Pescara, Italy, July 2019

DIGRAPHS IV
The Matrix Tree Theorem

Based on various sources.

J. J. P. Veerman,
Math/Stat, Portland State Univ., Portland, OR
97201, USA.
email: veerman@pdx.edu

Conference Website:
www.sci.unich.it/mmcs2019
SUMMARY:

* Matrix tree theorems connect different branches of mathematics (combinatorics, linear algebra, probability) in unexpected ways. For this reason, they play an important role in the graph theory literature.

* We give a detailed description of various matrix tree theorems. These theorems relate the determinant of certain submatrices of the usual Laplacian to the number of spanning trees rooted at each vertex.

* We give a simple, short, combinatorial proof loosely inspired by [1].

* We include a discussion that relates the number of spanning trees at each vertex to the stable probability measure of random walk on a strongly connected graph.
OUTLINE:
The headings of this talk are color-coded as follows:

- Boundary Operators
- Matrix Tree Theorems
- Proof of Matrix Tree Theorems
- Trees and Unicycles
BOUNDARY OPERATORS
The Boundary Matrices

Definition: Given a digraph G, define matrices B (for Begin) and E (for End)

$$E_{ij} = \begin{cases}
1 & \text{if vertex } i \text{ ends edge } j \\
0 & \text{else}
\end{cases}$$

$$B_{ij} = \begin{cases}
1 & \text{if vertex } i \text{ starts edge } j \\
0 & \text{else}
\end{cases}$$

$$E = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{pmatrix}$$

$$B = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Edges are columns. vertices are rows.

Consistent with definition of boundary operator in topology:

$$\partial := E - B$$
Let V the set of vertices. Want an operator mapping \mathbb{C}^V to itself. Thus EE^T, EB^T, BE^T, and BB^T are natural candidates. We investigate these operators.

FACT 1:

$$(EE^T)_{ij} = \sum_k E_{ik}E_{jk}$$

is the $\#$ edges that end in i and in j.
Thus it is the **diagonal in-degree matrix**.
Similarly, BB^T is the **diagonal out-degree matrix**.

FACT 2:

$$(EB^T)_{ij} = \sum_k E_{ik}B_{jk}$$

is the $\#$ edges that start in j and end in i.
It is the **comb. in-degree adj. matrix** Q (as in DI).
And BE^T is the **comb. out-degree adj. matrix** or Q^T.

Lemma: In the notation of DI, we have:

$$D = EE^T \quad \text{and} \quad Q = EB^T$$

Exercise 1: Check the facts as well as the ones mentioned for BB^T and BE^T.
The Lemma immediately implies:

Theorem 1: In the notation of DI, we have:

\[L = E(E^T - B^T) \quad \text{and} \quad L_{\text{out}} = B(B^T - E^T) \]

where \(L_{\text{out}} \) is the Laplacian of the graph \(G \) with all orientations reversed.

The example in the next pages illustrate the following two remarks.

Remark 1: Be careful to note that \(L_{\text{out}} \neq L^T \) !!

Remark 2: Note that the sum of \(L \) and \(L_{\text{out}} \) is the Laplacian of the underlying graph \(G \). Thus:

Corollary: We have:

\[L = L + L_{\text{out}} = (E - B)(E^T - B^T) = \partial \partial^T \]

Remark: This is the traditional definition of the Laplacian in topology.

Re-Definition: \(L \) is the standard comb. Laplacian of the previous lectures. Better notation in this context: From now on, replace \(L \) by \(L_{\text{in}} \),
Example

\[L_{in} = \begin{pmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 -1 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & -1 & 0 & 0 \\
 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
 -1 & 0 & 0 & 0 & 0 & 2 & -1 \\
 0 & 0 & -1 & 0 & 0 & -1 & 2
\end{pmatrix} \]

\[L_{out} = \begin{pmatrix}
 2 & -1 & 0 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 2 & -1 & 0 & 0 & -1 \\
 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{pmatrix} \]

And \(L = L_{in} + L_{out} \) is symmetric.

Weighted Laplacians

Definition: We can “weight” the edges. Let W be a diagonal weight matrix.

$$L_{\text{in},W} = (EW)(E^T - B^T)$$

We drop the subscript “W”. In particular

$$L_{\text{in}} = (ED^{-1})(E^T - B^T)$$

where $D_{ii} = 1$ if the in-degree in 0. (see DI)

Remark: Note that

$$[(EW)B^T]_{ij} = \sum_k E_{ik}W_{kk}B_{jk}$$

which means the weights go to the edges (not the vertices).

