Chaotic Behavior of Multidimensional Hamiltonian Systems: Disordered lattices, granular chains and DNA models

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town Cape Town, South Africa

> E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

Work supported by the UCT Research Committee

Outline

The quartic disordered Klein-Gordon (DKG) model Different dynamical behaviors and the disordered discrete Lyapunov exponents nonlinear Schrödinger • Deviation Vector Distributions (DVDs) equation (DDNLS) **Chaotic behavior of** • Do granular nonlinearities and the resulting chaotic granular chains dynamics destroy energy localization? If yes, how? (coexistence of smooth and · Comparison with the disordered Fermi-Pasta-Ulamnon-smooth nonlinearities) Tsingou (FPUT) model Lyapunov exponents and different dynamical regimes The Peyrard-Bishop-Dauxois Behavior of DVDs (PBD) model of DNA • Effect of heterogeneity on system's chaoticity

Future works - Summary

The DKG and DDNLS models

Work in collaboration with

Bob Senyange (PhD student): DKG model

Bertin Many Manda (PhD student): DDNLS model

Interplay of disorder and nonlinearity

Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

Waves in nonlinear disordered media – localization or delocalization?

(b) (c) (d)

Theoretical and/or numerical studies [Shepelyansky, PRL (1993) – Molina, Phys. Rev. B (1998) – Pikovsky & Shepelyansky, PRL (2008) – Kopidakis et al., PRL (2008) – Flach et al., PRL (2009) – S. et al., PRE (2009) – Mulansky & Pikovsky, EPL (2010) – S. & Flach, PRE (2010) – Laptyeva et al., EPL (2010) – Mulansky et al., PRE & J.Stat.Phys. (2011) – Bodyfelt et al., PRE (2011) – Bodyfelt et al., IJBC (2011)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL (2008)]

The disordered Klein – Gordon (DKG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$. Typically N=1000.

Parameters: W and the total energy E. $\tilde{\varepsilon}_l$ chosen uniformly from $\left[\frac{1}{2}, \frac{3}{2}\right]$.

Linear case (neglecting the term $u_l^4/4$)

Ansatz: $u_l = A_l \exp(i\omega t)$. Normal modes (NMs) $A_{v,l}$ - Eigenvalue problem: $\lambda A_l = \varepsilon_l A_l - (A_{l+1} + A_{l-1})$ with $\lambda = W\omega^2 - W - 2$, $\varepsilon_l = W(\tilde{\varepsilon}_l - 1)$

<u>The disordered discrete nonlinear Schrödinger</u> (DDNLS) equation

We also consider the system:

$$\boldsymbol{H}_{D} = \sum_{l=1}^{N} \varepsilon_{l} |\boldsymbol{\psi}_{l}|^{2} + \frac{\boldsymbol{\beta}}{2} |\boldsymbol{\psi}_{l}|^{4} - (\boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l})$$

where ε_l chosen uniformly from $\left[-\frac{W}{2}, \frac{W}{2}\right]$ and β is the nonlinear parameter.

Conserved quantities: The energy and the norm $S = \sum_{l} |\psi_{l}|^{2}$ of the wave packet.

Distribution characterization

We consider normalized energy distributions $z_v \equiv \frac{E_v}{\sum E_m}$ with $E_v = \frac{p_v^2}{2} + \frac{\tilde{\varepsilon}_v}{2}u_v^2 + \frac{1}{4}u_v^4 + \frac{1}{4W}(u_{v+1} - u_v)^2$ for the DKG model, and norm distributions $z_{\nu} \equiv \frac{|\psi_{\nu}|^2}{\sum_{i} |\psi_i|^2}$ for the DDNLS system. Second moment: $m_2 = \sum_{\nu=1}^{N} (\nu - \overline{\nu})^2 z_{\nu}$ with $\overline{\nu} = \sum_{\nu=1}^{N} \nu z_{\nu}$ **Participation number:** $P = \frac{I}{\sum_{n=1}^{N} z_{n}^{2}}$

measures the number of stronger excited modes in z_v . Single site P=1. Equipartition of energy P=N.

Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)] Δ: width of the frequency spectrum, d: average spacing of interacting modes, δ: nonlinear frequency shift.

Weak Chaos Regime: $\delta < d$, $m_2 \propto t^{1/3}$

Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: d< δ < Δ , m₂ \propto t^{1/2} \rightarrow m₂ \propto t^{1/3}

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: δ>Δ

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].

Single site excitations

No strong chaos regime

In weak chaos regime we averaged the measured exponent α (m₂~t^{α}) over 20 realizations:

α=0.33±0.05 (DKG) α=0.33±0.02 (DDLNS)

Flach et al., PRL (2009) S. et al., PRE (2009)

DKG: Different spreading regimes

Crossover from strong to weak chaos (block excitations)

Variational Equations

We use the notation $\mathbf{x} = (q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)^T$. The deviation vector from a given orbit is denoted by

$$\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_n)^T$$
, with n=2N

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Maximum Lyapunov Exponent

Chaos: sensitive dependence on initial conditions.

Roughly speaking, the Lyapunov exponents of a given orbit characterize the **mean exponential rate of divergence** of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

Symplectic integration

We apply the 2-part splitting integrator ABA864 [Blanes et al., Appl. Num. Math. (2013) – Senyange & S., EPJ ST (2018)] to the DKG model:

$$\boldsymbol{H}_{K} = \sum_{l=1}^{N} \left(\frac{\boldsymbol{p}_{l}^{2}}{2} + \frac{\tilde{\boldsymbol{\varepsilon}}_{l}}{2} \boldsymbol{u}_{l}^{2} + \frac{1}{4} \boldsymbol{u}_{l}^{4} + \frac{1}{2W} \left(\boldsymbol{u}_{l+1} - \boldsymbol{u}_{l} \right)^{2} \right)$$

and the 3-part splitting integrator ABC⁶_[SS] [S. et al., Phys. Let. A (2014) – Gerlach et al., EPJ ST (2016) – Danieli et al., MinE (2019)] to the DDNLS system:

$$\begin{split} \hat{H}_{D} &= \sum_{l} \varepsilon_{l} \left| \psi_{l} \right|^{2} + \frac{\beta}{2} \left| \psi_{l} \right|^{4} - \left(\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l} \right), \quad \psi_{l} = \frac{1}{\sqrt{2}} \left(q_{l} + i p_{l} \right) \\ H_{D} &= \sum_{l} \left(\frac{\varepsilon_{l}}{2} \left(q_{l}^{2} + p_{l}^{2} \right) + \frac{\beta}{8} \left(q_{l}^{2} + p_{l}^{2} \right)^{2} - q_{n} q_{n+1} - p_{n} p_{n+1} \right) \end{split}$$

By using the so-called Tangent Map method we extend these symplectic integration schemes in order to integrate simultaneously the variational equations [S. & Gerlach, PRE (2010) – Gerlach & S., Discr. Cont. Dyn. Sys. (2011) – Gerlach et al., IJBC (2012)].

DKG: Weak Chaos

L=37 sites, E=0.37, W=3

Weak Chaos: DKG and DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=37 sites) E=0.37, W=3 Single site excitation E=0.4, W=4 Block excitation (L=21 sites) E=0.21, W=4 Block excitation (L=13 sites) E=0.26, W=5

Block excitation (L=21 sites) β=0.04, W=4 Single site excitation β=1, W=4 Single site excitation β=0.6, W=3 Block excitation (L=21 sites) β=0.03, W=3

Strong Chaos: DKG and DDNLS

Average over 100 realizations [Senyange, Many Manda & S., PRE (2018)]

