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TRIADIC CANTOR SET:

d =02 _06300..

10 cm In3

Hence the interesting measure 1s

(10 Cm)0.6309... = 4275 Cm0.6309

It is the natural (or artificial or social) system itself
which, through its geometrical-dynamical properties,
mandates the specific informational tool --- entropy ---
to be meaningfully used for the study of its
thermostatistical and thermodynamical properties.



Enrico FERMI Thermodynamics (Dover, 19306)

The entropy of a system composed of several parts is very
often equal to the sum of the entropies of all the parts. This
is true if the energy of the system is the sum of the energies
of all the parts and if the work performed by the system
during a transformation is equal to the sum of the amounts
of work performed by all the parts. Notice that these
conditions are not quite obvious and that in some cases
they may not be fulfilled. Thus, for example, in the case of a
system composed of two homogeneous substances, it will
be possible to express the energy as the sum of the
energies of the two substances only if we can neglect the
surface energy of the two substances where they are in
contact. The surface energy can generally be neglected
only If the two substances are not very finely subdivided,
otherwise, it can play a considerable role.



ENTROPIC FUNCTIONALS

Pe=T7 (W)

equiprobability

l Vp, (0 p, £1)

( i/);':] )

| W
BG entropy e InW —kY piIng
i=1

/

);

(q =1)
W
F - | — J
Entropy Sq I W - | P ; P
(q real) - ¢ q-1

Possible generalization of
Boltzmann-Gibbs statistical mechanics

C.T.,, J. Stat. Phys. 52, 479 (1988)

additive
Concave

Extensive
Lesche-stable

Finite entropy production
per unit time

Pesin-like identity (with
largest entropy production)

Composable (unique trace
form; Enciso-Tempesta)

Topsoe-factorizable (unique)

Amari-Ohara-Matsuzoe
conformally invariant
geometry (unique)

Biro-Barnafoldi-Van
thermostat universal
independence (unique)

nonadditive (if g #1)



DEFINITIONS : q —logarithm : In x= (x>0; In, x=
—q
1
g — exponential e, =[1+(-g) x|« (¢ =e")
Hence, the entropies can be rewritten :
equal probabilities | generic probabilities
il 1
BG entropy k InlW k Zpl. In—
1=1 pi
(g=1)
- 1
entropy S, k In W kZpilnq—

(g€ R)




TYPICAL SIMPLE SYSTEMS:

Short-range space-time correlations

W(N)ou" (uu>1)

Markovian processes (short memory), Additive noise

Strong chaos (positive maximal Lyapunov exponent), Ergodic, Riemannian geometry
Short-range many-body interactions, weakly quantum-entangled subsystems
Linear and homogeneous Fokker-Planck equations, Gaussians

- Boltzmann-Gibbs entropy (additive)

- Exponential dependences (Boltzmann-Gibbs weight, ...)

TYPICAL COMPLEX SYSTEMS: [ o Jy/(N)oc N” (p > 0)

Long-range space-time correlations

Non-Markovian processes (long memory), Additive and multiplicative noises

Weak chaos (zero maximal Lyapunov exponent), Nonergodic, Multifractal geometry

Long-range many-body interactions, strongly quantum-entangled sybsystems

Nonlinear and/or inhomogeneous Fokker-Planck equations, g-Gaussian
- Entropy Sq (nonadditive)

- g-exponential dependences (asymptotic power-laws)




ADDITIVITY: O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment
(Pergamon, Oxford, 1970), page 167

An entropy 1s additive if, for any two probabilistically independent
systems 4 and B,
S(A+B)=S(A)+S(B)
Therefore, since S(A+B) S(4) S (B) S (A) S (B)
q __4 44 +(1—q) - q
k k k k k

S,; and S fe”y '(Vq) are additive, and S , (Vg #1) 1s nonadditive .

EXTENSIVITY:
Consider a system 2 = 4 + 4, +...+ A, made of N (not necessarily independent)

identical elements or subsystems 4, and 4,, ..., 4 .
An entropy is extensive if

0< lim S(N)
N —o0 N

<o, ie, S(N)xc N (N — )



EXTENSIVITY OF THE ENTROPY (N — o)

W = total number of possibilities with nonzero probability,

assumed to be equally probable
EW(N)~u" (u>1)
= S, ,(N)=k,InW(N) <N OK!
If W(N)~N" (p>0)
= S (N) =k,In W(N)e<[W(N)] oc NP
= S,_,(N) =N OK!

IfW(N)~vY (v>1;0<y<1)
o
= S;(N)=k,| InW(N)]| N’
= S(SZW(N) oc N OK!