Be careful: The symbol L_{in} is reserved for the out-degree rw Laplacian. The edges have a weight different from that of L_{in}. See example.
Example with Weights

\[L_{\text{in}} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ -1/2 & 0 & 0 & 0 & 0 & 1 & -1/2 \\ 0 & 0 & -1/2 & 0 & 0 & -1/2 & 1 \end{pmatrix} \]

\[L_{\text{out}} = \begin{pmatrix} 1 & -1/2 & 0 & 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1/2 & 0 & 0 & -1/2 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \]

Notice that the sum of these two is NOT symmetric. Edge 6 has received two different weights.
FORMULATION OF THE MATRIX TREE THEOREM
Lots of Trees

Definition: For the purpose of this section, we write:

\[
L_{\text{in}} = (EW)(E^T - B^T)
\]

\[
L_{\text{out}} = (-BW)(E^T - B^T)
\]

\[
L = (EW - BW)(E^T - B^T)
\]

\[
= (E - B)W(E^T - B^T)
\]

Definition: A spanning **out**-tree rooted at vertex \(r \) (**SOTR**) is a graph such that

- if \(i \neq r \), then **in**-degree at \(i \) equals 1.
- **in**-degree at \(r \) equals 0.
- no directed cycles.

For a **SITR**: swap “out” and “in”.

Figure: Left: **out**-tree rooted at \(r \), and right: **in**-tree.

Definition: A spanning **undirected** tree rooted at \(r \) (**SUTR**) is a connected graph with no cycles. (No loose vertices.)
And To Each Their Tree

\[
L_{\text{in}} = (EW)(E^T - B^T) \\
L_{\text{out}} = (-BW)(E^T - B^T) \\
L = (EW - BW)(E^T - B^T)
\]

\[
(EW)_{ij} = \sum_k E_{ik}W_{kj}
\]

So the effect of the diagonal matrix \(W \) is to multiply the \(i \)th edge (column) by the \(i \)th entry \(W_{ii} \).

Definition: The **weight** \(W(T) \) of a tree \(T \) is the product of the weights of all its edges.

Definition: For a Laplacian \(L \), let \(\mathcal{W}_r \) be the **appropriate** set of spanning trees rooted at \(r \). By this we mean:
- For \(L_{\text{in}} \), it is the SOTR’s
- For \(L_{\text{out}} \), it is the SITR’s
- For \(L \), it is the SUTR’s.
Matrix Tree Theorems

Definition: Assume G has n vertices. Let I_r be the set of all vertices except r.

Theorem 2 (Matrix Tree): L a Laplacian. Then

$$q_r := \det L[I_r, I_r] = \sum_{T_r \in \mathcal{W}_r} W(T_r)$$

Observation 1: If G has $k > 1$ reaches, then no SORTs.

DII Thm 9: L has eval 0 with mult. $k > 1$. Reducing L by 1 column and row will give $\det L[I_r, I_r] = 0$.

Exercise 2: Show that for a digraph G with one reach, if r is not in a cabal, then $\det L[I_r, I_r] = 0$.

The proofs of the cases where $L = L_{in}$ or $L = L_{out}$ are almost identical (just swap “in” and “out”). The undirected is slightly different, but the same techniques work.

Theorem 3: Furthermore

$$\sum_r q_r L_{ri} = 0$$

Observation 2: Thus the **weight** of rooted trees at vertex r has a probabilistic interpretation. (Gives stationary probability measure under rw.)
Exercise 2: For the graph above write out L_{in}, L_{out}, and L.

Exercise 3: Let q_k the weight of out-trees rooted in vertex k. Show that $q_k = \prod_{k+1}^n a_i \prod_{i=1}^{k-1} b_i$.

Exercise 4: Show that $qL_{in} = 0$.

Exercise 5: Repeat exercises 2 and 3 for L_{out}, and L.
PROOF OF
MATRIX TREE THEOREMS
First Use Cauchy-Binet

Definition (DI): I (K) subset of the row (column) labels of matrix A. $A[I, K]$ consists of the entries of A in $I \times K$.