Block excitation (L=83 sites) E=0.83, W=2 Block excitation (L=37 sites) E=0.37, W=3 Block excitation (L=83 sites) E=0.83, W=3

Block excitation (L=21 sites) β=0.62, W=3.5 Block excitation (L=21 sites) β=0.5, W=3 Block excitation (L=21 sites) β=0.72, W=3.5

Deviation Vector Distributions (DVDs)

Deviation Vector Distributions (DVDs)

Weak Chaos: DKG and DDNLS

DKG: W=3, L=37, E=0.37

DDNLS: W=4, L=21, β=0.04

Deviation Vector Distributions (DVDs)

DDNLS: strong chaos W=3.5, L=21, β =0.72

Norm

DVD

Strong Chaos: DKG and DDNLS

DKG: W=3, L=83, E=8.3

DDNLS: W=3.5, L=21, β=0.72

Characteristics of DVDs

Characteristics of DVDs

Granular chains

Work in collaboration with

Vassos Achilleos (Université du Maine, France)

Arnold Ngapasare (PhD student, Université du Maine, France)

Olivier Richoux (Université du Maine, France)

Georgios Theocharis (Université du Maine, France)

Granular media

Examples: coal, sand, rice, nuts, coffee etc.

1D granular chain (experimental control of nonlinearity and disorder)

Hamiltonian model

[x]₊**=0 if x<0: formation of a gap (non-smooth nonlinearities).**

Hertzian forces between spherical beads. v: Poisson's ratio, E: Elastic modulus.

Hamiltonian model

[x]₊**=0 if x<0: formation of a gap (non-smooth nonlinearities).**

Hertzian forces between spherical beads. *v*: Poisson's ratio, \mathcal{E} : Elastic modulus. **Disorder both in couplings and masses** $\mathbf{R}_n \in [\mathbf{R}, \alpha \mathbf{R}]$ with $\alpha \ge 1$ Mean radius = 0.01 m, α =5 , F=1N, Fixed boundary conditions

Eigenmodes and single site excitations

Achilleos et al., PRE, 2018

Weak nonlinearity: Long time evolution

Weak nonlinearity: Chaoticity

Strong nonlinearity: Equipartition

The granular chain reaches energy equipartition and an equilibrium chaotic state, independent of the initial position excitation.

Comparison with the FPUT model

Hertzian model H_H :

$$H_{H} = \sum_{n=1}^{N} \left[\frac{p_{n}^{2}}{2m_{n}} + \frac{2}{5} A_{n} \left[\delta_{n} + u_{n+1} - u_{n} \right]_{+}^{5/2} - \frac{2}{5} A_{n} \delta_{n}^{5/2} - A_{n} \delta_{n}^{3/2} \left(u_{n-1} - u_{n} \right) \right]$$

Using

a) Taylor series expansion up to fourth order and b) assuming small displacements, i.e. $u_n/\delta_{n,n+1} \ll 1$ we obtain the disordered $\alpha+\beta$ FPUT model H_F :

$$H_{F} = \sum_{n=1}^{N} \left[\frac{p_{n}^{2}}{2m_{n}} + K_{n}^{(2)} \left(u_{n} - u_{n-1} \right)^{2} + K_{n}^{(3)} \left(u_{n} - u_{n-1} \right)^{3} + K_{n}^{(4)} \left(u_{n} - u_{n-1} \right)^{4} \right]$$

with

$$K_n^{(2)} = \frac{3}{2} A_n \delta_n^{1/2}, \quad K_n^{(3)} = -\frac{3}{8} A_n \delta_n^{-1/2}, \quad K_n^{(4)} = \frac{3}{48} A_n \delta_n^{-3/2}$$

Dynamical evolution of an initially localized mode

We consider a particular strongly disordered chain of N=40 particles with α =5 (Ngapasare et al., PRE, 2019).

