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Abstract. XPath is the core retrieval language of XQuery, the official query

language for XML data. We empirically compare three query evaluation strate-

gies for the navigational fragment of XPath known as Core XPath: a bottom-up

algorithm based on model checking techniques for multi-modal logic, a first top-

down procedure based on a technique to eliminate XPath filters, and a second

top-down procedure that takes advantage of the pre/post plane representation

of an XML tree. We implement the three methods and we benchmark the re-

sulting XPath processors using a fragment of XPathMark, a recently proposed

benchmark for XPath.
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1 Introduction

The Extensible Markup Language (XML) [14] is a popular representation language
for semistructured data [1], which are data that do not necessarily possess a regular
schema. The XML Path Language (XPath) [15] is a simple retrieval language for
data represented in XML. In particular, XPath in the core retrieval fragment of the
XML Query Language (XQuery) [16], the standard query language for XML.

XPath and modal logic are similar in many respects. Syntactically, the XPath
language contains navigational axes that closely resemble modal logic modalities.
Semantically, XPath queries are evaluated on XML trees, which are tree-shaped
Kripke structures whose states (nodes) are labelled with XML tags. Finally, the
query evaluation problem for XPath can be reinterpreted as a model checking problem
for multi-modal logic.

XPath queries have the form q[α], where q is called path and α is called filter.
A path is a sequence of axis steps and it is interpreted according to the following
query semantics: it retrieves those nodes that are reachable from the current one
through the axes used in q. A filter is similar to a modal logic formula and it is
interpreted according to the standard modal logic semantics: it selects the current
node if it satisfies the filter α. These two semantics are orthogonal, and they are
mixed in the semantics of XPath. This orthogonality is the cause of the exponential
complexity of a naive implementation of the semantics of XPath [7]. There exist two
main strategies to avoid this exponential behaviour. The first translates the path q
into a modal logic formula αq and then applies modal logic semantics and methods.
The second reduces the filter α to a query qα and then uses query semantics and
techniques. However, it is not clear which of the two contexts, either the modal logic
context or the database one, is more appropriate for the implementation of efficient
evaluation algorithms for XPath.

In this paper, we neatly isolate two evaluation strategies for the navigational
fragment of XPath known as Core XPath [7]. The first algorithm, that we called
BottomXPath, first translates a Core XPath query into a modal logic formula and
then applies model checking procedures in order to retrieve the answer set of the
original query. This algorithm works bottom-up with respect to the parse tree of the
input query: it elaborates the sub-queries of the input query from the leaves of the
parse tree up to the tree root. The second algorithm, that we called TopXPath, first
replaces the filters present in the input query with query paths and then applies a
node retrieval procedure in order to compute the answer set of the original query.
This procedure works top-down with respect to the parse tree of the input query: it
elaborates the sub-queries of the input query from the root of the parse tree down
to the leaves of the tree. The XQuery formal semantics requires that the result of
an XPath expression is a sequence of document nodes that is document sorted and
duplicate free. The document order corresponds to the total order of nodes given by
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a preorder visit of the nodes of an XML tree. With reference to the time when the
sorting of the XPath expression results is performed, we specify two versions of the
top-down algorithm. The first version, that we named TopXPath1, does not care
about the order of the nodes in the intermediate node sequences and it document
sorts the final result only. The second version, that we named TopXPath2, maintains
document sorted all the intermediate node sequences and hence it does not need to
sort the final result. More importantly, it takes advantage of the hypothesis that
the intermediate results are document sorted in order to speed-up the XPath axis
evaluation. This happens by pruning the intermediate results as much as possible
before starting each step evaluation.

A theoretical analysis of the worst-case asymptotic computational complexity of
the outlined algorithms does not help in evaluating their real-life performance: all
the procedures run in asymptotic worst-case linear time with respect to the product
of the size of the XML tree and the length of the query. In order to better understand
the computational differences between the proposed strategies, which is our main
goal in this paper, we performed an experimental analysis. We implemented the
algorithms in standard C language and we used a fragment of the XPath benchmark
XPathMark [5] to assess the empirical complexity of the discussed strategies.

The rest of the paper is as follows. We survey related work in Section 2. In
Section 3 we introduce XPath and relates it to modal logic. In Section 4 we describe
an exponential-time algorithm that strictly follows the semantics of XPath, while
in Sections 5 and 6 we describe the bottom-up and top-down evaluation strategies,
respectively. In Section 7 we perform the experimental analysis of the proposed
algorithms and we sum-up in Section 8.

2 Related work

As noticed by Gottlob et al. [6], many commercial engines implement XPath process-
ing by adopting a naive exponential-time strategy even though the query processing
problem for XPath admits a polynomial-time algorithm. Gottlob et al. [7] propose a
bottom-up polynomial-time XPath processing algorithm for full XPath, which runs
in linear time for Core XPath. Moreover, they discuss a general mechanism for
translating the bottom-up algorithm into a top-down one. The relation between
XPath query evaluation and model checking has been investigated in [2, 10], where
the authors embed a fragment of Core XPath into temporal logic and use an exist-
ing model checker to solve the query evaluation problem. The idea of maintaining
document sorted the intermediate answers in order to speed-up the axis evaluation
has been proposed in [11], a work that is mostly inspired by the results in [8, 9].
However, none of these paper has empirically compared the different strategies for
XPath query evaluation. This is our main task in this work. Our bottom-up pro-
cedure BottomXPath borrows from ideas in [2], while our first top-down algorithm
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TopXPath1 has been inspired by the work in [6]. Finally, our second top-down
algorithm TopXPath2 is an simplified version of the procedure proposed in [11].

3 XPath and modal logic

In this section we introduce XPath and relates it to modal logic.

3.1 XML path languages

Here we describe the syntax and the semantics of the navigational fragment of XPath
that was called Core XPath in [6]. Moreover, we define an extension of Core XPath,
namely Boolean XPath, that allows more freedom in the use of Boolean operators
in the composition of queries.

Let Σ be a set of labels including the special one denoted by *. Let χ be the set
of Core XPath axes, namely:

χ = {self, child, parent, descendant, ancestor, descendant-or-self,
ancestor-or-self, following-sibling, preceding-sibling,
following, preceding}

We say that child is the inverse of parent and viceversa, descendent is the in-
verse of ancestor and viceversa, descendant or self is the inverse of ancestor or self

and viceversa. Moreover, following sibling is the inverse of preceding sibling

and viceversa, following is the inverse of preceding and viceversa, and finally self

is the inverse of itself.
A Core XPath query is defined by the query clause of the following grammar:

query = /path
path = step | step/path
step = axis :: a | axis :: a[filter]
filter = path | filter and filter | filter or filter | not(filter) | (filter)
axis ∈ χ
a ∈ Σ

The Boolean XPath language extends the Core XPath language with Boolean
operators at path level. More precisely, a Boolean XPath query is defined by the
query clause of the following grammar:

query = path | /path | query and query | query or query | not(query) | (query)
path = step | path/path | path and path | path or path | not(path) | (path)
step = axis :: a | axis :: a[path]
axis ∈ χ
a ∈ Σ
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Notice that each Core XPath query is a Boolean XPath query, but not viceversa.
For instance, the Boolean XPath query /child :: a/(child :: b or child :: c) is not
a Core XPath query. For a query q, we define its length, denoted by length(q), as the
sum of the number if Boolean operators and the number of atomic steps appearing
in q. An atomic step has the form axis::a.