IMPORTANT: | u" >>v¥ >>N? if N>>1

All happy families are alike; each unhappy family is unhappy in its own way.
Leo Tolstoy (Anna Karenina, 1875-1877)



SYSTEMS

ENTROPY §,.| ENTROPY § . ENTROPY S;
W(N) (g#1) (0#1)
(equiprobable] (ADDITIVE) |(NONADDITIVE)| (NONADDITIVE)
N
eg., U
EXTENSIVE | NONEXTENSIVE | NONEXTENSIVE
(u>1)
eg., N°
NONEXTENSIVE | EXTENSIVE | NONEXTENSIVE
(p>0) _
(g=1-1/p)
eg., vV
v>1: NONEXTENSIVE | NONEXTENSIVE | EXTENSIVE
0<y<1) (0=1/y)




King Thutmosis |
18" Dynasty
circa 1500 BC




A theory is the more impressive the greater the
simplicity of its premises is, the more different
kinds of things it relates, and the more extended
Is its area of applicability. Therefore the deep
Impression that classical thermodynamics made
upon me. It is the only physical theory of
universal content concerning which | am
convinced that, within the framework of

applicability of its basic concepts, it will never be
overthrown.

Albert Einstein (1949)



COMPOSITION OF VELOCITIES OF INERTIAL SYSTEMS (d=1)

V.=V +V,, (Galileo)

1
V. +V
v, =—2—2 (Einstein)
13
1_|_V12 V13
cC C

Newton mechanics:
It satisfies Galilean additivity but violates Lorentz invariance (hence
mechanics can not be unified with Maxwell electromagnetism)

Einstein mechanics (Special relativity):
It satisfies Lorentz invariance (hence mechanics is unified with Maxwell
electromagnetism) but violates Galilean additivity

Question: which is physically more fundamental, the additive composition
of velocities or the unification of mechanics and electromagnetism?



Special relativity recovers Newtonian/Galilean mechanics
as particular case:

vV, +V
v, =—2—2_ vy 4y
13 vV Vv 12 23
1_|_ 12 23
c c

if 1/c—>0, Vv or V1/c#0 withv/c—0

q - statistics recovers Boltzmann-Gibbs statistics

as particular case:

Sq(A+B):Sq(A)+Sq(B)+(1_q) S,(4) S,(B) S, (4) S,,(B)
k k k k k k k

and

e PE = 1 —

| 1+(q-1BE |~
if (q-1)—>0,VBE or V (q-1)#0 with BE—0



Prediction of the g - triplet: c. T., Physica A 340,1 (2004)

SENSITIVITY
(qsen)

RELAXATION STATIONARY STATE
(C] re/) (qsmr)

Fig. 2. The triangle of the basic values of g, namely those associated with sensitivity to the initial conditions,
relaxation and stationary state. For the most relevant situations we expect gsen < 1, ¢y = 1 and gsrar = 1.
These indices are presumably inter-related since they all descend from the particular dynamical exploration
that the system does of its full phase space. For example, for long-range Hamiltonian systems characterized
by the decay exponent o and the dimension d, it could be that g, decreases from a value above unity
(e.g., 2 or %) to unity when o/d increases from zero to unity. For such systems _one expects relations like
the (particularly simple) ¢siar = ¢rei = 2 — @sen Or similar ones. In any case, it is clear that, for o/d > 1
(i.e., when BG statistics is known to be the correct one), one has ¢swar = Gre; = gsen = 1. All the weakly
chaotic systems focused on here are expected to have well defined values for gsen and g,.;, but only those
associated with a Hamiltonian are expected to also have a well defined value for gssar.
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SOLAR WIND: Magnetic Field Strength

L.F. Burlaga and A. F.-Vinas (2005) / NASA Goddard Space Flight Center; Physica A 356, 375 (2005)
[Data: Voyager 1 spacecraft (1989 and 2002); 40 and 85 AU; daily averages]
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Asymptotically scale-invariant occupancy of phase
space makes the entropy S, extensive

Constantino Tsallis***, Murray Gell-Mann**, and Yuzuru Sato*

*Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; and "Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150,

22290-180 Rio de Janeiro, Brazil
Contributed by Murray Gell-Mann, July 25, 2005

Phase space can be constructed for N equal and distinguishable
subsystems that could be probabilistically either weakly correlated
or strongly correlated. If they are locally correlated, we expect the
Boltzmann-Gibbs entropy Sz = —k Z; p; In p; to be extensive, i.e.,
Ssc(N) = N for N — =. In particular, if they are independent, Sgc is
strictly additive, i.e., Ssc(N) = NSsc(1), VN. However, if the sub-
systems are globally correlated, we expect, for a vast class of
systems, the entropy S, = k{1 = Z; pf]/(g — 1) (with 5, = 55¢) for
some special value of g # 1 to be the one which is extensive [i.e.,
Sq(N) = N for N — =]. Another concept which is relevant is strict or
asymptotic scale-freedom (or scale-invariance), defined as the
situation for which all marginal probabilities of the N-system
coincide or asymptotically approach (for N — =) the joint proba-
bilities of the (N — 1)-system. If each subsystem is a binary one,
scale-freedom is guaranteed by what we hereafter refer to as the
Leibnitz rule, i.e., the sum of two successive joint probabilities of
the N-system coincides or asymptotically approaches the corre-
sponding joint probability of the (N — 1)-system. The kinds of
interplay of these various concepts are illustrated in several ex-
amples. One of them justifies the title of this paper. We conjecture
that these mechanisms are deeply related to the very frequent
emergence, in natural and artificial complex systems, of scale-free
structures and to their connections with nonextensive statistical
mechanics. Summarizing, we have shown that, for asymptotically
scale-invariant systems, itis S, with g # 1, and not Sgg, the entropy
which matches standard, clausius-like, prescriptions of classical
thermodynamics.