Mode k=34 is strongly localized at site n=21.
Entropy and equipartition

Weighted harmonic energies (E_k is the kth mode's energy): $v_k = E_k / \sum_{k=1}^{N} E_k$

Spectral entropy:
$$S(t) = -\sum_{k=1}^{N} v_k(t) \ln v_k(t)$$
 with $0 < S \le S_{max} = \ln N$

Normalized spectral entropy: $\eta(t) = \frac{S(t) - S_{max}}{S(0) - S_{max}}$

Dynamics close to initially excited modes:

 $\eta \approx 1$

Equipartition [Goedde et al., Phys. D (1992) – Danieli et al., PRE (2017)]:

$$\eta(t) \rightarrow \langle \eta \rangle = \frac{1-C}{\ln N - S(\theta)}, \quad C \approx 0.5772$$

Weak nonlinearity: Near linear limit

Hertzian model: Route to equipartition

Hertzian model: Route to equipartition

Gaps: the main ingredient which introduces (even localized) chaos **Spreading of gaps:** related to the introduction of extended chaos

Normalized spectral entropy

FPUT model: Alternate behavior

Energy increase does not necessarily lead to delocalization, despite the fact that the system is chaotic.

The **PBD model of DNA**

Work in collaboration with

Malcolm Hillebrand (PhD student)

George Kalosakas (University of Patras, Greece)

DNA structure

Double helix with two types of bonds:

- Adenine-thymine (AT) two hydrogen bonds
- Guanine-cytosine (GC) three hydrogen bonds

Hamiltonian model

Peyrard-Bishop-Dauxois (PBD) model [Dauxois, Peyrard, Bishop, PRE (1993)]

$$H_N = \sum_{n=1}^{N} \left[\frac{1}{2m} p_n^2 + D_n (e^{-a_n y_n} - 1)^2 + \frac{K}{2} (1 + \rho e^{-b(y_n + y_{n-1})}) (y_n - y_{n-1})^2 \right]$$

Bond potential energy (Morse potential) GC: D=0.075 eV, a=6.9 Å⁻¹ AT: D=0.05 eV, a=4.2 Å⁻¹

Nearest neighbors coupling potential K=0.025 eV/Å², ρ=2, b=0.35 Å⁻¹

Different arrangements of AT and GC bonds.

AT $P_{AT}=100\%$ AT bonds

Different arrangements of AT and GC bonds.

AT AT

P_{AT}=100% AT bonds

GC AT AT GC GC GC GC GC AT AT GC P_{AT} =40% AT bonds \bullet \bullet \bullet \bullet \bullet

Different arrangements of AT and GC bonds.

AT AT

 P_{AT} =100% AT bonds

GC AT AT GC GC GC GC GC AT AT GC P_{AT} =40% AT bonds \bullet \bullet \bullet \bullet \bullet

GC AT AT AT GC AT GC GC GC GC

Different arrangements of AT and GC bonds.

AT AT

 $P_{AT} = 100\% \text{ AT bonds}$

GC AT AT GC GC GC GC GC AT AT GC $P_{AT}=40\%$ AT bonds \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet

Lyapunov exponents (E/n=0.04, P_{AT}=30%)

1 realization, 1 initial condition

Lyapunov exponents (E/n=0.04, P_{AT}=30%)

1 realization, 1 initial condition

1 realization, 10 initial conditions

Lyapunov exponents (E/n=0.04, P_{AT}=30%)

1 realization, 1 initial condition

1 realization, 10 initial conditions

10 realizations, 10 initial conditions

Lyapunov exponent vs. energy per particle

Homogeneous chain [Barré & Dauxois, EPL (2001)]

