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SUMMARY:

* Matrix tree theorems connect different branches of math-
ematics (combinatorics, linear algebra, probability) in unex-
pected ways. For this reason, they play an important role in
the graph theory literature.

* We give a detailed description of various matrix tree theo-
rems. These theorems relate the determinant of certain sub-
matrices of the usual Laplacian to the number of spanning
trees rooted at each vertex.

* We give a simple, short, combinatorial proof loosely inspired

by [1].

* We include a discussion that relates the number of span-
ning trees at each vertex to the stable probability measure of
random walk on a strongly connected graph.



OUTLINE:

The headings of this talk are color-coded as follows:

Boundary Operators

Proof of Matrix Tree Theorems

Trees and Unicycles
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The Boundary Matrices

/(S'GD\?
—@—5 8 ®
L @ 2@

@
Definition: Given a digraph G, define matrices B (for Begin)
and £ (for End)

1 if vertex ¢ ends edge 5
E;,; =
0 else

B 1 if vertex ¢ starts edge 7
Y1 0 else
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Edges are columns. vertices are rows.
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Consistent with definition of boundary operator in topology:
O:=F—B



From Boundary to Adjacency

Let V the set of vertices. Want an operator mapping C" to
itself. Thus EE’, EB' BE' and BB! are natural candi-
dates. We investigate these operators.

FACT 1:
(EET),; Z EiEj

is the # edges that end in ¢ @ in j.
Thus it is the diagonal in-degree matrix.
Similarly, BB' is the diagonal out-degree matrix.

FACT 2:
(EBT),, ZEsz]k

is the # edges that start in j m end in 2.
[t is the comb. in-degree adj. matrix @ (as in DI).
And BE" is the comb. out-degree adj. matrix or Q'

Lemma: In the notation of DI, we have:

D=FEE!" andQ=EB!

Exercise 1: Check the facts as well as the ones mentioned
for BBY and BE?



. and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of DI, we have:
L=FEFE"-B") and Loy = B(B" — E")

where L, is the Laplacian of the graph G with all
orientations reversed.

The example in the next pages illustrate the following two
remarks.

Remark1: Be careful to note that Loy # L !

Remark 2: Note that the sum of L and L, is the Lapl. of
the underlying graph G. Thus:

Corollary: We have:
L=L+ Lyt =(E—B)ET —BT)=090"

Remark: This is the traditional definition of the Laplacian
in topology.

Re-Definition: L is the standard comb. Lapl. of the pre-
vious lectures. Better notation in this context: From now on,
replace L by Lin,
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Lin + Loyt 1s symmetric.

And L



Weighted Laplacians

Definition: We can “weight” the edges. Let W be a diagonal
weight matrix.

Liww = (EW)(E" — BY)
We drop the subscript “WW7”. In particular

Li, = (EDYE!" — BY)
where D;; = 1 if the in-degree in 0. (see DI)
Remark: Note that

[(EW)B'] 0= Z Ei Wi By,
k

which means the weights go to the edges (not the vertices).

Be careful: The symbol L, is reserved for the out-degree
rw Laplacian. The edges have a weight different from that of
L;,. See example.



Example with Weights
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( 0 0 0 0 0 0 0 \
-1 1 0 0 0 0 0
o0 0 1 0 —1 0 0
Liy = 0 0 -1 1 0 0 0
0 0 0 -1 1 0 0
-1/20 0 0 0 1 —1/2

0 0-1/2 0 0 -1/2 1 |

(1 ~-1/20 0 0 —-1/2 0 \

o0 0 0 0 0 0

0 0 1-1/2 0 0 -1/2
Low=]0 0 0 1 -1 0 0

0 0 0 -1 1 0 0

o0 0 0 0 1 -1

\0 0 0 0 0o -1 1 J

Notice that the sum of these two is NOT symmetric. Edge 6
has received two different weights.
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Definition: For the purpose of this section, we write:
Lin = (EW)(E" — B")

= (-BW)(E" — B")

= (EW — BW)(E" — B")

= (E-B)W(E' - B')

out —

Definition: A spanning out-tree rooted at vertex r (SOTR)
is a graph such that

- if 7 # r, then in-degree at 7 equals 1.

- in-degree at r equals 0.

- no directed cycles.
For a SITR: swap “out” and “in”

Figure: Left: out-tree rooted at r, and right: in-tree.

Definition: A spanning undirected tree rooted at r (SUTR)
is a connected graph with no cycles. (No loose vertices.)
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Lin = (EW)(E" — B")
Low = (=BW)(E" — B")
L = (EW — BW)(E" — BY)

= Z Ei Wi
k

So the effect of the diagonal matrix W is to multiply the ¢th
edge (column) by the ith entry W;.

Definition: The weight W (T') of a tree T is the product of
the weights of all its edges.

Definition: For a Laplacian L, let W, be the appropriate
set of spanning trees rooted at r. By this we mean:

- For L, it is the SOTR’s

- For Ly, it is the SITR's

- For L, it is the SUTR’s.
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Definition: Assume G has n vertices. Let I, be the set of
all vertices except r.

