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SUMMARY:

* Matrix tree theorems connect different branches of math-
ematics (combinatorics, linear algebra, probability) in unex-
pected ways. For this reason, they play an important role in
the graph theory literature.

* We give a detailed description of various matrix tree theo-
rems. These theorems relate the determinant of certain sub-
matrices of the usual Laplacian to the number of spanning
trees rooted at each vertex.

* We give a simple, short, combinatorial proof loosely inspired
by [1].

* We include a discussion that relates the number of span-
ning trees at each vertex to the stable probability measure of
random walk on a strongly connected graph.
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OUTLINE:
The headings of this talk are color-coded as follows:

Boundary Operators

Matrix Tree Theorems

Proof of Matrix Tree Theorems

Trees and Unicycles
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The Boundary Matrices
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Definition: Given a digraph G, define matrices B (for Begin)
and E (for End)

Eij =

{
1 if vertex i ends edge j
0 else

Bij =

{
1 if vertex i starts edge j
0 else

E =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0


B =



1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


Edges are columns. vertices are rows.

Consistent with definition of boundary operator in topology:

∂ := E −B
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From Boundary to Adjacency

Let V the set of vertices. Want an operator mapping CV to
itself. Thus EET , EBT , BET , and BBT are natural candi-
dates. We investigate these operators.

FACT 1:
(EET)ij =

∑
k

EikEjk

is the # edges that end in i and in j.
Thus it is the diagonal in-degree matrix.
Similarly, BBT is the diagonal out-degree matrix.

FACT 2:
(EBT)ij =

∑
k

EikBjk

is the # edges that start in j and end in i.
It is the comb. in-degree adj. matrix Q (as in DI).
And BET is the comb. out-degree adj. matrix or QT .

Lemma: In the notation of DI, we have:

D = EET and Q = EBT

Exercise 1: Check the facts as well as the ones mentioned
for BBT and BET .

6



... and on to Laplacians

The Lemma immediately implies:

Theorem 1: In the notation of DI, we have:

L = E(ET −BT ) and Lout = B(BT − ET )

where Lout is the Laplacian of the graph G with all
orientations reversed.

The example in the next pages illustrate the following two
remarks.

Remark1: Be careful to note that Lout 6= LT !!

Remark 2: Note that the sum of L and Lout is the Lapl. of
the underlying graph G. Thus:

Corollary: We have:

L = L + Lout = (E −B)(ET −BT ) = ∂∂T

Remark: This is the traditional definition of the Laplacian
in topology.

Re-Definition: L is the standard comb. Lapl. of the pre-
vious lectures. Better notation in this context: From now on,
replace L by Lin,
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Lin =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1 0 0 0 0 2 −1
0 0 −1 0 0 −1 2



Lout =



2 −1 0 0 0 −1 0
0 0 0 0 0 0 0
0 0 2 −1 0 0 −1
0 0 0 1 −1 0 0
0 0 0 −1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1


And L = Lin + Lout is symmetric.
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Weighted Laplacians

Definition: We can “weight” the edges. Let W be a diagonal
weight matrix.

Lin,W = (EW )(ET −BT )

We drop the subscript “W”. In particular

Lin = (ED−1)(ET −BT )

where Dii = 1 if the in-degree in 0. (see DI)

Remark: Note that[
(EW )BT

]
ij

=
∑
k

EikWkkBjk

which means the weights go to the edges (not the vertices).

Be careful: The symbol Lin is reserved for the out-degree
rw Laplacian. The edges have a weight different from that of
Lin. See example.
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Example with Weights
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Lin =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1



Lout =



1 −1/2 0 0 0 −1/2 0
0 0 0 0 0 0 0
0 0 1 −1/2 0 0 −1/2
0 0 0 1 −1 0 0
0 0 0 −1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1


Notice that the sum of these two is NOT symmetric. Edge 6
has received two different weights.
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Lots of Trees

Definition: For the purpose of this section, we write:

Lin = (EW )(ET −BT )

Lout = (−BW )(ET −BT )

L = (EW −BW )(ET −BT )

= (E −B)W (ET −BT )

Definition: A spanning out-tree rooted at vertex r (SOTR)
is a graph such that
- if i 6= r, then in-degree at i equals 1.
- in-degree at r equals 0.
- no directed cycles.
For a SITR: swap “out” and “in”.

Figure: Left: out-tree rooted at r, and right: in-tree.

rr

Definition: A spanning undirected tree rooted at r (SUTR)
is a connected graph with no cycles. (No loose vertices.)
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And To Each Their Tree

Lin = (EW )(ET −BT )

Lout = (−BW )(ET −BT )

L = (EW −BW )(ET −BT )

(EW )ij =
∑
k

EikWkj

So the effect of the diagonal matrix W is to multiply the ith
edge (column) by the ith entry Wii.

Definition: The weight W (T ) of a tree T is the product of
the weights of all its edges.

Definition: For a Laplacian L, letWr be the appropriate
set of spanning trees rooted at r. By this we mean:
- For Lin, it is the SOTR’s
- For Lout, it is the SITR’s
- For L, it is the SUTR’s.
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Matrix Tree Theorems

Definition: Assume G has n vertices. Let Ir be the set of
all vertices except r.