GC chains more chaotic 0.0060 $P_{AT} = 0\%$ 0.50.0050 $P_{AT} = 10\%$ $P_{AT} = 30\%$ 0.0040 $P_{AT} = 50\%$ 0.4 $P_{AT} = 70\%$ ~ 0.0030 10^{-} $P_{AT} = 90\%$ 10^{-3} (ps^{-1}) $P_{AT} = 100\%$ 0.0020 0.5 10^{-1} 0.310 0.0010 0.4 10^{-3} 10^{-5} 10⁻¹ χ u 0.30.0000 0.02 0.08 0.00 0.04 0.06 0.2 u 0.2Homogeneous chain 0.1[Barré & Dauxois, 0.150100 150 200 250 300 350 $T(\mathbf{K})$ **EPL (2001)]** 0.010.02 0.03 0.000.04 0.05 E_n (eV)

DNA denaturation (melting)

Melting: large **bubbles forming** in the DNA chain as bonds break

As y_n increases the exponentials in

$$D_n(e^{-a_ny_n}-1)^2 + \frac{K}{2}(1+\rho e^{-b(y_n+y_{n-1})})(y_n-y_{n-1})^2$$

tend to 0, the system becomes effectively linear
and the mLCE $\rightarrow 0$.

Temperature

P_{AT}=90% E/n=0.085

Evolution of DVDs – Low energies

Adenovirus major late promoter (AdMLP): 86 base pairs, P_{AT}=33.7% E/n=0.005 eV

Evolution of DVDs – Higher energies

Adenovirus major late promoter (AdMLP): 86 base pairs, P_{AT}=33.7% E/n=0.04 eV

Mixing of the DNA chain

Mixing parameter α = Number of alternations in the chain (AT and GC).

 $\alpha = 4 \quad (1)\overline{0}111\overline{1}0000\overline{0}1\overline{1}(0)$

Mixing of the DNA chain

Mixing parameter α = Number of alternations in the chain (AT and GC).

 $\alpha = 4 \quad (1)\overline{0}111\overline{1}0000\overline{0}1\overline{1}(0)$

Example case: N=10, N_{AT}=4, N_{GC}=6.

Extreme cases: α=2 and α=8

$$\alpha = 2$$

Mixing of the DNA chain

Mixing parameter α = Number of alternations in the chain (AT and GC).

0 1 1 1 1 0 0 0 0 1 1

$$\alpha = 4 \quad (1)\overline{0}111\overline{1}0000\overline{0}1\overline{1}(0)$$

Example case: N=10, N_{AT}=4, N_{GC}=6.

Extreme cases: α=2 and α=8

 $\alpha = 2$

 $\alpha = 8$

$$2 \le \alpha \le \min\{2N_{AT}, 2N_{GC}\}, \ \alpha \text{ even}$$

Effect of mixing

 E_n (eV)

Future works

- DKG and DDNLS models in 2 spatial dimensions
- Extended, sequence-dependent PBD models of DNA
- More complicated models of granular material
- Graphene models

Future works

DDNLS in 2 spatial dimensions (strong chaos)

Future works

DDNLS in 2 spatial dimensions (strong chaos)

DVD

DVD

Summary I

- Both the DKG and the DDNLS models show similar chaotic behaviors
- The mLCE and the DVDs show different behaviors for the weak and the strong chaos regimes.
- Lyapunov exponent computations show that:
 - ✓ Chaos not only exists, but also persists.
 - ✓ Slowing down of chaos does not cross over to regular dynamics.
 - ✓ Weak chaos: mLCE ~ $t^{-0.25}$ Strong chaos: mLCE ~ $t^{-0.3}$
- The behavior of DVDs can provide information about the chaoticity of a dynamical system.
 - ✓ Chaotic hot spots meander through the system, supporting a homogeneity of chaos inside the wave packet.