Theorem 2 (Matrix Tree): L a Laplacian. Then

gr:=det L[I,,I,] = ) W(T,)
T-eWr

Observation 1: If G has k > 1 reaches, then no SORTSs.
DII Thm 9: L has eval 0 with mult. & > 1. Reducing L by 1
column and row will give det L{I,, I,] = 0.

Exercise 2: Show that for a digraph GG with one reach, if r
is not in a cabal, then det L[I,, I.] = 0.

The proofs of the cases where L = L;, or L = L, are almost
identical (just swap “in” and “out”). The undirected is slightly
different, but the same techniques work.

Theorem 3: Furthermore

Z quri =0

Observation 2: Thus the weight of rooted trees at vertex
r has a probabilistic interpretation. (Gives stationary proba-
bility measure under rw.)
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Exercise 2: For the graph above write out Lj,, Loy, and L.

Exercise 3: Let ¢ the weight of out-trees rooted in vertex
k. Show that g, = [ [, a Hf;ll b;.

Exercise 4: Show that qL;, = 0.

Exercise 5: Repeat exercises 2 and 3 for Ly, and L.
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First Use Cauchy-Binet

e n

Definition (DI): I (K) subset of the row (column) labels of
matrix A. A[I, K] consists of the entries of A in I x K.

Exercise 6: L = AB where A and B matrices as depicted
above. Show that matrix multiplication implies

L[I,J] = A[l,all]Blall, J]
Now let |I'| = |J| = k. By Cauchy-Binet (Thm 3 of DI):
det (AB)[I,J]) = Z det(Al[I, K]) det(B[K, J])
K,|K|=k
Since Ly, = (EW)(ET — B), we have
Proposition: I, :== V\{r}. Then det (Ly[I,, I;]) equals

Y det((EW)[I,, K]) det((E" — B")[K, I,])
K, |K|=n-1

17



Assume No Tree

Recall: SOTR is a graph such that

1. if : =4 r, then in-degree at i equals 1.
2. in-degree at r equals 0.

3. no directed cycles.

det (Lin[Iy, 1,]) = > det((EW)[I, K]) det((E"—B")[K, L])

In RHS, each choice of K selects n — 1 edges.

If the n — 1 edges K do not form a SOTR:
They fail 1. or 2. = E has column of zeroes, or

they fail 3. = (E! — B!) contains a cycle-Laplacian.

Example w. 6 vertices and 5 edges: Left: column 5 of

1(%)??)

E[I,, K] is 0. Right: (ET — BY)[{2,3,4,5},{2,3,4,5}] has

row sum 0.

Total contribution: zero!
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Assume Tree

If the n — 1 edges K do form a SOTR:

Relabel vertices twice, so that:
1. If y > 7, then path from r ~» ¢ does not pass through j.
2. And then so that edge ¢ ends in vertex 7.

For each K, the same permutations are done in two factors:
S det((EW)[L,, K]) det((E” — B")[K, L))
K, |K|=n—-1

Thus no net effect!

Result: E|I,., K] is the identity, and B[[,, K| is upper tridiag
with 0 on diag. Has det equal to 0.

Example w. 6 vertices and 5 edges: Left: Before

permutations. Right: After.
Total contribution: The weight of the tree!

Exercise 7: Repeat proof for Loy (trivial) and L (needs
minor adaptation).
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UNICYCLES,
PROBABILITY

@ Unicycle.com
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Lots of Unicycles, and to Each ...

Definition: An augmented spanning out-tree rooted at
vertex 7 (ASOTR) is a

SOTR plus 1 extra edge k — r such that (L), > 0.
Similarly, an ASITR is a

SITR plus 1 extra edge r — k such that (Loyg)qe > 0.

Left: Augmented out-tree. Right: Augmented in-tree.

r r
SN N
Definition: An augm. spanning undirected tree rooted at r
(ASUTR) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain 1 cycle! They are most
commonly called cycle-rooted trees or unicycles.

Definition: For a Laplacian L, let A, be the appropriate
set of augm. spanning trees rooted at r. By this we mean:

- For L, it is the ASOTR’s

- For Ly, it is the ASITR's

- For L, it is the ASUTR’s.
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Counting Unicycles

Exercise 8: Show that a unicycle contains exactly 1 cycle.
(Hint: contract along the spanning tree. The cycles are the
remaining edges.)

Two ways to compute the weight of the L;,-appropriate r-
rooted unicycles (ASOTR's) for a given graph G (see figure).

Left(1): To SOTR at r, add edge from parent k of r to r.
Right(2): To SORT at child j of r, add edge from 7 to j.

| | fe
7

I [ I
3 3
k A k A Y
@)

Total weight of unicycles rooted at r by w,..

From 1: u, = Z Qrsrk — qurr
k

From 2: U, — Z %Sjk

J
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Proof of Theorem 3

Equate the two expressions:

QT‘DTT - Z Qijk — qLin =0
J

which proves Thm 3 for Lj,.
DONE!

Remark: If S is a rw walk matrix, then ¢ is the stationary
probability measure.

Exercise 9: Prove Theorem 3 for L, and L.
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