continuous variables (N = 1, 2, 3). In both cases, certain correlations
that are scale-invariant in a suitable limit can create an intrinsically
inhomogeneous occupation of phase space. Such systems are
strongly reminiscent of the so called scale-free networks (24, 25),
with their hierarchically structured hubs and spokes and their nearly
forbidden regions.

Discrete Models

Some Basic Concepts. The most general probabilistic sets for N equal
and distinguishable binary subsystems are given in Fig. 1 with

N

N!
2 (N =) ™= 1

n=0
(ryn €0, 1;N=1,2,3,...;n=0,1,...,N). [2]

Let us from now on call Leibnitz rule the following recursive
relation:

TT_NJ,‘{"‘TT‘N'_,,.l:TTN 1_,,("=0,1,...,N_1;N=2,3,...).
31

This relation guarantees what we refer to as scale-invariance (or
scale-freedom) in this article. Indeed, it guarantees that, for any
value of N, the associated joint probabilities {my ,} produce marginal
probabilities which coincide with {my_1,}. Assuming m + m; =



Playing with additive duality (¢ — 2—¢q)
and with multiplicative duality (g —1/q)

(and using numerical results related to the q — generalized central limit theorem)

we conjecture

1 1
q,,+t—=2 and Gy T— =2

sen rel

1—
hence l-g¢q, = D sta
3 o 2 qstat

hence only one independent!

Burlaga and Vinas (NASA) most precise value of the g —triplet is

q,.,=1.75=7/4
hence q9.,=— 05==1/2  (consistent with q, =-0.6 £0.2!)
and q., =4 (conmsistent with q.,= 3.8 £0.3!)

C.T., M. Gell-Mann and Y. Sato, Proc Natl Acad Sc USA 102, 15377 (2005)



En =1—¢q,,, =1-(-1/2)=3/2

Eq =1—¢q, =1-4 =3

E,,=1—q. . =1-7/4 =-3/4

We verity

Estar = sen ;qd (arithmetic mean!)
\/ Equ €.  (geometric mean!)

Erol = e _Iz_g“at (harmonic mean!)

N.O. Baella (2008)
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Generalization of the possible algebraic basis
of g-triplets
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qa(q) =

_(@+2)—aq
a—(a—2)q

(aeZ) qo=1/q @ =2-q

Statistical mechanics for complex systems: On

the structure of g-triplets
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MOBIUS TRANSFORMS, CYCLES AND ¢-TRIPLETS IN

STATISTICAL MECHANICS

JEAN-PIERRE GAZEAUAB AND CONSTANTINO TSALLISA &P (2019)
dsens qstat drel qaux X1
Solar wind (observations) -0.6+0.2 [1.75+0.06 | 3.8+0.3 | 0.5158 | 0.0316
Solar wind (conjectural) -1/2 7/4 4 0.5 0
Feigenbaum point (calculations) | 0.2444877... | 1.65 £0.05 | 2.2497841 | 0.50375 | 0.0075
Ozone layer (observations) -8.1 1.32 1.89 0.805 0.61
Bitcoin (observations) 0.14 1.54 2.25 0.6088 | 0.2176
Brazos river (observations) 0.244 1.65 2.25 0.5203 | 0.0406
Standard map (calculations) 0 1.035 1.4 0.71985 | 0.4397
Solar activity/SN (observations) | —=0.71 + 0.10 | 1.31 + 0.07 I 0.725 | 0.725
Solar activity/MF (observations) | —0.44 + 0.07 | 1.21 + 0.06 I 0.803 | 0.803
Solar activity/TSI (observations) | =0.52 + 0.10 | 1.54 + 0.03 I 0.544 | 0.544
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics

Filippo Caruso’ and Constantino Tsallis™
'NEST CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
2Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil
3Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA
(Received 16 March 2008; revised manuscript received 16 May 2008; published 5 August 2008)

The Boltzmann—Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L%, Here we show, for d=1,2, that the (nonadditive) entropy S, satisfies, for a special value of g # 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., SqOCLd. Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,

Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index gq.



