to support our conjecture. First of all, it is apparent that rGBOA
is reduced in the model with SB constraints. Another important observation is that local
search performance is strongly affected by the size of the global optima basin of attraction.
This relation is in the form of a positive correlation (i.e., the smaller the BOA, the lower the
performance) and it is well approximated by a linear relation in the case of simple local search
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algorithms (BI and FI), while it is nonlinear in the case of more complex search strategies (SA
and TS). The nonlinearity of this relation plays a big role when we compare the performance
of local search algorithms (in terms of success ratio). In fact, large differences in rGBOA
imply large deviations of the performance. But on the other side, when the difference is quite
small, other factors come into play. Indeed, in some cases we can observe that the variance
in the performance can not directly be attributed only to the size of global optima basin of
attraction.

The reduction of rGBOA and the correlation between performance and rGBOA could give
a first order empirical explanation of why SB constraints have been observed to be harmful
for local search.

Finally, we have to note that the more complex the search strategy is, the more it could
take advantage of the search space reduction, even if rGBOA decreases. This issue should be
investigated in detail, especially by experimenting with large size instances.

References

[1] Y. Bar—Yam. Dynamics of Complex Systems. Studies in nonlinearity. Addison—Wesley,
1997.

[2] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and con-
ceptual comparison. ACM Computing Surveys, 35(3):268-308, September 2003.

[3] James Crawford, Matthew L. Ginsberg, Eugene Luck, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In KR’96: Principles of Knowledge Representa-
tion and Reasoning, pages 148-159. Morgan Kaufmann, San Francisco, California, 1996.

[4] R. L. Devaney. An introduction to chaotic dynamical systems. Addison—Wesley, second
edition, 1989.

[6] S. Mertens. Exhaustive search for low-autocorrelation binary sequeneces. J. Phys. A,
29:1.473-1.481, 1996.

[6] S. Prestwich. First-solution search with symmetry breaking and implied constraints. In
Proc. of CP’01 Workshop on Modelling and Problem Formulation, 2001.

[7] S. Prestwich. Supersymmetric modeling for local search. In Proc. of SymCon’02 Workshop
on Symmetry and Constraint Satisfaction Problems, 2002.

[8] J. F. Puget. Symmetry breaking revisited. In Principle and Practice of Constraint Pro-
gramming — CP02, volume 2470 of Lecture Notes in Computer Science, pages 446-451.
Springer-Verlag, 2002.

[9] E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Com-
puting, 17:443-455, 1991.

14