Our target in this paper is Core XPath, which is the core fragment of the standard
XPath [15]. We will use Boolean XPath, which is not a fragment of the official XPath
language, as an auxiliary language only. In particular, we will use Boolean XPath
as an embedding language for the query filters in Section 6. However, it is worth
noticing that all the algorithms and results in this paper easily extend to Boolean
XPath language.

Both Core and Boolean XPath languages are interpreted over XML trees rep-
resenting XML documents. Since in the present work we are only interested in the
navigational power of XPath, we assume that the XML documents we work with do
not contain attributes, namespaces, processing instructions, comments, and parsed
character data. An XML tree is a rooted sibling-ordered tree T = (N,R↓, R→, L),
where:

• N is a set of nodes. We denote by root the root node of the tree. A tree node
represents an element in the XML document;

• R↓ is a binary relation on N such that (x, y) ∈ R↓ iff y is a child of x;

• R→ is a (functional) binary relation on N such that (x, y) ∈ R→ iff y is the
right sibling of x;

• L is a function from Σ to the power set of N such that, for a ∈ Σ \ {∗}, L(a)
is the set of nodes that are labelled with tag a, and L(∗) = N .

Given an XML tree T , a query q in the Boolean XPath language, and a context
set C ⊆ N , the semantics of the Boolean XPath language (and hence of the Core
XPath language as well) is given by a function σ(T, q, C) returning a subset of N .
The semantic function σ is inductively defined as follows:
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σ(T, axis :: a, C) = {y ∈ N | ∃x ∈ C. (x, y) ∈ RT
axis ∧ y ∈ L(a)}

σ(T, axis :: a[path], C) = {y ∈ N | y ∈ σ(T, axis :: a, C) ∧ σ(T, path, {y}) 6= ∅}

σ(T, path1/path2, C) = σ(T, path2, σ(T, path1, C))
σ(T, path1 and path2, C) = σ(T, path1, C) ∩ σ(T, path2, C)
σ(T, path1 or path2, C) = σ(T, path1, C) ∪ σ(T, path2, C)
σ(T, not(path), C) = N \ σ(T, path, C)

σ(T, /path, C) = σ(T, path, {root})
σ(T, query1 and query2, C) = σ(T, query1, C) ∩ σ(T, query2, C)
σ(T, query1 or query2, C) = σ(T, query1, C) ∪ σ(T, query2, C)
σ(T, not(query), C) = N \ σ(T, query, C)

The relation RT
axis is a binary relation on N corresponding to the specified axis.

Given a binary relation R, let R+ be its transitive closure, R∗ be its reflexive and
transitive closure, and R−1 be its inverse. Moreover, R1 ◦ R2 denotes the concate-
nation of R1 and R2. The relation Raxis is formally defined as follows:

RT
self = {(x, x) | x ∈ N}

RT
child = R↓

RT
parent = (RT

child)
−1

RT
descendant = (R↓)

+

RT
ancestor = (RT

descendant)
−1

RT
descendant−or−self = (R↓)

∗

RT
ancestor−or−self = (RT

descendant−or−self)
−1

RT
following−sibling = (R→)+

RT
preceding−sibling = (RT

following−sibling)
−1

RT
following = RT

ancestor−or−self ◦RT
following−sibling ◦ RT

descendant−or−self

RT
preceding = (RT

following)
−1

Finally, the answer set of the query q with respect to the tree T is equal to
σ(T, q,N).
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3.2 The connection between XPath and modal logic

Modal logic [3] extends propositional logic with modalities that, similarly to XPath
axis, are used to browse the underlying relational structure. Let Σ be a set of
proposition symbols. A formula in the (multi-) modal language is defined as follows:

α = p | α ∧ α | α ∨ α | ¬α | 〈Ri〉α

where p ∈ Σ and 1 ≤ i ≤ c for some integer c ≥ 1. We define [Ri] = ¬〈Ri〉¬. For
a modal formula α, we define its length, denote by length(α), as the sum of the
number of (Boolean and modal) operators plus the number of proposition symbols
appearing in α. Moreover, let sub(α) as the set of subformulas of α. Notice that
|sub(α)| = length(α).

Modal formulas are interpreted over models. A model for modal logic is a triple
(W,R, V ), with R = {R1, . . . , Rc}, where:

• W is a set elements which are called states;

• each Ri ⊆W ×W is a binary relation on W ;

• V is a function from Σ to the power set of W such that, for p ∈ Σ, L(p) is the
set of states that are labelled with the proposition symbol p.

Given a modal formula α, a model M = (W,R, V ), and a state x ∈ W , the
semantics of modal logic is defined as follows:

M,x |= p iff x ∈ V (p)
M,x |= α ∧ β iff M,x |= α and M,x |= β
M, x |= α ∨ β iff M,x |= α or M,x |= β
M, x |= ¬α iff M,x 6|= α
M,x |= 〈Ri〉α iff there is y such that (x, y) ∈ Ri and M,y |= α

The truth set of a formula α with respect to a model M is the set {x ∈
W | M,x |= α}.

The intimate relation between XPath and modal logic is explicated in the def-
inition of Core XPath logic. Core XPath logic is an instance of multi-modal logic
in which there is one modality for each axis in XPath. It is defined over a set of
labels Σ including the special symbols denoted by * and root. A model for Core
XPath logic is a relational structure corresponding to an XML tree. More precisely,
given an XML tree T = (N,R↓, R→, L), the corresponding model for Core XPath
logic is MT = (N, {RT

axis}axis∈χ, L), where L(root) is a singleton containing the
root node of T . In Section 5 we will show how to embed Core XPath queries into
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Core XPath formulas. Notice that 〈following〉 and 〈preceding〉 modalities are in
fact redundant. Indeed:

〈following〉α ≡ 〈ancestor-or-self〉〈following-sibling〉〈descendant-or-self〉α
〈preceding〉α ≡ 〈ancestor-or-self〉〈preceding-sibling〉〈descendant-or-self〉α

We will use these equivalences in the following algorithms.

