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e Types and effects of time delays
© Applications: Shower problem, Population dynamics, Social science

© STN-GP network with three delays



Types and effects of time delays

o Types of time delays

o Discrete time delay
o Distributed time delay

o Effects of time delay coupling Figure: Janus the god of transitions
Amplitude death

e Oscillation death

o Chimera state

e Synchronization (isochronal, anti-phase, and splay-phase synchronous)



The hot shower problem
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Delay: time needed for hot water to come in

T. Erneux, Applied delay differential equations. Vol. 3. Springer, 20009.



Population of Lemmings

Density of lemmings (number of individuals per hectare) in
the Churchill area in Canada
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broken line: solution of the delayed logistic equation

T.J. Case, An llustrated Guide to Theoretical Ecology, Oxford University
Press, Oxford, 2000.



Deep Hole Drilling System

Dynamics on stick-slip vibrations of deep hole drilling with time delay

{li=
—

@ z and ¢ are the disturbed axial displacement and angular
displacement under stable drilling of the drilling system. m mass of
bit, / rotary of bit, 54 and 1 axial and torsion damping, respectively.
ka and k1 axial and torsion stiffness. Time delay required for the bit
to rotate an angle 27 /N to its current position.

-_Z.

mz(t) 4+ Baz(t) +kaz(t) = —CsaN[z(t) — z¢]

1
1B() + Bri(t) +krp(t) = — 5saNI=(1) —=d],

where zr = z(t — ty).

J. Huang et al. Bifurcation and stability analyses on stick-slip vibrations of
deep hole drilling with state-dependent delay. Applied Sciences, 8(5), 2018.



Political system

The model of a multiparty political system is given by the following system
of coupled delay differential equations:

dxy 51X12X3(t—7')
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@ Xx; the number of ruling (R), opposition(O), third party(T), non-above
parties (N) i, i =1,...,4. a; rates of members enter into the R, O, and T. d;
members rate of the R, O, and T entering into other parties. x3(t — 7) rates
of T who leave the party at time t — 7 and entering into new party at time t.
Pj; are the probabilities of successful transition. [3; are the conversion rates.

Q. J. Khan, "Hopf bifurcation in multiparty political systems with time
delay in switching.” Applied Mathematics Letters, 43-52, 2000.



Neural systems with discrete and distributed time delays

Consider a coupled two sub-networks with time delays

() = —n(6) +auf (- ) +a [ g(s)fut—s)ds

ia(t) = —ua(t) + an f(uy(t — 7)), OOO

ni(t) = —U3(t)+312f(U4(t—7’))+O[/ g(s)f(ua(t —s))ds,

0a(t) = —ua(t) + anf(u(t 7)),
@ u; are voltages of neurons i, i =1,...,4
@ ajp and ap; are the strength of connections. @ (0, 9()) @
@ 7 is discrete time delay. _?. (as1,7) (a91.7) é
@ « is long-rang coupling strength. - (a,9(s)) -
@ Distributed time delays between sub-networks. @ @

B. Rahman, B.K. Blyuss, and Y. N. Kyrychko. "Dynamics of neural
systems with discrete and distributed time delays.” SIAM Journal on
Applied Dynamical Systems, 2069-2095, 2015.



A mosquito delayed mathematical model

A mathematical model to break the life cycle of mosquito

x1(t) = bN — (n+ p)xi(t) + pxa(t)
x(t)  =mnx(t) — (v + p)x(t)
x3(t) = yx(t) —vxs(t — 1) — puxs(t)
x(t) =vx3(t—71) = (p+ p)xa(t)
x; Adult mosquitoes, Eggs, Larva, and
Pupa at time t i, i =1, ..., 4 respectively.
b and g birth and death rate respectively. ‘ '

7 rate adult mosquitoes oviposit.

v rate the eggs hatch

v rate larva develops to pupa. . ‘

p rate pupa develops to adult mosquitoes.

Figure 1: A flow chart of the life cycle of a mosquito

M. Yau and B. Rahman, "A Delayed Mathematical Model to break the life
cycle of Anopheles Mosquito.” Ratio Mathematica, 79-92, 2016.