Block entropy for the d=7+1 model, with central charge c, at its quantum

phase transition at 7=0 and critical transverse “magnetic” field
| ' | ' | ' |

108 BG -
q A
0.8 : .
analytically obtained
from first principles |
0.6 .
VI+c¢? -3
B q = i
04 c
021 AY | -
Ising
O 1 ] 1 ] 1 ] 1 ] 1
0 0.5 1.0 1.5 2.0 1/c
Self-dual Z(n) magnet (n =1,2,...) [FC Alcaraz, JPA 20 (1987) 2511]
Se=217D 69

n+?2

SU(n) magnets (n=1,2,...; m=2,3,...) [FC Alcaraz and MJ Martins, JPA 23 (1990) L1079]
n(n+1)

(m+n-2)(m+n-—1)

%c:(n—l)[l— }E[O,n—l]



EDGE OF CHAOS OF THE LOGISTIC MAP:
(Using result in http://pi.lacim.ugam.ca/piDATA/feigenbaum.txt)_

In2
q=1-
In o,

0.2444877013412820661987704234046804052344469354900576736703650
986327749672766558665755156226857540706288349640382728306063600
193730331818964551341081277809792194386027083194490052465813521
503174534952074940448165460949087448334056723622466488083333072
142318987145872992681548496774607864821834569063370205946820461
899021675321457546117438305008496860408846969491704367478991506
016646491060217834827889993818382522554582338038113118031805448
236757944990397074395466146340815553168788535030113821491411266
246328940130370152354936571471269917921021622688833029675405780
630706822368810432015790352123740735444602970006055250423142028
089193578811239731977974844235152456040926446709579570304658614
129566479666687743683240492022757393004750895311855179558720483
992696896827555852445024436526825609423780128033094877954403542
524859043379761802711830004573585550738941136758784400629135630
421674541694092135698603207859088199859359007319336801069967496
707904456092418632112054130547393985795544410347612222592136846
219346009360... (1018 meaningful digits)

= M.L. Lyraand C. T., Phys Rev Lett 80, 53 (1998)
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From statistical thermodynamics to molecular kinetics: the change,
the chance and the choice
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PHYSICAL REVIEW E 84, 021121 (2011)

Group entropies, correlation laws, and zeta functions

Piergiulio Tempesta”
Departamento de Fisica Tedrica I, Facultad de Fisicas, Ciudad Universitaria, Universidad Complutense, E-28040 Madrid, Spain
(Received 15 February 2011, revised manuscript received 3 May 2011; published 10 August 2011)

The notion of group entropy is proposed. It enables the unification and generaliztion of many different
definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis.
Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes
of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed.
The mathematical structure underlying our construction is that of formal group theory, which provides the
general structure of the correlations among particles and dictates the associated entropic functionals. As an
example of application, the role of group entropies in information theory is illustrated and generalizations of the
Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions
is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.

1
S, 0 TS @<D

with ¢(s) = 2 H

n=l n prlme

1 1 111
1-271-3"1-5"1-7"1-11"




q— PRODUCT:

L. Nivanen, A. Le Mehaute and Q.A. Wang, Rep. Math. Phys. 52, 437 (2003)
E.P. Borges, Physica A 340, 95 (2004)

The g - product is defined as follows:
1
x® y= [xl_q + ' —I}E
Properties :
i) x® y=xy
ii) In (x®_y)=In_x+In_y (extensivity of Sq)

[whereas In (x y)=In_x+In_y+(1—-g)(In_ x)(In_ y)]
(nonadditivity of Sq)



q - GENERALIZED CENTRAL LIMIT THEOREM:

S. Umarov, C.T. and S. Steinberg, Milan J Math 76, 307 (2008)

g-Fourier transform:
( ix ( ix x4
F L) = [e @, f(x)dx= [ ey r(x) dx

(g=1)

(nonlinear!)

For g<1 see K.P. Nelson and S. Umarov, Physica A 389, 2157 (2010)



q — FourierTransform {ﬁ ec;lB 2 } — e;ﬂ1 28
C, 1

1+

where q, = Tqg
3-q 7 invertible
3 3—¢g

_ N
and ﬂ — 2—q q21_q & (ﬁl) ﬁ\/ﬁ:|: 2(1—-q :l EK(Q)
Y T 8C,
zﬁr[lj
q—1 .
- if q<l1
(3—61)\/(1—61)1“[2(1_@)
with Cq=<\/; if q=
\
ﬁr[ 54
2<q_1)< if 1<q<3
qg—1I" L
\ [q‘l/




Milan j. math. 76 (2008), 307-328

(© 2008 Birkhauser Verlag Basel/Switzerland
1424-9286/010307-22, published online 14.3.2008
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I Milan Journal of Mathematics