4 An exponential evaluation strategy

In this section we give a first implementation, called ShallowXPath, of a Core XPath
query processor. The algorithm strictly follows the semantics of Core XPath given
in Section 3.1, and, as we will show later, its complexity might be exponential in the
length of the query. The procedure ShallowXPath inputs an XML tree T , a Core
XPath query q, and a context set C. The tree T is represented as follows: each node
is an object composed of a field pre containing the order of the node in a preorder
visit of the tree, a field p containing a pointer to the parent of the node, or nil if the
node is the root, a field c containing a pointer to the first child of the node, or nil

if the node is a leaf, a field r containing a pointer to the right sibling of the node,
or nil if the node is the last sibling, a field l containing a pointer to the left sibling
of the node, or nil if the node is the first sibling, and a field tag containing to tag
of the XML element that the node represents. The procedure ShallowXPath uses a
sub-procedure ProcessStep in order to elaborate a single axis step. The latter calls
an auxiliary procedure Descendant that retrieves all the descendant nodes of a given
node that are labelled with a given tag. Moreover, ProcessStep invokes ProcessFilter
whenever a filter must be evaluated. The latter recursively calls ShallowXPath. The
pseudo-code is as follows.

1: ShallowXPath(T, q, C)
2: R← ∅
3: step← head(q)
4: while step 6= nil do

5: for all x ∈ C do

6: R← R ∪ ProcessStep(T, step, x)
7: end for

8: C ← R
9: step← next(q)

10: end while

11: return C

1: ProcessStep(T, step, x)
2: let step = axis :: a[filter]
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3: R← ∅
4: case

5: • axis = self

6: if a = ∗ or tag[x] = a then

7: R← R ∪ {x}
8: end if

9: • axis = child

10: y ← c[x]
11: while y 6= nil do

12: if a = ∗ or tag[y] = a then

13: R← R ∪ {y}
14: end if

15: y ← r[y]
16: end while

17: • axis = parent

18: y ← p[x]
19: if y 6= nil then

20: if a = ∗ or tag[y] = a then

21: R← R ∪ {y}
22: end if

23: end if

24: • axis = descendant

25: y ← c[x]
26: while y 6= nil do

27: R← R ∪Descendants(y, a)
28: y ← r[y]
29: end while

30: • axis = ancestor

31: y ← p[x]
32: while y 6= nil do

33: if a = ∗ or tag[y] = a then

34: R← R ∪ {y}
35: end if

36: y ← p[y]
37: end while

38: • axis = descendant-or-self

39: R← Descendants(x, a)
40: • axis = ancestor-or-self

41: y ← x
42: while y 6= nil do

43: if a = ∗ or tag[y] = a then
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44: R← R ∪ {y}
45: end if

46: y ← p[y]
47: end while

48: • axis = following-sibling

49: y ← r[x]
50: while y 6= nil do

51: if a = ∗ or tag[y] = a then

52: R← R ∪ {y}
53: end if

54: y ← r[y]
55: end while

56: • axis = preceding-sibling

57: y ← l[x]
58: while y 6= nil do

59: if a = ∗ or tag[y] = a then

60: R← R ∪ {y}
61: end if

62: y ← l[y]
63: end while

64: • axis = following

65: q← ancestor-or-self::*/following-sibling::*/descendant-or-self::a

66: R← ShallowXPath(T, q, {x})
67: • axis = preceding

68: q← ancestor-or-self::*/preceding-sibling::*/descendant-or-self::a

69: R← ShallowXPath(T, q, {x})
70: endcase

71: if filter 6= nil then

72: for all x ∈ R do

73: if not ProcessFilter(T, filter, x) then

74: R← R \ {x}
75: end if

76: end for

77: end if

78: return R

1: ProcessFilter(T, filter, x)
2: case

3: • filter = filter1 and filter2
4: return ProcessFilter(T, filter1, x) and ProcessFilter(T, filter2, x)
5: • filter = filter1 or filter2
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6: return ProcessFilter(T, filter1, x) or ProcessFilter(T, filter2, x)
7: • filter = not filter1
8: return not ProcessFilter(T, filter1, x)
9: • filter = path

10: if ShallowXPath(T, path, {x})) 6= ∅ then

11: return true

12: else

13: return false

14: end if

15: endcase

1: Descendants(x, a)
2: R← ∅
3: Q← ∅
4: if x 6= nil then

5: Enqueue(Q,x)
6: end if

7: while Q 6= ∅ do

8: y ← Dequeue(Q)
9: if a = ∗ or tag[y] = a then

10: R← R ∪ {y}
11: end if

12: y ← c[y]
13: while y 6= nil do

14: Enqueue(Q, y)
15: y ← r[y]
16: end while

17: end while

18: return R

We claim that the complexity of ShallowXPath is exponential in the nesting
degree of filter expressions in the query. Let C(n, k, r) be the complexity of Shal-
lowXPath on a tree of n nodes and a query of length k and of filter nesting degree
r. We will show that C(n, k, r) = O(k · n2·r+2).

Let k1 = O(k) be the number of steps in the query which are not in a filter
expression, and let k2 = O(k) be the maximum length of any filter in the query.
For r = 0 (no filters are present in the query), we have that C(n, k, r) = O(k · n2).
For r > 0, we have that C(n, k, r) = k1 · n · f(n, k2, r), where f(n, k, r) is the
complexity of ProcessStep on a tree of n nodes, a step of length k and of filter
nesting degree r. Moreover, f(n, k, r) = n + n · g(n, k, r − 1), where g(n, k, r) is the
cost of ProcessFilter on a tree of n nodes, a filter of length k and of filter nesting
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degree r. Finally, g(n, k, r) = k + C(n, k, r). The worst-case is a query of the form:

/axis :: a1[axis : a2[axis : a3 . . . [axis : ar]] . . .]

In such a case, k1 = 1 and k2 = O(k). Thus:

C(n, k, r) = n · f(n, k, r)
= n · (n + n · g(n, k, r − 1))
= n · (n + n · (k + C(n, k, r − 1)))
= O(n2 · k) + n2 · C(n, k, r − 1)
= O(n4 · k) + n4 · C(n, k, r − 2)
= . . .
= O(n2·r · k) + n2·r · C(n, k, 0)
= O(n2·r · k) + n2·r+2 · k
= O(k · n2·r+2)

Hence, the complexity of ShallowXPath is polynomial whenever the query has
a bounded nesting degree of filters. However, if this degree is not bounded, then
Shallow is very inefficient. In the following Sections 5 and 6 we will show how to
avoid this exponential behaviour.

5 A bottom-up evaluation strategy

In this section we give an efficient bottom-up algorithm, called BottomXPath, to
evaluate a Core XPath query. The algorithm is based on a technique that in the
logic context is known as model checking [4]. The model checking problem is the
following question: given a model M and a formula α, retrieve the truth set of α
with respect to M . A model checker is an algorithm that solves the model checking
problem.