Neuroscience
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Wilson-Cowan Model

BioPHYSICAL JourNAL VoLume 12 1972
EXCITATORY AND INHIBITORY
INTERACTIONS IN
LOCALIZED POPULATIONS
OF MODEL NEURONS

HUGH R. WILSON and JACK D. COWAN

From the Department of Theoretical Biology, The University of Chicago,
Chicagu, Minois 60637

ABSTRACT Coupled nonlinear differential equations are derived for the dynamics
of spatially localized populations containing both excitatory and inhibitory model
neurons. Phase plane methods and numerical solutions are then used to investigate
population responses to various types of stimuli. The results obtained show simple
and muliiple hysteresis phenomena and limit cycle activity. The latter is particularly
interesting since the frequency of the limit cycle oscillation is found to be a monotonic
function of stimulus intenzitvy. Finallv. it iz nroved that the evietence of limit cvele



Developments of Wilson-Cowan Model

Ewropean Journal of Newroscieace, Vol 36, pp. 2229-1239, 2012 doi:10.1111/5.1460-9568.201 2081 05.x

Improved conditions for the generation of beta oscillations
In the subthalamic nucleus—globus pallidus network

Alex Pavlides,” S. John Hogan?® and Rafal Bogacz®

‘Bristol Canire for Complexity Sciznces, Department of Computer Scence, University of Bristal, Brisiol BS8 1UB, UK
’Deparment of Engineering Mathematics, University of Brisiol. Bristol, UK
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Keywards: beta oscillztions, globus pallidus. Parkinson's disease, subthalamic nucleus

Absiract

A key patholegy in the development of Parkinson’s disease isthe occurence of persistent beta oscillations, which are corelated with
difficulty in movement initiation. We investigated the network model composed ofthe subthalamic nucleus (STN) and globus pallidus
(GF) developed by A. Nevedo Holgado et al. [(2010) Journal of Neurosciencs, 30, 12340-12352]. who identified the conditions under

wihinh thie rircnit raold aanarata hata nenillatinne e wenrl avtanded thaie analucie b daricina imnmuad 2nahiie ctahilihe canditinne



STN-GP network with three delays

Consider a STN-GP model introduced by Pavlides et al. (2012),

755'(t) = Fs(—wgsG(t — Tgs) + wes Ctx) — S(t),
76G'(t) = Fg(wsgS(t — Tsg) — wee G(t — Tgg) — wxgStr) — G(t),

@ 5(t) and G(t) are the firing rates. (wee. Tec)

e T¢s, Tsc, Tce > 0 are time delays. wxe

@ The synaptic weights wgs, wes, wsg, wee,
and wxg are all non-negative constants.

. wes
@ 75 and 7 are the membrane time constants

of the neurons.

(wes. Tas) (wse. Tsc)

. M
@ Ctx and Str are the constant inputs from Fs(-) = ﬁ
cortex and striatum. 1+( %5 S)e Vs
. . . . . — G
@ Fs(-) and Fg(-) are the sigmoid activation Fe() = o\ 0
. 1+( G G)e Me
function. B



Previous analysis
@ The membrane time constants are exactly the same.

@ The transmission delays in the neural populations are taken to be
equal.

@ nonlinear activation functions are replaced by linear functions.

Our analysis
@ The membrane time constants are taken to be different.

@ The three time delays in the connections between the excitatory and
inhibitory populations of neurons are taken to be different.

@ We consider a general nonlinear class of activation functions.

B. Rahman, Y.N. Kyrychko, K.B. Blyuss, and J.S. Hogan, Dynamics of a
subthalamic nucleus-globus palidus network with three delays,
IFAC-PapersOnLine, 294-299, 2018.



Stability analysis: single delay
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Figure: (a) Stability of the non-trivial steady state, for Ty =0 and T, > 0. (b)
Amplitude and (c) period of the periodic solutions.



Stability analysis: single delay
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Figure: (a) Stability of the non-trivial steady state, for T3 > 0 and T, = 0. (b)
Amplitude and (c) period of the periodic solutions.



Stability analysis: two time delays
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Figure: (a)-(d) Stability of the non-trivial steady state, for T; > 0 and T, > 0.
(e) Amplitude and (f) period of the periodic solutions.



Numerical simulation
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