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nonlinear Schrödinger 
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• Do granular nonlinearities and the resulting chaotic 
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The Peyrard-Bishop-Dauxois 
(PBD) model of DNA 

Future works - Summary 



The  

DKG and DDNLS  

models 



Work in collaboration with 

Bob Senyange (PhD student): DKG model 

Bertin Many Manda (PhD student): DDNLS 

model 



Interplay of disorder and nonlinearity 

Waves in nonlinear disordered media – localization or 
delocalization? 

Theoretical and/or numerical studies [Shepelyansky, PRL 

(1993) – Molina, Phys. Rev. B (1998) – Pikovsky & 

Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – 

Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & 

Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et 

al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – 

Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] 

Experiments: propagation of light in disordered 1d waveguide 
lattices [Lahini et al., PRL (2008)] 

Waves in disordered media – Anderson localization [Anderson, 

Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]  



The disordered Klein – Gordon (DKG) model 
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with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy E. 

The disordered discrete nonlinear Schrödinger 

(DDNLS) equation 
We also consider the system: 
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Conserved quantities: The energy and the norm                        of the wave packet. 
2
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Linear case (neglecting the term ul
4/4)  

Ansatz: ul=Al exp(iωt). Normal modes (NMs) Aν,l - Eigenvalue problem:  

           λAl = εlAl - (Al+1 + Al-1) with 
2

l lλ =Wω -W - 2,    ε =W(ε - 1)



Distribution characterization 

We consider normalized energy distributions 

and norm distributions 
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Single site P=1. Equipartition of energy P=N.  

for the DDNLS system. 
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for the DKG model,  



Different Dynamical Regimes 
Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, 

PRE (2010) - Laptyeva et al., EPL (2010) -  Bodyfelt et al., PRE (2011)]  

Δ: width of the frequency spectrum, d: average spacing of interacting modes,  

δ: nonlinear frequency shift.  
 

Weak Chaos Regime: δ<d,     m2  t1/3 

Frequency shift is less than the average spacing of interacting modes. NMs are 

weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & 

Shepelyansky, PRL (2008)]. 
 

Intermediate Strong Chaos Regime: d<δ<Δ,     m2  t1/2    m2  t1/3 

Almost all NMs in the packet are resonantly interacting. Wave packets initially 

spread faster and eventually enter the weak chaos regime. 
 

Selftrapping Regime: δ>Δ 
Frequency shift exceeds the spectrum width. Frequencies of excited NMs are 

tuned out of resonances with the nonexcited ones, leading to selftrapping, while a 

small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)]. 



Single site excitations 

No strong chaos regime 

 

In weak chaos regime we 

averaged the measured 

exponent α (m2~tα) over 

20 realizations: 

 

α=0.33±0.05 (DKG) 

α=0.33±0.02 (DDLNS) 

 

 

Flach et al., PRL (2009)  

S. et al., PRE (2009) 

DDNLS W=4, β= 0.1, 1, 4.5 DKG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

slope 1/6 slope 1/6 



DKG: Different spreading regimes 



Crossover from strong to weak chaos 

(block excitations) 

W=4 

 

Average over 1000 realizations! 
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α=1/3 

α=1/2 

DDNLS β= 0.04, 0.72, 3.6 DKG E= 0.01, 0.2, 0.75 

Laptyeva et al., EPL (2010)  

Bodyfelt et al., PRE (2011) 



Variational Equations 

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The 

deviation vector from a given orbit is denoted by 

v = (δx1, δx2,…,δxn)T , with n=2N 

The time evolution of v is given by 

the so-called variational equations: 
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Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Maximum Lyapunov Exponent 

Roughly speaking, the Lyapunov exponents of a given orbit characterize the 

mean exponential rate of divergence of trajectories surrounding it.  

λ1=0  Regular motion 

λ10  Chaotic motion 

Chaos: sensitive dependence on initial conditions.  

Consider an orbit in the 2N-dimensional phase space with initial condition 

x(0) and an initial deviation vector from it v(0). Then the mean exponential 

rate of divergence is:  

1
t t

v(t)1
mLCE = λ = lim Λ(t) = lim ln

t v(0)



Symplectic integration 
We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. 