B. Senyange, B. Many Manda & Ch. S.: Phys. Rev. E, 98, 052229 (2018) 'Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices'

Summary II

- Chaotic dynamics of granular chains
 - ✓ Weakly nonlinear regime: although the overall system behaves chaotically, it can exhibit long-lived chaotic Anderson-like localization for particular single particle excitations.
 - ✓ Highly nonlinear regime: the granular chain reaches energy equipartition and an equilibrium chaotic state, independent of the initial position excitation.
 - ✓ The discontinuous nonlinearity (gaps) triggers chaos in the Hertzian model, while the propagation of gaps leads to equipartition.
 - ✓ The FPUT system exhibits an alternate behavior between localized and delocalized chaotic behavior which is strongly dependent on the initial energy excitation.
- V. Achilleos, G. Theocharis & Ch. S.: Phys. Rev. E, 97, 042220 (2018) 'Chaos and Anderson-like localization in polydisperse granular chains'.
- A. Ngapasare, G. Theocharis, O. Richoux, Ch. S. & V. Achilleos: Phys. Rev. E, 99, 032211 (2019) 'Chaos and Anderson localization in disordered classical chains: Hertzian versus Fermi-Pasta-Ulam-Tsingou models'.

Summary III

- Heterogeneity influences the chaotic behavior of the DNA chaotic behavior.
- Behavior of the DVD:
 - ✓ It is always quite localized
 - ✓ For small energies tends to be concentrated in larger homogenous parts of the chain
 - ✓ For larger energies jumps, with no apparent pattern, between sites next to a relative large displacement.
- Alternation index affects the mLCE in chains not dominated by a single basepair type: More homogeneous chains (large values of α) are less chaotic, for small energies.

M. Hillebrand, G. Kalosakas, A. Schwellnus & Ch. S.: Phys. Rev. E, 99, 022213 (2019) 'Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model '

References

- Flach, Krimer, S. (2009) PRL, 102, 024101
- S., Krimer, Komineas, Flach (2009) PRE, 79, 056211
- S., Flach (2010) PRE, 82, 016208
- Laptyeva, Bodyfelt, Krimer, S., Flach (2010) EPL, 91, 30001
- Bodyfelt, Laptyeva, S., Krimer, Flach (2011) PRE, 84, 016205
- Bodyfelt, Laptyeva, Gligoric, S., Krimer, Flach (2011) IJBC, 21, 2107
- S., Gkolias, Flach (2013) PRL, 111, 064101
- Tieleman, S., Lazarides (2014) EPL, 105, 20001
- Antonopoulos, Bountis, S., Drossos (2014) Chaos, 24, 024405
- Antonopoulos, S., Bountis, Flach (2017) Chaos Sol. Fract., 104, 129
- Senyange, Many Manda, S. (2018) PRE, 98, 052229
- S., Gerlach (2010) PRE, 82, 036704
- Gerlach, S. (2011) Discr. Cont. Dyn. Sys.-Supp., 2011, 475
- Gerlach, Eggl, S. (2012) IJBC, 22, 1250216
- S., Gerlach, Bodyfelt, Papamikos, Eggl (2014) Phys. Lett. A, 378, 1809
- Gerlach, Meichsner, S. (2016) Eur. Phys. J. Sp. Top., 225, 1103
- Senyange, S. (2018) Eur. Phys. J. Sp. Top., 227, 625
- Danieli, Many Manda, Mithun, S. (2019) MinE, 1, 447
- Achilleos, Theocharis, S. (2016) PRE, 93, 022903
- Achilleos, Theocharis, S. (2018) PRE, 97, 042220
- Ngapasare, Theocharis, Richoux, S., Achilleos (2019) PRE, 99, 032211
- Hillebrand, Paterson-Jones, Kalosakas, S. (2018) Reg. Chaotic Dyn., 23, 135
- Hillebrand, Kalosakas, Schwellnus, S. (2019) PRE, 99, 022213

DKG and DDNLS models

Symplectic integrators and 'Tangent Map' method

Granular chains

PBD model of DNA

Poster on chaos detection in Hamiltonian lattices

Investigating Chaos by the Generalized Alignment Index (GALI) Method

Henok Moges and Haris Skokos University of Cape Town, Cape Town, South Africa

Henok Moges