Exercise 6: $L = AB$ where A and B matrices as depicted above. Show that matrix multiplication implies

$$L[I, J] = A[I, \text{all}] B[\text{all}, J]$$

Now let $|I| = |J| = k$. By Cauchy-Binet (Thm 3 of DI):

$$\det((AB)[I, J]) = \sum_{K, |K| = k} \det(A[I, K]) \det(B[K, J])$$

Since $L_{\text{in}} = (EW)(E^T - B^T)$, we have

Proposition: $I_r := V \setminus \{r\}$. Then $\det(L_{\text{in}}[I_r, I_r])$ equals

$$\sum_{K, |K| = n-1} \det((EW)[I_r, K]) \det((E^T - B^T)[K, I_r])$$
Recall: SOTR is a graph such that

1. if \(i \neq r \), then in-degree at \(i \) equals 1.
2. in-degree at \(r \) equals 0.
3. no directed cycles.

\[
\det(L_{\text{in}}[I_r, I_r]) = \sum_K \det((EW)[I_r, K]) \det((E^T - B^T)[K, I_r])
\]

In RHS, each choice of \(K \) selects \(n - 1 \) edges.

If the \(n - 1 \) edges \(K \) do not form a SOTR:
They fail 1. or 2. \(\implies \) \(E \) has column of zeroes, or
they fail 3. \(\implies \) \((E^T - B^T)\) contains a cycle-Laplacian.

Example w. 6 vertices and 5 edges: Left: column 5 of \(E[I_r, K] \) is 0. Right: \((E^T - B^T)\) \([\{2, 3, 4, 5\}, \{2, 3, 4, 5\}]\) has row sum 0.

Total contribution: zero!
Assume Tree

If the \(n-1 \) edges \(K \) do form a SOTR:

Relabel vertices twice, so that:

1. If \(j > i \), then path from \(r \leadsto i \) does not pass through \(j \).
2. And then so that edge \(i \) ends in vertex \(i \).

For each \(K \), the same permutations are done in two factors:

\[
\sum_{K, |K|=n-1} \det((EW)[I_r, K]) \det((E^T - B^T)[K, I_r])
\]

Thus no net effect!

Result: \(E[I_r, K] \) is the identity, and \(B[I_r, K] \) is upper tridiag with 0 on diag. Has det equal to 0.

Example w. 6 vertices and 5 edges: Left: Before

permutations. Right: After.

Total contribution: The weight of the tree!

Exercise 7: Repeat proof for \(L_{out} \) (trivial) and \(L \) (needs minor adaptation).
TREES, UNICYCLES, PROBABILITY
Definition: An **augmented** spanning **out**-tree rooted at vertex r (**ASOTR**) is a SOTR plus 1 extra edge $k \rightarrow r$ such that $(L_{\text{in}})_{rk} > 0$. Similarly, an **ASITR** is a SITR plus 1 extra edge $r \rightarrow k$ such that $(L_{\text{out}})_{rk} > 0$.

Left: Augmented **out**-tree. Right: Augmented **in**-tree.

Definition: An augm. spanning undirected tree rooted at r (**ASUTR**) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain 1 cycle! They are most commonly called **cycle-rooted trees** or **unicycles**.

Definition: For a Laplacian L, let \mathcal{A}_r be the **appropriate** set of augm. spanning trees rooted at r. By this we mean:
- For L_{in}, it is the ASOTR’s
- For L_{out}, it is the ASITR’s
- For L, it is the ASUTR’s.
Exercise 8: Show that a unicycle contains exactly 1 cycle. (Hint: contract along the spanning tree. The cycles are the remaining edges.)

Two ways to compute the weight of the L_{in}-appropriate r-rooted unicycles (ASOTR’s) for a given graph G (see figure).

Left(1): To SOTR at r, add edge from parent k of r to r.
Right(2): To SORT at child j of r, add edge from r to j.

Total weight of unicycles rooted at r by u_r.

From 1: \[u_r = \sum_k q_r \cdot S_{rk} = q_r \cdot D_{rr} \]

From 2: \[u_r = \sum_j q_j \cdot S_{jk} \]
Proof of Theorem 3

Equate the two expressions:

\[q_r D_{rr} - \sum_j q_j S_{jk} = q L_{in} = 0 \]

which proves Thm 3 for \(L_{in} \).

DONE!

Remark: If \(S \) is a rw walk matrix, then \(q \) is the stationary probability measure.

Exercise 9: Prove Theorem 3 for \(L_{out} \) and \(L \).
References