Num. Math. (2013) –  Senyange & S., EPJ ST (2018)] to the DKG model: 
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and the 3-part splitting integrator ABC6
[SS] [S. et al., Phys. Let. A (2014) –  

Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS 

system: 
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By using the so-called Tangent Map method we extend these symplectic 

integration schemes in order to integrate simultaneously the variational 

equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. 

(2011)  –  Gerlach et al., IJBC (2012)]. 



DKG: Weak Chaos  

Block excitation  

L=37 sites,  

E=0.37, W=3 



DKG: Weak Chaos 

Individual runs 

Linear case 

E=0.4, W=4 

Average over 50 realizations 

 

Single site excitation E=0.4, 

W=4 

Block excitation (L=21 sites) 

E=0.21, W=4 

Block excitation (L=37 sites) 

E=0.37, W=3 

 

 

S. et al., PRL (2013) 
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Weak Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=37 sites) E=0.37, W=3 

Single site excitation E=0.4, W=4 

Block excitation (L=21 sites) E=0.21, W=4 

Block excitation (L=13 sites) E=0.26, W=5 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.04, W=4 

Single site excitation β=1, W=4 

Single site excitation β=0.6, W=3 

Block excitation (L=21 sites) β=0.03, W=3 

αΛ = -0.25 αΛ = -0.25 



Strong Chaos: DKG and DDNLS 

DKG DDNLS 

Block excitation (L=83 sites) E=0.83, W=2 

Block excitation (L=37 sites) E=0.37, W=3 

Block excitation (L=83 sites) E=0.83, W=3 

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)] 

Block excitation (L=21 sites) β=0.62, W=3.5 

Block excitation (L=21 sites) β=0.5, W=3 

Block excitation (L=21 sites) β=0.72, W=3.5 

αΛ = -0.3 αΛ = -0.3 



Deviation Vector Distributions (DVDs) 

Deviation vector:   

v(t)=(δu1(t), δu2(t),…, δuN(t), δp1(t), δp2(t),…, δpN(t))  
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L=37 sites,  

E=0.37, W=3 

 



Deviation Vector Distributions (DVDs) 

Energy  

DKG: weak chaos. L=37 sites, E=0.37, W=3 

DVD 



Weak Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=37, E=0.37 DDNLS: W=4, L=21, β=0.04 



Deviation Vector Distributions (DVDs) 

Norm 

DDNLS: strong chaos W=3.5, L=21, β=0.72 

 

DVD 



Strong Chaos: DKG and DDNLS 

Energy  DVD Norm DVD 

DKG: W=3, L=83, E=8.3 DDNLS: W=3.5, L=21, β=0.72 



Characteristics of DVDs 

DKG DDNLS 

Weak chaos Strong chaos 

DKG DDNLS 



Characteristics of DVDs 
KG weak chaos  

L=37, E=0.37, W=3 

Range of the lattice 

visited by the DVD 
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Granular chains 



Work in collaboration with 

Vassos Achilleos (Université du Maine, France)  

Arnold Ngapasare (PhD student, Université du 

Maine, France)  

Olivier Richoux (Université du Maine, France)  

Georgios Theocharis (Université du Maine, 

France)  



Granular media 

Examples: coal, sand, rice, 

nuts, coffee etc. 

1D granular chain (experimental control of nonlinearity and disorder) 



Hamiltonian model 

Hertzian forces between spherical beads. ν: Poisson’s ratio, ε: Elastic modulus.  

[x]+=0 if x<0: formation of a gap (non-smooth nonlinearities).  



Hamiltonian model 

Disorder both in couplings and masses 

Rn  [R, αR] with α ≥ 1 
 

Mean radius = 0.01 m, α=5 , F=1N, Fixed boundary conditions  

Hertzian forces between spherical beads. ν: Poisson’s ratio, ε: Elastic modulus.  

[x]+=0 if x<0: formation of a gap (non-smooth nonlinearities).  



Eigenmodes and single site excitations 

Disorder realization 

with N=100 beads 

Displacement 

excitation of bead n 

Participation number 

of eigenmodes. 

About 10 extended 

modes with P>40 

Achilleos et al., PRE,  2018 



Weak nonlinearity: Long time evolution 

Delocalization Delocalization Localization 



Weak nonlinearity: Chaoticity 

Weakly chaotic motion: 

Delocalization 

Long-lived chaotic 

Anderson-like 

Localization 

mLCE 

Power 

Spectrum 

Distribution 



Strong nonlinearity: Equipartition 

The granular chain 

reaches energy 

equipartition and an 

equilibrium chaotic 

state, independent of 

the initial position 

excitation.  