We start by embedding Core XPath queries into Core XPath formulas. We first
define a translation ω from XPath filter expressions into Core XPath formulas. A
filter expression in XPath is defined by the filter clause of the Core XPath grammar
given in Section 3.1. The function ω is as follows (if filter is empty in the first
two clauses below, then the corresponding conjunct is missing):

ω(axis :: a[filter]) = 〈axis〉(a ∧ ω(filter))

ω(axis :: a[filter]/path) = 〈axis〉(a ∧ ω(filter) ∧ ω(path))

ω(filter1 and filter2) = ω(filter1) ∧ ω(filter2)

ω(filter1 or filter2) = ω(filter1) ∨ ω(filter2)

ω(not(filter)) = ¬ω(filter)
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We now define a translation τ from Core XPath queries into Core XPath formulas
as follows (if filter is empty in the below clauses, then the corresponding conjunct
is missing):

τ(/axis :: a[filter]) = a ∧ ω(filter) ∧ 〈axis−1〉 root

τ(path/axis :: a[filter]) = a ∧ ω(filter) ∧ 〈axis−1〉 τ(path)

where axis−1 is the inverse of axis. Notice that the length of τ(q) is linear in
the length of q. We have the following:

Theorem 5.1 Let q be a Core XPath query and T be an XML tree. Then, the
answer set of q with respect to T is the truth set of τ(q) with respect to MT .

By virtue of Theorem 5.1, the answer set for a Core XPath query equals to the
truth set for the corresponding Core XPath formula. Hence, we can solve the query
evaluation problem in terms of the model checking problem by using a model checker
as a query processor. The algorithm is as follows. Let T be an XML tree and q be
a Core XPath query:

• build the model MT corresponding to the tree T ;

• translate q into a modal formula τ(q);

• compute the truth set of τ(q) with respect to MT using a model checker for
modal logic.

The complexity of the outlined method is the following. First, notice that, for
any axis different from self, child, and parent, the cardinality of the relation
RT
axis belonging to MT might be quadratic in the number n of nodes of the XML

tree. Hence, computing the model MT costs O(n2). Translating the query q costs
O(k), where k is the length of q. The size of τ(q) = O(k). Model checking for modal
logic costs is O(k · (n + m)), where k is the length of the formula, n is the number
of states of the model, and m is the biggest cardinality of any reachability relation
in the model. Since, in our case, m = O(n2), the overall complexity of the above
algorithm is O(k · n2), hence quadratic in the number of nodes of the XML tree.

In the following, we give an alternative model checking algorithm for Core XPath
logic that runs in time O(k ·n). BottomXPath is a bottom-up model checker for Core
XPath logic. It inputs an XML tree T (and not a multi-modal model) and a Core
XPath formula α. The algorithm is similar to a model checker for the temporal logic
CTL (see, e.g., [4]); instead of CTL temporal operators, BottomXPath checks XPath
axes. BottomXPath uses a subprocedure EvalAxis. The latter inputs a tree T , and
axis axis and a formula β. For each node x ∈ N , the procedure EvalAxis labels x

14



with 〈axis〉β if, and only if, there exists a node y ∈ N reachable from x trough the
relation induced by axis such that y is labelled with β. EvalAxis takes advantage
of a Boolean matrix A, where rows represent formulas and columns represent nodes,
in order to label nodes with formulas that are true at them. Moreover, it uses the
auxiliary procedure LabelDescendants in order to label the descendant nodes of a
given node with a given formula. In the following code we assume that 〈following〉
and 〈preceding〉 modalities in α has been replaced as shown in Section 3.2.

1: BottomXPath(T, α)
2: for all β ∈ sub(α) do

3: for all x ∈ N do

4: A(β, x)← 0
5: end for

6: end for

7: for all i← 1 to length(α) do

8: for all β ∈ sub(α) such that length(β) = i do

9: case

10: • β = root

11: A(β, root)← 1
12: • β = ∗
13: for all x ∈ N do

14: A(β, x)← 1
15: end for

16: • β ∈ Σ \ {root, ∗}
17: for all x ∈ L(β) do

18: A(β, x)← 1
19: end for

20: • β = β1 ∧ β2

21: for all x ∈ N do

22: if (A(β1, x) = 1 and A(β2, x) = 1) then

23: A(β, x)← 1
24: end if

25: end for

26: • β = β1 ∨ β2

27: for all x ∈ N do

28: if (A(β1, x) = 1 or A(β2, x) = 1) then

29: A(β, x)← 1
30: end if

31: end for

32: • β = ¬β1

33: for all x ∈ N do
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34: if A(β1, x) = 0 then

35: A(β, x)← 1
36: end if

37: end for

38: • β = 〈axis〉β1

39: EvalAxis(T, axis, β1)
40: endcase

41: end for

42: end for

43: R← ∅
44: for all x ∈ N do

45: if A(α, x) = 1 then

46: R← R ∪ {x}
47: end if

48: end for

49: return R

1: EvalAxis(T, axis, β)
2: case

3: • axis = self

4: for all x ∈ N do

5: if A(β, x) = 1 then

6: A(〈self〉β, x)← 1
7: end if

8: end for

9: • axis = child

10: for all x ∈ N do

11: y ← c[x]
12: found← false

13: while y 6= nil and not found do

14: if A(β, y) = 1 then

15: A(〈child〉β, x)← 1
16: found← true

17: end if

18: y ← r[y]
19: end while

20: end for

21: • axis = parent

22: for all x ∈ N do

23: y ← p[x]
24: if y 6= nil and A(β, y) = 1 then
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25: A(〈parent〉β, x)← 1
26: end if

27: end for

28: • axis = descendant

29: for all x ∈ N do

30: if A(β, x) = 1 then

31: y ← p[x]
32: while y 6= nil and A(〈descendant〉β, y) = 0 do

33: A(〈descendant〉β, y)← 1
34: y ← p[y]
35: end while

36: end if

37: end for

38: • axis = ancestor

39: for all x ∈ N do

40: if A(β, x) = 1 and A(〈ancestor〉β, x) = 0 then

41: y ← c[x]
42: while y 6= nil do

43: LabelDescendant(〈ancestor〉β, y)
44: y ← r[y]
45: end while

46: end if

47: end for

48: • axis = descendant-or-self

49: for all x ∈ N do

50: if A(β, x) = 1 then

51: y ← x
52: while y 6= nil and A(〈descendant〉β, y) = 0 do

53: A(〈descendant〉β, y)← 1
54: y ← p[y]
55: end while

56: end if

57: end for

58: • axis = ancestor-or-self

59: for all x ∈ N do

60: if A(β, x) = 1 and A(〈ancestor〉β, x) = 0 then

61: LabelDescendant(〈ancestor〉β, x)
62: end if

63: end for

64: • axis = following-sibling

65: for all x ∈ N do
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66: if A(β, x) = 1 then

67: y ← l[x]
68: while y 6= nil and A(〈 following-sibling 〉β, y) = 0 do

69: A(〈 following-sibling 〉β, y)← 1
70: y ← l[y]
71: end while

72: end if

73: end for

74: • axis = preceding-sibling

75: for all x ∈ N do

76: if A(β, x) = 1 then

77: y ← r[x]
78: while y 6= nil and A(〈 preceding-sibling 〉β, y) = 0 do

79: A(〈 preceding-sibling 〉β, y)← 1
80: y ← r[y]
81: end while

82: end if

83: end for

84: endcase

1: LabelDescendants(α, x)
2: Q← ∅
3: if x 6= nil and A(α, x) = 0 then

4: Enqueue(Q,x)
5: end if

6: while Q 6= ∅ do

7: y ← Dequeue(Q)
8: A(α, y)← 1
9: y ← c[y]

10: while y 6= nil do

11: if A(α, y) = 0 then

12: Enqueue(Q, y)
13: end if

14: y ← r[y]
15: end while

16: end while

The computational complexity of EvalAxis is linear in the number of nodes of
the tree T . The cost of BottomXPath is hence O(k · n), thus linear is the product
of the length of the query and the size of the XML tree.