On a ¢g-Central Limit Theorem
Consistent with Nonextensive
Statistical Mechanics

Sabir Umarov, Constantino Tsallis and Stanly Steinberg

JOURNAL OF MATHEMATICAL PHYSICS 51, 033502 (2010)

H.J. Hilhorst, JSSTAT P10023 (2010)

Generalization of symmetric a-stable Lévy distributions

for g>1

Sabir Umarov,"? Constantmo Tsallis, 2.3,0) Murray Gell- Mann,>® and
Stanly Stemberg

Deparrmem of Mathematics, Tufts University, Medford, Massachusetts 02155, USA
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CENTRAL LIMIT THEOREM

N _scaled attractor F(x) when summing N — oo q -independent identical random variables

with symmetric distribution f (X) with Op = Idx X[ f(x)]° /de [ £(x)]° (Q 2qg-1,q, = ;+q j

qg=1 [independent] qg#1(ie, O=2qg-1 #1) [globally correlated |
F(x)=G,(x) =G, (1+a,) (x) with same o, of f(x)
o < F(x) = Gaussian G(x), G(x) if | x|<<x.(q,2)
oo - G, (x) ~
° with same &, of 1) O -0, 15PN 5o
(ax=2) L
Classic CLT with lim, ., x(¢,2) = e°
S. Umarov, C. T. and S. Steinberg, Milan J Math 76, 307 (2008)
F(x) = Levy distribution L(x) F(x)=L,, ., with same |x |— e asymptotic behavior
with same | x| — oo behavior . 2(1_5()1__0;()3 ~4)
G2(1—q)—a(1+q) a(x) - Cq,a/ | x|
) 2(1-g)~(3-q)
O-Q — G(x) (intermediate regime)
if | xk<x (l,x -
(O<a<2)La(x)~4 f| | c( ) Lq,a <

with lim

a— 2 c

f(x)~Cy /| x[H
if | x> x,(1,0)
x.(l,a) =00

Levy-Gnedenko CLT

20{q—0(+3 q’a
o+1

(distant regime)

"

S. Umarov, C. T., M. Gell-Mann and S. Steinberg
J Math Phys 51, 033502 (2010)
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' The standard map: From

Boltzmann-Gibbs statistics to

Tsallis statistics

Received: 10 December 2015 Ugur Tirnakli** & Ernesto P. Borges?3*

Accepted: 09 March 2016
Published: 23 March 2016 . AS well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic
. systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag

. the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of

- such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics

. instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-

. dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our

- results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical

. distributions. Since various important physical systems from particle confinement in magnetic traps

. to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet

- dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an

. improved interpretation of diverse experimental and observational results.



STANDARD MAP (Chirikov 1969)

p.,, = p;— Ksinx, (mod 2r)

X, =X + P (mod 27)
(1=0,1,2,...)

(area-preserving)

Particle confinement in magnetic traps,
particle dynamics in accelerators,
comet dynamics,

ionization of Rydberg atoms,

electron magneto-transport
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Evidence for criticality in financial data

G. Ruiz"'?* and A.F. de Marcos®
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Pza. Cardenal Cisneros 3, 28040 Madrid, Spain
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3 Escuela Técnica Superior de Ingenieria Aeronautical y del Espacio, Universidad Politécnica de Madrid, Madrid,
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Published online 15 January 2018 — (©) EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2018

Abstract. We provide evidence that cumulative distributions of absolute normalized returns for the 100
American companies with the highest market capitalization, uncover a critical behavior for different time
scales At. Such cumulative distributions, in accordance with a variety of complex — and financial — systems,
can be modeled by the cumulative distribution functions of ¢-Gaussians, the distribution function that,
in the context of nonextensive statistical mechanics, maximizes a non-Boltzmannian entropy. These g-
Gaussians are characterized by two parameters, namely (g, 3), that are uniquely defined by At. From these
dependencies, we find a monotonic relationship between ¢ and 3, which can be seen as evidence of criticality.
We numerically determine the various exponents which characterize this criticality.
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Fig. 1. Cumulative distributions of absolute normalized
returns that correspond to different time scales At for the 100
American companies with the highest market capitalization
(points), and the fitted cumulative ¢-Gaussian distributions
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CDF and the respective experimental data have been multi-
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Fig. 6. Log—log representation of the re-normalized inverse
temperature 3 versus q — 1, for the estimated g-Gaussian pdfs

of normalized absolute returns. A power-law dependence of the
type B~ o (q — 1)_5 is observed, with ¢ = 1.29 + 0.07.
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Law governing anomalous heat conduction revealed (Vol. 46 No. 5-6)
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Heat conductance as the function of temperature T for different lattice size N = 50; 100; 200; 400; 800 and 1600

Y. Li, N. Li and B. Li, Temperature dependence of thermal conductivities of coupled rotator lattice and the
momentum diffusion in standard map, Eur. Phys. J. B, 88, 182 (2015)
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J.W. GIBBS