Comparison with the FPUT model 

Using  

a) Taylor series expansion up to fourth order and  

b) assuming small displacements, i.e.  un/δn,n+1 1  

we obtain the disordered α+β FPUT model HF:  
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Dynamical evolution of an initially 

localized mode 
We consider a particular strongly disordered chain of N=40 particles 

with α=5 (Ngapasare et al., PRE, 2019).  

Mode k=34 is strongly localized at site n=21. 



Entropy and equipartition 

Weighted harmonic energies (Ek is the kth mode’s energy): /
N

k k k

k=1

v = E E

Spectral entropy: ln
N

k k

k=1

S(t) = - v (t) v (t) with  0 < S ≤ Smax = lnN 

Normalized spectral entropy:  max

max

S(t) - S
(t) =

S(0) - S

Dynamics close to initially excited modes:  

η  1 

Equipartition [Goedde et al., Phys. D (1992) – Danieli et al., PRE (2017)]:  

,     
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Weak nonlinearity: Near linear limit 

Energy 

distribution 

Herzian 

FPUT 

Herzian FPUT 

DVD 

Single site (n=21) excitation 

for small energies (H=0.25):  

 

Both models behave the same. 

Localization without chaos. 

DVDs are extended. 



Hertzian model: Route to equipartition 

Energy 

distribution 

H=0.5 

H=1.8 

As energy increases the Herzian 

system exhibits: 

 localized chaos (e.g. H=0.5) and 

eventually extended chaos above a 

threshold value (H1.8). 

DVDs become localized. 
 

FPUT: localized and regular up to 

H=1.8. 

H=0.5 H=1.8 

DVD 



Hertzian model: Route to equipartition 
Gaps: the main ingredient which introduces (even localized) chaos 

Spreading of gaps: related to the introduction of extended chaos  
H=0.5 H=1.8 

H=0.5 H=0.25 H=1.8 H=3 

 

Normalized spectral entropy 



FPUT model: Alternate behavior 
Energy increase does not necessarily lead to delocalization, despite the fact that 

the system is chaotic. 

 

Normalized spectral entropy 
H=2.9 H=0.25 H=4 H=8.7381 

H=2.9 

H=4 

H=8.7381 

Energy DVD 



The  

 PBD model of DNA 



Work in collaboration with 

Malcolm Hillebrand (PhD student) 

George Kalosakas (University of Patras, 

Greece)  



DNA structure 
Double helix with  two types of bonds: 

• Adenine-thymine (AT) – two hydrogen bonds 

• Guanine-cytosine (GC) – three hydrogen bonds 



Hamiltonian model 

Nearest neighbors coupling potential  

K=0.025 eV/Å2, ρ=2, b=0.35 Å-1 

Bond potential energy (Morse potential) 

GC: D=0.075 eV, a=6.9 Å-1 

AT: D=0.05 eV, a=4.2 Å-1 

Peyrard-Bishop-Dauxois (PBD) model 
[Dauxois, Peyrard, Bishop, PRE (1993)] 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=100% AT bonds 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=100% AT bonds 

PAT=40% AT bonds 



Disorder realizations 
Different arrangements of AT and GC bonds. 

PAT=100% AT bonds 

PAT=40% AT bonds 



Disorder realizations 
Different arrangements of AT and GC bonds. 

Periodic boundary conditions 

PAT=100% AT bonds 

PAT=40% AT bonds 



Lyapunov exponents (E/n=0.04, PAT=30%) 

1 realization, 1 initial condition 



Lyapunov exponents (E/n=0.04, PAT=30%) 

1 realization, 1 initial condition 

1 realization, 10 initial conditions 



Lyapunov exponents (E/n=0.04, PAT=30%) 

1 realization, 1 initial condition 

1 realization, 10 initial conditions 

10 realizations, 10 initial conditions 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

GC chains 

more chaotic 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

GC chains 

more chaotic 

AT chains 

more chaotic 



Lyapunov exponent vs. energy per particle 

Homogeneous chain 

[Barré & Dauxois, 

EPL (2001)] 

 

GC chains 

more chaotic 

AT chains 

more chaotic 

Type of chain 

does not play 

a role 



DNA denaturation (melting) 
Melting: large bubbles forming in the DNA chain as bonds break 

As yn increases the exponentials in  

tend to 0, the system becomes effectively linear 

and the mLCE →0. 