Theorem 2 (Matrix Tree): L a Laplacian. Then

qr := detL[Ir, Ir] =
∑

Tr∈Wr

W (Tr)

Observation 1: If G has k > 1 reaches, then no SORTs.
DII Thm 9: L has eval 0 with mult. k > 1. Reducing L by 1
column and row will give detL[Ir, Ir] = 0.

Exercise 2: Show that for a digraph G with one reach, if r
is not in a cabal, then detL[Ir, Ir] = 0.

The proofs of the cases where L = Lin or L = Lout are almost
identical (just swap “in” and “out”). The undirected is slightly
different, but the same techniques work.

Theorem 3: Furthermore∑
r

qrLri = 0

Observation 2: Thus the weight of rooted trees at vertex
r has a probabilistic interpretation. (Gives stationary proba-
bility measure under rw.)
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Exercises Using Path Graph

1 2 n−1 n
3

1 2 3 n−1
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Exercise 2: For the graph above write out Lin, Lout, and L.

Exercise 3: Let qk the weight of out-trees rooted in vertex
k. Show that qk =

∏n
k+1 ai

∏k−1
i=1 bi.

Exercise 4: Show that qLin = 0.

Exercise 5: Repeat exercises 2 and 3 for Lout, and L.
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First Use Cauchy-Binet
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Definition (DI): I (K) subset of the row (column) labels of
matrix A. A[I,K] consists of the entries of A in I ×K.

Exercise 6: L = AB where A and B matrices as depicted
above. Show that matrix multiplication implies

L[I, J ] = A[I, all]B[all, J ]

Now let |I| = |J | = k. By Cauchy-Binet (Thm 3 of DI):

det ((AB)[I, J ]) =
∑

K,|K|=k

det(A[I,K]) det(B[K, J ])

Since Lin = (EW )(ET −BT ), we have

Proposition: Ir := V \{r}. Then det (Lin[Ir, Ir]) equals∑
K, |K|=n−1

det((EW )[Ir,K]) det((ET −BT )[K, Ir])
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Assume No Tree

Recall: SOTR is a graph such that
1. if i 6= r, then in-degree at i equals 1.
2. in-degree at r equals 0.
3. no directed cycles.

det (Lin[Ir, Ir]) =
∑
K

det((EW )[Ir, K]) det((ET−BT )[K, Ir])

In RHS, each choice of K selects n− 1 edges.

If the n− 1 edges K do not form a SOTR:
They fail 1. or 2. =⇒ E has column of zeroes, or
they fail 3. =⇒ (ET −BT ) contains a cycle-Laplacian.

Example w. 6 vertices and 5 edges: Left: column 5 of

r r

1 2 3

4 5

1
2 3

4 5

E[Ir, K] is 0. Right: (ET − BT ) [{2, 3, 4, 5}, {2, 3, 4, 5}] has
row sum 0.

Total contribution: zero!
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Assume Tree

If the n− 1 edges K do form a SOTR:
Relabel vertices twice, so that:
1. If j > i, then path from r  i does not pass through j.
2. And then so that edge i ends in vertex i.

For each K, the same permutations are done in two factors:∑
K, |K|=n−1

det((EW )[Ir,K]) det((ET −BT )[K, Ir])

Thus no net effect!

Result: E[Ir, K] is the identity, and B[Ir, K] is upper tridiag
with 0 on diag. Has det equal to 0.

Example w. 6 vertices and 5 edges: Left: Before

r

1

2 3

4
5

r

1

2 3

45

1

2 3
4

5
1

2

3
4

5

permutations. Right: After.

Total contribution: The weight of the tree!

Exercise 7: Repeat proof for Lout (trivial) and L (needs
minor adaptation).
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Lots of Unicycles, and to Each ...

Definition: An augmented spanning out-tree rooted at
vertex r (ASOTR) is a
SOTR plus 1 extra edge k → r such that (Lin)rk > 0.
Similarly, an ASITR is a
SITR plus 1 extra edge r → k such that (Lout)rk > 0.

Left: Augmented out-tree. Right: Augmented in-tree.

rr
k k

Definition: An augm. spanning undirected tree rooted at r
(ASUTR) is a SUTR with 1 extra edge from r to a neighbor.

Remark: These graphs contain 1 cycle! They are most
commonly called cycle-rooted trees or unicycles.

Definition: For a Laplacian L, let Ar be the appropriate
set of augm. spanning trees rooted at r. By this we mean:
- For Lin, it is the ASOTR’s
- For Lout, it is the ASITR’s
- For L, it is the ASUTR’s.
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Counting Unicycles

Exercise 8: Show that a unicycle contains exactly 1 cycle.
(Hint: contract along the spanning tree. The cycles are the
remaining edges.)

Two ways to compute the weight of the Lin-appropriate r-
rooted unicycles (ASOTR’s) for a given graph G (see figure).

Left(1): To SOTR at r, add edge from parent k of r to r.
Right(2): To SORT at child j of r, add edge from r to j.

k

j

r

k

j

r

Total weight of unicycles rooted at r by ur.

From 1: ur =
∑

k

qrSrk = qrDrr

From 2: ur =
∑

j

qjSjk

22



Proof of Theorem 3

Equate the two expressions:

qrDrr −
∑
j

qjSjk = qLin = 0

which proves Thm 3 for Lin.

DONE!

Remark: If S is a rw walk matrix, then q is the stationary
probability measure.

Exercise 9: Prove Theorem 3 for Lout and L.
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