The whole bottom-up evaluation algorithm for Core XPath is as follows:
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1. translate q into τ(q) and replace the modalities 〈following〉 and 〈preceding〉
appearing in τ(q) obtaining a formula αq;

2. run BottomXPath on T and αq;

3. sort, in document order, the result of BottomXPath.

The complexity of the translation step is O(k) and the call to BottomXPath
costs O(k ·n). Since nodes are integers from 1 to n, we can use a linear-time sorting
algorithm like CountingSort to sort the result. Hence, the overall complexity for the
bottom-up evaluation of q on T is O(k · n).

6 A top-down evaluation strategy

In this section we give two efficient top-down algorithms, called TopXPath1 and
TopXPath2, to evaluate Core XPath queries. Both the algorithms first replace the
filters present in the input query with query paths and then apply a node retrieval
procedure in order to compute the answer set of the original query.

We first show how to get rid of filters. The inverting translation ι inputs a filter
expression in the Core XPath language and returns its inverse in the Boolean XPath
language. It is defined as follows:

ι(axis :: a) = self :: a/axis−1 :: ∗
ι(axis :: a[filter]) = ι(filter)/ι(axis :: a)
ι(step/path) = ι(path)/ι(step)
ι(filter1 and filter2) = ι(filter1) and ι(filter2)
ι(filter1 or filter2) = ι(filter1) or ι(filter2)
ι(not(filter)) = not(ι(filter))

Notice that ι(q) is a query without filters in the Boolean XPath language. We
now define a translation υ from Core XPath queries into Boolean XPath queries
without filters:

υ(/axis :: a) = /axis :: a
υ(/axis :: a[filter]) = (/axis :: a and ι(filter))
υ(step/path) = υ(step)/υ(path)

Notice that length of υ(q) is linear in the length of q. We have the following:

Theorem 6.1 Let T be an XML tree and q be a Core XPath query. Then, q and
υ(q) have the same answer set.
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6.1 A first top-down algorithm

In this section we propose a first top-down strategy, called TopXPath1, to evaluate
Core XPath queries. With respect to the data structure described in Section 4, we
assume here that an additional field called count is added to the object representation
of each node of the tree. The new field is used to record whether the node has
been visited or not during a step evaluation. TopXPath1 does not care about the
order of the nodes in the intermediate context sets and it sorts the final result only.
TopXPath1 inputs an XML tree T , a Boolean XPath query without filters q, and
a context set C. It uses a sub-procedure ProcessPath1 to elaborate query paths,
which in turn calls a procedure ProcessStep1 to evaluate query steps. In particular,
the procedure ProcessStep1(T, axis, a, C) elaborates the step axis :: a on the tree T
with context set C, according to the XPath semantics. In order to avoid to walk on
the same node twice, the procedure checks the count field of the node’s object. This
filed is initialized to 0 for each node when TopXPath1 starts. The global variable k
is also initialized to 0 and it is incremented by one at each step evaluation performed
with ProcessStep1. When a node is visited during a step evaluation, its count field
is assigned to the value contained in k. Hence, during the k-th step evaluation, all
nodes that has been already visited in that step evaluation have their count field set
to k, while the count field of the unexplored nodes is less than k. This method avoids
the costly resetting of the count field at each step evaluation. Finally, ProcessStep1
uses an auxiliary procedure RetrieveDescendants to retrieve the descendant nodes
of a given node that are labelled with a given tag. The pseudo-code is as follows.

1: TopXPath1(T, q, C)
2: k ← 0
3: for x ∈ N do

4: count[x]← 0
5: end for

6: case

7: • q = query1 and query2
8: return TopXPath1(T, query1, C) ∩ TopXPath1(T, query2, C)
9: • q = query1 or query2

10: return TopXPath1(T, query1, C) ∪ TopXPath1(T, query2, C)
11: • q = not(query)
12: return N \ TopXPath1(T, query, C)
13: • q = /path
14: return ProcessPath1(T, path, {root(T )})
15: • q = path

16: return ProcessPath1(T, path, N)
17: endcase
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1: ProcessPath1(T, p, C)
2: case

3: • p = path1 and path2
4: return ProcessPath1(T, path1, C) ∩ ProcessPath1(T, path2, C)
5: • p = path1 or path2
6: return ProcessPath1(T, path1, C) ∪ ProcessPath1(T, path2, C)
7: • p = not(path)
8: return N \ ProcessPath1(T, path, C)
9: • p = step/path

10: return ProcessPath1(T, path,ProcessPath1(T, step, C))
11: • p = axis :: a
12: return ProcessStep1(T, axis, a, C)
13: endcase

1: ProcessStep1(T, axis, a, C)
2: k ← k + 1
3: R← ∅
4: case

5: • axis = self

6: for x ∈ C do

7: if a = ∗ or tag[x] = a then

8: R← R ∪ {x}
9: end if

10: end for

11: • axis = child

12: for x ∈ C do

13: y ← c[x]
14: while y 6= nil do

15: if a = ∗ or tag[y] = a then

16: R← R ∪ {y}
17: end if

18: y ← r[y]
19: end while

20: end for

21: • axis = parent

22: for x ∈ C do

23: y ← p[x]
24: if y 6= nil and count[y] < k then

25: count[y]← k
26: if a = ∗ or tag[y] = a then

27: R← R ∪ {y}
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28: end if

29: end if

30: end for

31: • axis = descendant

32: for x ∈ C do

33: if count[x] < k then

34: count[x]← k
35: y ← c[x]
36: while y 6= nil do

37: R← R ∪RetrieveDescendants(y, a)
38: y ← r[y]
39: end while

40: end if

41: end for

42: • axis = ancestor

43: for x ∈ C do

44: y ← p[x]
45: while y 6= nil and count[y] < k do

46: count[y]← k
47: if a = ∗ or tag[y] = a then

48: R← R ∪ {y}
49: end if

50: y ← p[y]
51: end while

52: end for

53: • axis = descendant-or-self

54: for x ∈ C do

55: if count[x] < k then

56: R← R ∪RetrieveDescendants(x, a)
57: end if

58: end for

59: • axis = ancestor-or-self

60: for x ∈ C do

61: y ← x
62: while y 6= nil and count[y] < k do

63: count[y]← k
64: if a = ∗ or tag[y] = a then

65: R← R ∪ {y}
66: end if

67: y ← p[y]
68: end while
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69: end for