Elementary Principles in Statistical Mechanics - Developed with Especial
Reference to the Rational Foundation of Thermodynamics

C. Scribner’ s Sons, New York, 1902; Yale University Press, New Haven, (1981),
page 35

In treating of the canonical distribution, we shall always suppose the
multiple integral in equation (92) [the partition function, as we call it
nowadays] fto have a finite valued, as otherwise the coefficient of
probability vanishes, and the law of distribution becomes illusory. This
will exclude certain cases, but not such apparently, as will affect the
value of our results with respect to their bearing on thermodynamics.
It will exclude, for instance, cases in which the system or parts of it
can be distributed in unlimited space [...]. It also excludes many cases
in which the energy can decrease without limit, as when the system
contains material points which attract one another inversely as the
squares of their distances. [...]. For the purposes of a general
discussion, it is sufficient to call attention to the assumption implicitly
involved in the formula (92).



CLASSICAL LONG-RANGE-INTERACTING MANY-BODY HAMILTONIAN SYSTEMS

A

V(r)~—r—a (r — o) (A>0, ox=0)

integrable if o/d>1 (short-ranged)
non-integrable if 0<oa/d <1 (long-ranged)
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Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions
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in a spherically symmetric electric field
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Evidence for energy regularity in the Mendeleev periodic table
C.H.S. Amador®*, L.S. Zambrano®
2 Centro Brasileiro de Pesquisas Fisicas, R. Dr. Xavier Sigaud, 150; Rio de Janeiro, CEP 22290-180, Brazil
® Universidad de Puerto Rico, Mayagiiez, Puerto Rico
ARTICLE INFO ABSTRACT
Article history: We show that the dependence of the total energy of the atoms on their atomic number can
Received 2 January 2010 follow a g-exponential (as proposed by C. Tsallis), for practically all elements of the periodic
Received in revised form 29 March 2010 table. The result is qualitatively explained in terms of the way the atomic configurations

Available online 21 May 2010 are arranged to minimize energy.

© 2010 Elsevier B.V. All rights reserved.
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Relaxation times and ergodicity properties
1n a realistic 1onic—crystal model,
and the modern form of the FPU problem

Andrea Carati*  Luigi Galgani*  Fabrizio Gangemit
Roberto Gangemi*

March 7, 2019
arX1v:1903.02272v1 [cond-mat.stat-mech] 6 Mar 2019

The conclusion we reach is that at low temperatures ergodicity does not
occur, and thus the Gibbs prescriptions are not dynamically justified, up
to geological time scales.
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Figure 9: Maxwell-Boltzmann distribution and g-distribution. Left panel.
Histogram (in semilogarithmic scale) of the energies F (circles) of the modes
not initially excited, from time ¢t = 180 (after their equipartition is attained)
up to t = 200 ps. Only the 15 modes of lowest frequency were initially
excited, among the total number 1536 of modes. Specific energy ¢ = 120
K, N = 512. Solid line is the graph of the Maxwell-Boltzmann distribution
function C'exp(—FE/<). Right panel. Same as left panel, in logarithmic scale,
with data collected for time from 10 to 20 ps. Solid line is the graph of the
Tsallis distribution function C'(1+4 3(q—1)E)Y1=9 for ¢ = 1.14, 7! = 67.8
K.
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Fermi-Pasta-Ulam model with long-range interactions: Dynamics
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Role of dimensionality in complex
networks

- Samurai Brito?, L. R. da Silval? & Constantino Tsallis?3

' Deep connections are known to exist between scale-free networks and non-Gibbsian statistics. For

Received: 04 April 2016 :
Accepted: 25 May 2016
Published: 20 June 2016 :

. example, typical degree distributions at the thermodynamlcal limit are of the form P (k) e,
- the g-exponential form eq =M+ (- q)z]1 q optimizes the nonadditive entropy S, (which, forq—) 1,

“kix where

recovers the Boltzmann-Gibbs entropy). We introduce and study here d-dimensional geographically-

Iocated networks which grow with preferential attachment involving Euclidean distances through

(aA o). Revealing the connection with g-statistics, we numerically verify (ford=1, 2, 3 and 4) that

the g-exponential degree distributions exhibit, for both q and k, universal dependences on the ratio
. a,/d. Moreover, the g =1 limit is rapidly achieved by increasing «,/d to infinity.
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[ 1+(g—Dk/x |+

S.G.A. Brito, L.R. da Silva and C. T., Nature/Scientific Reports

6, 27992 (2016)
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A novel automatic microcalcification detection technique using Tsallis
entropy & a type Il fuzzy index

Mohanalin*, Beenamol, Prem Kumar Kalra, Nirmal Kumar
Department of Electrical Engineering, IIT Kanpur, UP-208016, India