PAT=90% 

E/n=0.085 



Evolution of DVDs – Low energies 

Adenovirus major late promoter (AdMLP): 86 base pairs, PAT=33.7% 

E/n=0.005 eV 

DVD 

Displacement 



Evolution of DVDs – Higher energies 

Adenovirus major late promoter (AdMLP): 86 base pairs, PAT=33.7% 

E/n=0.04 eV 

DVD 

Displacement 



Mixing of the DNA chain 
Mixing parameter α = Number of alternations in the chain (AT and GC). 

α=4 



Mixing of the DNA chain 

α=4 

Example case: N=10, NAT=4, NGC=6.  

Extreme cases: α=2 and α=8 

Mixing parameter α = Number of alternations in the chain (AT and GC). 



Mixing of the DNA chain 

α=4 

Example case: N=10, NAT=4, NGC=6.  

Extreme cases: α=2 and α=8 

Mixing parameter α = Number of alternations in the chain (AT and GC). 



Effect of mixing 

In chains not dominated by a single 

base-pair type: 

More homogeneous chains (large 

values of α) are less chaotic 

 

Probability distribution function P(α) 

PAT=90% 

PAT=70% 

PAT=50% 

ΝAT=50, ΝGC=50  



Future works 

• DKG and DDNLS models in 2 spatial dimensions  

• Extended, sequence-dependent PBD models of DNA  

• More complicated models of granular material 

• Graphene models 



Future works 
DDNLS in 2 spatial dimensions (strong chaos)  

Norm Norm DVD DVD 



Future works 
DDNLS in 2 spatial dimensions (strong chaos)  

Norm Norm DVD DVD 



Summary I 

• Both the DKG and the DDNLS models show similar chaotic behaviors 

• The mLCE and the DVDs show different behaviors for the weak and the 

strong chaos regimes. 

• Lyapunov exponent computations show that:  

 Chaos not only exists, but also persists. 

 Slowing down of chaos does not cross over to regular dynamics. 

 Weak chaos: mLCE ~ t-0.25  -  Strong chaos: mLCE ~ t-0.3 

• The behavior of DVDs can provide information about the chaoticity of a 

dynamical system.  

 Chaotic hot spots  meander through the system, supporting a 

homogeneity of chaos inside the wave packet. 

B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) ‘Characteristics 

of chaos evolution in one-dimensional disordered nonlinear lattices’ 



Summary II 
• Chaotic dynamics of granular chains 

 Weakly nonlinear regime: although the overall system behaves 

chaotically, it can exhibit long-lived chaotic Anderson-like localization for 

particular single particle excitations. 

 Highly nonlinear regime: the granular chain reaches energy equipartition  

and an equilibrium chaotic state, independent of the initial position 

excitation. 

 The discontinuous nonlinearity (gaps) triggers chaos in the Hertzian 

model, while the propagation of gaps leads to equipartition. 

 The FPUT system exhibits an alternate behavior between localized and 

delocalized chaotic behavior which is strongly dependent on the initial 

energy excitation. 

V. Achilleos, G. Theocharis & Ch. S.: Phys. Rev. E, 97, 042220 (2018) ‘Chaos and 

Anderson-like localization in polydisperse granular chains’. 

A. Ngapasare, G. Theocharis, O. Richoux, Ch. S. & V. Achilleos: Phys. Rev. E, 99, 

032211 (2019) ‘Chaos and Anderson localization in disordered classical chains: 

Hertzian versus Fermi-Pasta-Ulam-Tsingou models’. 



Summary III 

• Heterogeneity influences the chaotic behavior of the DNA chaotic behavior. 

• Behavior of the DVD: 

 It is always quite localized 

 For small energies  tends to be concentrated in larger homogenous parts 

of the chain 

 For larger energies jumps, with no apparent pattern, between sites next 

to a relative large displacement.  

• Alternation index affects the mLCE in chains not dominated by a single base-

pair type: More homogeneous chains (large values of α) are less chaotic, for 

small energies. 

M. Hillebrand, G. Kalosakas, A. Schwellnus & Ch. S.: Phys. Rev. E, 99, 022213 (2019) 

‘Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model ’ 
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