70: • axis = following-sibling

71: for x ∈ C do

72: y ← r[x]
73: while y 6= nil and count[y] < k do

74: count[y]← k
75: if a = ∗ or tag[y] = a then

76: R← R ∪ {y}
77: end if

78: y ← r[y]
79: end while

80: end for

81: • axis = preceding-sibling

82: for x ∈ C do

83: y ← l[x]
84: while y 6= nil and count[y] < k do

85: count[y]← k
86: if a = ∗ or tag[y] = a then

87: R← R ∪ {y}
88: end if

89: y ← l[y]
90: end while

91: end for

92: • axis = following

93: q← ancestor-or-self::*/following-sibling::*/descendant-or-self::a

94: R← ProcessPath1(T, q, C)
95: • axis = preceding

96: q← ancestor-or-self::*/preceding-sibling::*/descendant-or-self::a

97: R← ProcessPath1(T, q, C)
98: endcase

99: return R

1: RetrieveDescendants(x, a)
2: R← ∅
3: Q← ∅
4: if x 6= nil and count[x] < k then

5: count[x]← k
6: Enqueue(Q,x)
7: end if

8: while Q 6= ∅ do

9: y ← Dequeue(Q)
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10: if a = ∗ or tag[y] = a then

11: R← R ∪ {y}
12: end if

13: y ← c[y]
14: while y 6= nil do

15: if count[y] < k then

16: count[y]← k
17: Enqueue(Q, y)
18: end if

19: y ← r[y]
20: end while

21: end while

22: return R

In the worst-case, the procedure ProcessStep1 visits the entire tree and hence its
cost is O(n), where n is the number of nodes of the tree. The evaluation algorithm
TopXPath1 runs in linear time with respect to the product of the size of the XML
tree and the length of the query. The whole top-down evaluation algorithm for Core
XPath is as follows:

1. translate q into υ(q);

2. run TopXPath1 on T and υ(q);

3. sort, in document order, the result of TopXPath1.

If k is the length of q and n is the number of nodes of T , the complexity of the
translation step is O(k) and the call to TopXPath1 costs O(k · n). Since nodes are
integers from 1 to n, we can use a linear-time sorting algorithm like CountingSort to
sort the result. Hence, the overall complexity for the evaluation of q on T with the
top-down method described in this section is O(k ·n), as for the bottom-up strategy
proposed in Section 5.

6.2 A second top-down algorithm

In this section we propose a second top-down strategy, called TopXPath2, to eval-
uate Core XPath queries. With respect to the data structure described in Section
4, we assume that two additional fields are added to the object representation of
each node of the tree: a field called count that, as in TopXPath1, is used to record
whether the node has been visited or not during a step evaluation, and a field called
post containing the order of the node in a postorder visit of the tree. TopXPath2 uses
a sub-procedure ProcessPath2 which in turns calls ProcessStep2, as done for TopX-
Path1. ProcessStep2 uses an auxiliary procedure Children to retrieve the children
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nodes of a given node that are labelled with a given tag, and Descendants to retrieve
the descendant nodes of a given node that are labelled with a given tag. Moreover,
it uses the following auxiliary list procedures, where C and L are double-linked lists
and x is a node:

• NewList(), that initializes a new list;

• DelFirst(C), that deletes and returns the first element of C;

• DelLast(C), that deletes and returns the last element of C;

• AddAfter(C, x), that appends x to C;

• AddListAfter(C,L), that appends L to C;

• AddBefore(C, x), that adds x in front of C;

• AddListBefore(C,L), that adds L in front of C;

• First(C) that returns the first element of C;

• Last(C) that returns the last element of C.

All these procedures can be implemented in constant time. TopXPath2 differs
from TopXPath1 since it maintains document sorted the intermediate context sets.
Moreover, it exploits the sorted contexts to speed-up the XPath axis evaluation by
pruning the context sets as much as possible before starting each step evaluation. By
maintaining both the preorder and the postorder ranks for each node, TopXPath2
implicitly represents an XML tree as a bi-dimensional plane, called the pre/post
plane in [8]. Each node x is encoded by the point (pre(x), post(x)). A nice feature
of this encoding is that, for each node x, the top-right (respectively, bottom-left)
quadrant of x contains all the following (respectively, preceding) nodes of x, and
the bottom-right (respectively, top-left) quadrant of x contains all the descendant
(respectively, ancestor) nodes of x. Hence, given two arbitrary nodes x and y, we can
check in constant time the relative position of y with respect to x. As an example,
consider the cases of following and preceding axes. By exploiting the pre/post
plane properties, the context set can always be reduced to a singleton (see code
lines 157–160 and 173). Finally, TopXpath2 takes advantage, when necessary, of the
counting technique described in Section 6.1 to avoid the exploration of the same tree
zones twice. The pseudo-code of ProcessStep2 is as follows.

1: ProcessStep2(T, axis, a, C)
2: k ← k + 1
3: R← ∅
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4: case

5: • axis = self

6: L← NewList()
7: while C 6= ∅ do

8: x← DelFirst(C)
9: if a = ∗ or tag[x] = a then

10: AddAfter(L, x)
11: end if

12: end while

13: return L
14: • axis = child

15: L← NewList()
16: S ← NewList()
17: while C 6= ∅ do

18: x← First(C)
19: if S = ∅ then

20: AddListBefore(S,Children(x, a))
21: DelFirst(C)
22: else

23: if pre[First(S)] ≤ pre[x] then

24: AddAfter(L,DelFirst(S))
25: else

26: AddListBefore(S,Children(x, a))
27: DelFirst(C)
28: end if

29: end if

30: end while

31: if S 6= ∅ then

32: AddListAfter(L, S)
33: end if

34: return L
35: • axis = parent

36: L← NewList()
37: while C 6= ∅ do

38: x← DelFirst(C)
39: y ← p[x]
40: if count[y] < k then

41: if a = ∗ or tag[y] = a then

42: AddAfter(L, y)
43: end if

44: count[y]← k
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45: end if

46: end while

47: return L
48: • axis = descendant

49: L← NewList()
50: while C 6= ∅ do

51: x← DelFirst(C)
52: while C 6= ∅ and post[First(C)] < post[x] do

53: DelFirst(C)
54: end while

55: y ← c[x]
56: while y 6= nil do

57: AddListAfter(L,Descendants(y, a))
58: y ← r[y]
59: end while

60: end while

61: return L
62: • axis = ancestor

63: L← NewList()
64: while C 6= ∅ do

65: x← DelFirst(C)
66: S ← NewList()
67: y ← p[x]
68: while y 6= nil and count[y] < k do