ARTICLE INFO ABSTRACT

Article history: This article investigates a novel automatic microcalcification detection method using a
Received 18 August 2009 type Il fuzzy index. The thresholding is performed using the Tsallis entropy characterized
Received in revised form 12 August 2010 by another parameter ‘q', which depends on the non-extensiveness of a mammogram.,
Accepted 12 August 2010 In previous studies, ‘q"' was calculated using the histogram distribution, which can lead
to erroneous results when pectoral muscles are included. In this study, we have used

';g"iw:; d:;ropy a type Il fuzzy index to find the optimal value of ‘q". The proposed approach. has been
Type Il fuzzy index tested on several mammograms. The rgsults suggest that the proposed Tsallis entropy
Shannon entropy approach outperforms the two-dimensional non-fuzzy approach and the conventional
Mammograms Shannon entropy partition approach. Moreover, our thresholding technique is completely
Microcalcification automatic, unlike the methods of previous related works. Without Tsallis entropy

enhancement, detection of microcalcifications is meager: 80.21% Tps (true positives) with

8.1 Fps (false positives), whereas upon introduction of the Tsallis entropy, the results surge
to 96.55% Tps with 0.4 Fps.
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Brain tissue segmentation using g-entropy
In multiple sclerosis magnetic
resonance images
P.R.B. Diniz!, L.O. Murta-Junior3, D.G. Brum', D.B. de Araujo3 and A.C. Santos'.2
1Departamento de Neurociéncias e Ciéncias do Comportamento, 2Departamento de Clinica Médica,
Divisdo de Radiologia, Faculdade de Medicina de Ribeirdao Preto,
Universidade de S3o Paulo, Ribeirao Preto, SP, Brasil
3Departamento de Fisica e Matematica, Faculdade de Filosofia,
Ciéncias e Letras de Ribeirdao Preto, Universidade de Sdo Paulo, Ribeirdo Preto, SP, Brasil

Abstract

The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of
neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmenta-
tion based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for
each single class of brain tissue. We compared the performance of this method using a range of different q parameters and
found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion
that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by
generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we
used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age.
The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this
algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude
that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not
been demonstrated previously.



The ideal q values for the segmentation of the
classes are: CSF = 0.2, WM = 0.1, GM = 1.5, which have
not been shown previously.

These characteristics allow its application to
clinical routine.

Figure 3. Maximum entropy segmentation example. A, Onginal
image; B, image with the segmentation masks. Blue indicates
cerebrospinal fluid, white indicates the gray matter, and red indi-

cates the white matter.

using Shannon’s using Tsallis’
entropy entropy

PRB Diniz, LO Murta Jr., DG Brum, DB de Araujo and AC Santos

Braz. J. Med. Bio. Res. 43, 77 (2010)

Figure 6. Segmentation using Shannon and Tsallis entropies.



New combinational therapies for cancer using modern statistical
mechanics
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Nonlinear Relativistic and Quantum Equations with a Common Type of Solution
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Generalizations of the three main equations of quantum physics, namely, the Schrodinger, Klein-
Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an
index ¢, are considered in such a way that the standard linear equations are recovered in the limit ¢ — 1.
Interestingly, these equations present a common, solitonlike, traveling solution, which is written in terms
of the g-exponential function that naturally emerges within ponextensive statistical mechanics, In all
See also: cases. the well-known Einstein energy-momentum relation is preserved for arbitrary values of ¢.
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g — generalized Schroedinger equation

(quantum non-relativistic spinless free particle)

(I)(x,t) 2 CI)(x,t)
in SR S £
or| @ 2—q2m ON

0

(g € R)

Its exact solution is given by

—_ —

(I)(;C,l‘) = (I)O ei(; ' ;_Et)/h _® ei(k . x—a)t)

q ' g
p’ \
E =— (Newtonian relation!)
2m
with E=hw (Planck relation!) - Vg

p=rhk (de Broglie relation!)

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



g-generalized Klein-Gordon equation:

(quantum relativistic spinless free particle: e.g., mesons 1)

5 - B -~ \ 72(¢-D
10 (I)(x,t) 2.2, (I)(x,t)

¢t ot

Vzcb(},z) _ (¢ € R)

Its exact solution is given by

(I)(;c,t)=(l)o ei(? x—Et) /1 Yy ei(ié.}—w /)
q q

with
E*=p°’c*+m’c* (Vq) (Einstein relation!)