69: if a = ∗ or tag[y] = a then

70: AddBefore(S, y)
71: end if

72: count[y]← k
73: y ← p[y]
74: end while

75: AddListAfter(L, S)
76: end while

77: return L
78: • axis = descendant-or-self

79: L← NewList()
80: while C 6= ∅ do

81: x← DelFirst(C)
82: while C 6= ∅ and post[First(C)] < post[x] do

83: DelFirst(C)
84: end while

85: AddListAfter(L,Descendants(x, a))
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86: end while

87: return L
88: • axis = ancestor-or-self

89: L← NewList()
90: while C 6= ∅ do

91: x← DelFirst(C)
92: S ← NewList()
93: y ← x
94: while y 6= nil and count[y] < k do

95: if a = ∗ or tag[y] = a then

96: AddBefore(S, y)
97: end if

98: count[y]← k
99: y ← p[y]
100: end while

101: AddListAfter(L, S)
102: end while

103: return L
104: • axis = following-sibling

105: L← NewList()
106: H ← NewList()
107: while C 6= ∅ do

108: S ← NewList()
109: x← DelFirst(C)
110: y ← r[x]
111: while y 6= nil and count[y] < k do

112: if a = ∗ or tag[y] = a then

113: if C 6= ∅ and post[First(C)] < post[y] then

114: AddAfter(S, y)
115: else

116: while H 6= ∅ and pre[First(H)] < pre[y] do

117: AddAfter(L,DelFirst(H))
118: end while

119: AddAfter(L, y)
120: end if

121: end if

122: count[y]← k
123: y ← r[y]
124: end while

125: AddListBefore(H,S)
126: end while
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127: AddListAfter(L,H)
128: return L
129: • axis = preceding-sibling

130: L← NewList()
131: H ← NewList()
132: while C 6= ∅ do

133: S ← NewList()
134: x← DelLast(C)
135: y ← l[x]
136: while y 6= nil and count[y] < k do

137: if a = ∗ or tag[y] = a then

138: if C 6= ∅ and pre[Last(C)] > pre[y] then

139: AddBefore(S, y)
140: else

141: while H 6= ∅ and pre[Last(H)] > pre[y] do

142: AddBefore(L,DelLast(H))
143: end while

144: AddBefore(L, y)
145: end if

146: end if

147: count[y]← k
148: y ← l[y]
149: end while

150: AddListAfter(H,S)
151: end while

152: AddListBefore(L,H)
153: return L
154: • axis = following

155: L← NewList()
156: if C 6= ∅ then

157: x← DelFirst(C)
158: while C 6= ∅ and post[First(C)] < post[x] do

159: x← DelFirst(C)
160: end while

161: while x 6= nil do

162: y ← r[x]
163: while y 6= nil do

164: AddListAfter(L,Descendants(y, a))
165: y ← r[y]
166: end while

167: x← p[x]
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168: end while

169: end if

170: return L
171: • axis = preceding

172: L← NewList()
173: x← Last(C)
174: while x 6= nil do

175: M ← NewList()
176: y ← l[x]
177: while y 6= nil do

178: AddListAfter(M,Descendants(y, a))
179: y ← l[y]
180: end while

181: AddListBefore(L,M)
182: x← p[x]
183: end while

184: return L
185: endcase

1: Children(x, a)
2: L← NewList()
3: y ← c[x]
4: while y 6= nil do

5: if a = ∗ or tag[y] = a then

6: AddAfter(L, y)
7: end if

8: y ← r[y]
9: end while

10: return L

1: Descendants(x, a)
2: L← NewList()
3: S ← NewList()
4: while x 6= nil do

5: if a = ∗ or tag[x] = a then

6: AddAfter(L, x)
7: end if

8: x← c[x]
9: AddBefore(S, x)

10: end while

11: while S 6= ∅ do
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12: x← r[DelFirst(S)]
13: while x 6= nil do

14: if a = ∗ or tag[x] = a then

15: AddAfter(L, x)
16: end if

17: AddBefore(S, x)
18: x← c[x]
19: end while

20: end while

21: return L

In the worst-case, the procedure ProcessStep2 visits the entire tree and hence its
cost is O(n), where n is the number of nodes of the tree. The evaluation algorithm
TopXPath2 runs in linear time with respect to the product of the size of the XML
tree and the length of the query. The whole top-down evaluation algorithm for Core
XPath is as follows:

1. translate q into υ(q);

2. run TopXPath2 on T and υ(q).

If k is the length of q and n is the number of nodes of T , the complexity of
the translation step is O(k) and the call to TopXPath2 costs O(k · n). Since TopX-
Path2 maintains sorted the context sets, the result of TopXPath2 is already sorted.
Hence, the overall complexity for the evaluation of q on T with the top-down method
described in this section is O(k · n), as for BottomXPath and TopXPath1.

7 Experimental analysis

All the three algorithms proposed in Sections 5 and 6, namely BottomXPath, TopX-
Path1 and TopXPath2, have the same asymptotic worst-case complexity. In order
to better understand the computational differences between the proposed strategies,
we performed an experimental analysis. We implemented the algorithms in stan-
dard C language and we used a fragment of the XPath benchmark XPathMark [5]
to assess the empirical complexity of the discussed strategies. In this section, we re-
port about this analysis. The source code (released under the GNU General Public
License), the executable programs (for Gnu/Linux systems), and additional experi-
mental data and plots (including a comparison with XQuery processor Saxon [12])
are available at http://www.zimuel.it/xpath.

Our experiments were run on an AMD Sempron 1.7 GHz, with 1 GB RAM,
running Debian Gnu/Linux version 2.6.10. All the times are response CPU times
in seconds. We ran tests using a variety of XML documents and XPath queries.
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The documents are generated using the XML benchmarking program XMark [13].
XMark generated documents are modeled after a database as deployed by an Inter-
net auction site, a typical e-commerce application. They allow for the formulation
of queries that both feel natural and present concise challenges. Moreover, the gen-
erated documents make the behavior of queries predictable. XMark provides an
accurate scaling of the XML document size using a user defined scaling factor f .
The numbers are calibrated to match a total XML document size of approximately
100 MB when f assume the value 1.0. We used the following scaling factors:

(0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.512, 1)

corresponding to the following sizes (in MB):

(0.116, 0.212, 0.468, 0.909, 1.891, 3.751, 7.303, 15.044, 29.887, 59.489, 116.517)

As for the benchmark queries, we used a navigational fragment of XPathMark [5].
XPathMark is a benchmark for XPath consisting of a set of queries covering all as-
pects of XPath 1.0. These queries have been designed for XML documents generated
under XMark. The benchmark queries we used in this paper are the following:

Q1 The keywords in annotations of closed auctions

/child::site/child::closed auctions/child::closed auction

/child::annotation/child::description/child::parlist

/child::listitem/child::text/child::keyword

Q2 All the keywords

/descendant::keyword

Q3 The keywords in a paragraph item

/descendant-or-self::listitem/descendant-or-self::keyword

Q4 The (either North or South) American items

/child::site/child::regions/child::*/child::item

[parent::namerica or parent::samerica]

Q5 The paragraph items containing a keyword

/descendant::keyword/ancestor::listitem

Q6 The mail containing a keyword

/descendant::keyword/ancestor-or-self::mail

Q7 The last bidder of all open auctions

/child::site/child::open auctions/child::open auction
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/child::bidder[not(following-sibling::bidder)]

Q8 The first bidder of all open auctions

/child::site/child::open auctions/child::open auction

/child::bidder[not(preceding-sibling::bidder)]

Q9 The last item of the document

/child::site/child::regions/child::*/child::item[not(following::item)]

Q10 The first item of the document

/child::site/child::regions/child::*/child::item[not(preceding::item)]

Q11 People having an address and either a phone or a homepage

/child::site/child::people/child::person

[child::address and (child::phone or child::homepage)]

Q12 People having no homepage

/child::site/child::people/child::person[not(child::homepage)]

We are interested into the evaluation of the efficiency and of the data scalability
of the three algorithms proposed in this paper. To perform this evaluation, we took
advantage of the following standard measures:

• Given a query q and a document d, the query response time is the time taken by
an algorithm to give the answer for the query q on the document d including all
the phases of the elaboration (parsing of the document, processing the query,
serialization of the results, etc).

• Given a query q and a document d, the query response speed is defined as the
size of the document d divided by the response time for query q and document
d. The measure unit is, for instance, MB/sec.

• Given a query q and two documents d1 and d2, where the size of d2 is bigger
than the size of d1, the data scalability factor is defined as v1/v2, where v1 is
the query response speed of q on d1 and v2 is the query response speed of q on
d2.

The response time for a query gives an indication of how fast is a query processor
to give the answer, while the data scalability factor is useful to test how a query
processor performs when the size of the XML data increases. In particular, if the
scalability factor is lower than 1, that is v1 < v2, then we have a positive speed
acceleration when moving from document d1 to document d2. In this case, we say
that the scalability is sub-linear. If the scalability factor is higher then 1, that is
v1 > v2, then we have a negative speed acceleration when moving from document d1
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Figure 1. Benchmark response times
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Figure 2. Benchmark response speeds

to document d2. In this case, we say that the scalability is super-linear. Finally, if
the scalability factor is equal to 1, that is v1 = v2, then the speed is constant when
moving from document d1 to document d2. In this case, we say that scalability
is linear. Usually, sub-linear and linear scalability are good properties of a query
processor.

These measures can be aggregated along two directions, the document and the
query one. Let us fix a document d and vary the query in the benchmark set.
One can compute the average of the response times of all the benchmark queries
on document d. This measure, that we call the benchmark response time for d, is
depicted in Figure 1, where we vary the size of the document on the x-axis (the
left side plot is for documents from scaling factor 0.001 up to 0.016, and the right
side plot is for bigger documents from scaling factor 0.032 up to 1). The benchmark
response speed for d is the size of d divided by the benchmark response time for
d. This is illustrated in Figure 2. The benchmark data scalability factor is defined
as above in terms of the benchmark response speed. This is shown in Figure 3.

34



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1  2  3  4  5  6  7  8  9  10

Da
ta

 s
ca

la
bi

lity
 fa

ct
or

Pair of consecutive XML documents

TopXPath1
TopXPath2

BottomXPath
Linear scalability

Figure 3. Benchmark data scalability factors

Moreover, let us now fix a query q and vary the document in the chosen document
series. The average query response speed for q is the average of the response speeds
for q over the document series (see Figure 4), while the average data scalability factor
for q is the average of the data scalability factors for q over the documents series (see
Figure 5). Finally, the average benchmark response speed is the benchmark response
speed averaged over the document series, and the average benchmark scalability
factor is the benchmark scalability factor averaged over the document series. These
last two measures are scalar values and they give an immediate indication about
the efficiency and the data scalability of the XPath engine. The average benchmark
response speeds we obtained for the implemented processors are: 10.79 MB/sec
for TopXPath1, 10.70 MB/sec for TopXPath2, and 7.76 MB/sec for BottomXPath.
The average benchmark scalability factors are: 0.93 MB/sec for TopXPath1, 0.95
MB/sec for TopXPath2, and 0.95 MB/sec for BottomXPath.

In the following we analyze the outcomes of our experimental evaluation:

• The response times of the two top-down strategies are very close, with TopX-
Path2 slightly faster than TopXPath1. This tells us that the approach of
maintaining the context sequences document sorted at any time does not pay
off in terms of response time.

• The top-down strategy is more efficient than the bottom-up one (about 30%
faster, and the difference increases as the size of the data increases). The gap
is bigger in the case of queries like Q1 and Q4 that do not need to explore big
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Figure 5. The average data scalability factors

portions of the document tree in order to compute the query answer, while the
response times of the two strategies are similar in the case of queries like Q2
that need to visit the entire document. This phenomenon can be explained
as follows: the bottom-up algorithm visits the entire document tree for each
sub-query of the main query, while the top-down procedure explores only the
tree zones that are relevant for the evaluation of the query.

• All the three XPath processors scale-up linearly (or even sub-linearly on small
data) with respect to the size of the XML data. This confirms the linear-time
complexity of the implemented algorithms.
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8 Conclusion and future work

We implemented three evaluation strategies for the navigational fragment of XPath
and we benchmarked the resulting XPath processors using a fragment of XPathMark,
a recently proposed benchmark for XPath. The main outcomes of our investigation
are (i) a top-down evaluation approach is faster than a bottom-up one, and (ii) the
celebrated pre/post plane optimizations for XPath query evaluation are essentially
as good as a foxy visit of the tree modeling the XML document.

It is worth pointing out that a bottom-up strategy outputs much more informa-
tion than a top-down strategy. In particular, the bottom-up model checking-based
procedure computes the answer set for each sub-query of the input query, while the
top-down routine retrieves only those nodes belonging to the answer of the input
query. This feature of the bottom-up approach may in fact become a benefit when-
ever the ansewer set for the sub-queries of the input query is relevant. Consider for
instance a query processor that is queried many times possibly by different users.
It is not unlikely that similar queries are posed at different times. In such a case, a
bottom-up strategy may easily reuse the results computed for common sub-queries
(in a dynamic programming fashion), while a top-down strategy must re-compute
the result for each new query from scratch.

As a future work, we would like to compare the performace of the bottom-up and
top-down approaches in a multi-query environment. Moreover, we intend to extend
to developed evaluation system with different evaluation strategies, e.g., automata-
based approaches. Another goal is to increase the supported language, e.g., with
text(), id(), and position() XPath functions. On the modal logic side, we would like
to investigate top-down strategies to solve the model checking problem for modal
and temporal logics.
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