Particular case: m =0 = g-plane waves
F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



g-generalized Dirac equation:
(quantum relativistic spin 1/ 2 matter and anti-matter free particles:

e.g., electron and positron)

in ’ ®§tx’t) ; ihc(&ﬁ)cp(},r) = Bmc? A (}z) cb(},t) (g € R)
with
o= [ ] B = C) Olj (4 x 4 matrices)
o
A9 (x.t)=8, o, £ y ( AV (x,1)= 5,.].) (4% 4 matrix)

where {aj} are complex constants.
F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



Its exact solution is given by

(=)
@)
1 ; \ /al A (al \
cb(} t)E P _| @ S E || i )
D, (x,t a, | 4 a, | 4
b (;C f \ %4/ \ Y44 )
“\™"))
(al\
. a2 .
with being the same Vg
a3
\44 )
hence

E*=p°c’+m’c® (geR) (Einstein relation!)

F.D. Nobre, M.A. Rego-Monteiro and C. T., Phys Rev Lett 106, 140601 (2011)



EDITORS' SUGGESTION

Experimental Validation of a
Nonextensive Scaling Law in
Confined Granular Media

The velocity distribution of sheared granular media

shows unexpected similarities with turbulent fluid
flows.

Gaél Combe, Vincent Richefeu, Marta Stasiak, and
Allbens P.F. Atman
Phys. Rev. Lett. 115, 238301 (2015)
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FIG. 4. Verification of the Tsallis-Bukman scaling law for dif-
ferent regimes of diffusion. (top) Evolufion of the measured
diffusion exponent a as a function of 1/,/A~ the dashed line
is a direct application of the scaling law from the fit of the val-
ues shown in Fig. 3, a(1/v/Av) = 2/[3 — q(1/v/A%)]. (Inset)
a typical diffusion curve showing the mean square displace-
ment fluctuations, (:1:2), in function of the shear strain, =; it
allows the assessment of the diffusion exponent, a, for each
strain window tested. In the case shown, it corresponds to
the smallest strain window, the rightmost point in the curve
at the main panel. Note that for a constant strain rate, 7 is
proportional to time. (Bottom) Measure of the deviation of
the data relative to the scaling law prediction, as a function
of 1/y/A~, showing an agreement on the order of +2%.

14 +
B B
-m o
13+ . ® «
-l
) 0.25
12 } L
Jl 0.2
'. 0.15 |
1.1 y as | 1
0.05 |
14 . d
1.1 )
s *NA A A A A A — '
09 + .
0'8 i i i
0 10 20 30 40
1/ Ay

2
=3 4

CT and DJ Bukman, PRE 54 (1996) R2197

a



www.nature.com/scientificreports

SCIENTIFIC REPg}RTS

Generalized statistical mechanics
of cosmic rays: Application to
positron-electron spectral indices
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. Cosmic ray energy spectra exhibit power law distributions over many orders of magnitude that are very
. well described by the predictions of g-generalized statistical mechanics, based on a g-generalized

. Hagedorn theory for transverse momentum spectra and hard QCD scattering processes. QCD at largest
. center of mass energies predicts the entropic index to be g = *3. Here we show that the escort duality of
© the nonextenswe thermodynamic formalism predicts an energy split of effective temperature given by

S AkT =22 kTH = +18 MeV, where T, is the Hagedorn temperature. We carefully analyse the measured

. data of the AMS-02 collaboration and provide evidence that the predicted temperature split is indeed

- observed, leading to a different energy dependence of thee™ and e~ spectral indices. We also observe a

- distinguished energy scale E* ~ 50 GeV where the e* and e~ spectral indices differ the most. Linear

. combinations of the escort and non-escort g-generalized canonical distributions yield excellent

. agreement with the measured AMS-02 data in the entire energy range.
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LHC (Large Hadron Collider)
CMS, ALICE, ATLAS and LHCDb detectors

~ 4000 smenhsts/engmeers from ~ 200 institutions of ~ 50 countries
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SIMPLE APPROACH: TWO-DIMENSIONAL SINGLE RELATIVISTIC FREE PARTICLE

C.Y. Wong, G. Wilk, L.J.L. Cirtoand C. T.,
EPJ Web of Conferences 90, 04002 (2015), and PRD 91, 114027 (2015)
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Tsallis Distribution Decorated with Log-Periodic Oscillation
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Figure 1. Examples of log-periodic oscillations. (a) dN/dpr for the highest energy 7 TeV;
the Tsallis behavior is evident. Only data from CMS experiment are shown [12]; others
behave essentially in an identical manner. (b) Log-periodic oscillations showing up in
different experimental data, like CMS [12] or ATLAS[15], taken at 7 TeV. (¢) Results from
CMS [12] for different energies. (d) Results for different systems (p + p collisions compared
with Pb + Pb taken for 5% centrality [54]. Results from ALICE[55] are very similar. Fits
for p+ p collision at 7, 2.76 and 0.9 TeV are performed with ¢ = 1.139 + 7 - 0.0385,
1.134 +1¢-0.0269 and 1.117 + ¢ - 0.0307, respectively. The fit for central b+ Pb collisions
at 2.76 TeV is done with ¢ = 1.135 + 7 - 0.0321. See the text for more details.
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