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SUMMARY:

* This is a review of three important applications of graph
theory presented in a way that is consistent with the earlier
lectures on the theory of digraphs.

* We discuss the pagerank algorithm and give a treatment that
is dual to the usual one, namely cast in terms of consensus (and
not random walk).

* We discuss contagion on a graph and give some elementary
results about the probability that the invading species ‘takes
over’.

* We discuss how to optimize transport on digraphs where
each edge has a maximum capacity. This is known as the Ford
Fulkerson algorithm and the max-flow is min-cut theorem.
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OUTLINE:
The headings of this talk are color-coded as follows:

The Pagerank Algorithm

Teleporting and Pagerank

Contagion and Evolution

The Probability that the Invader Wins

The Ford Fulkerson Algorithm

When Ford Fulkerson Fails
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Recall of Definitions

We recall some definitions.

Definition: The combinatorial adjacency matrix Q
of the graph G is defined as:
Qij = 1 if there is an edge ji (if “i sees j”) and 0 otherwise.
If vertex i has no incoming edges, set Qii = 1 (create a loop).

Remark: Instead of creating a loop, sometimes all elements
of the ith row are given the value 1/n. This is called Teleport-
ing! The matrix is denoted by Q̄.

Definition: The in-degree matrix D is a diagonal ma-
trix whose i diagonal entry equals the number of (directed,
incoming) edges xi, x ∈ V .

Definition: The matrices S ≡ D−1Q and S̄ ≡ D−1Q̄ are
called the normalized adjacency matrices. By construc-
tion, they are row-stochastic (non-negative, every row adds
to 1).

Definition: The pagerank adjacency matrices are given

by Sp = βS +
1− β
n

J , where S may be replaced by S̄ (“with

teleporting”).
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The Pagerank Algorithm
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Recall: consensus flows with the arrows, random walk
goes against them.

The original pagerank algorithm by Page and Brin (as dis-
cussed in [5]). Our dual treatment mostly follows [1].

Definition (Pagerank): Let J be the n× n all ones ma-
trix. Define, for β = 0.85, say,

Sp ≡ βS +
1− β
n

J

Determine unique invariant probability measure ℘ for
the random walk Sp. Pagerank of i equals ℘(i). Thus, solve:

℘ = ℘Sp .
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Crash Course Pagerank

Sp ≡ βS +
1− β
n

J

Sp strictly positive (every vertex “sees” every other vertex).
Therefore: one reach!
Thus ℘ is unique (thms 3, 4, 5, Digraphs II).

S and J are simultaneously diagonalizable.
Denote the all ones vector by 1.

Leading eigenpair: eval 1 with evec 1 (for S and J).
Other evecs: eval at most β ≈ 0.85 for S and 0 for J .

Very fast convergence: 0.8557 ≈ 10−4.
Can formulate the whole thing without using matrices.

Observation: Original algorithm uses S̄ instead of S.
[1] shows that the two rankings are trivially related.
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Dual Approach to Pagerank 1

Recall Thm 8 of Digraphs II: Displacements in consensus caused
by initial displacement x0:

ẋ = −Lx =⇒ lim
t→∞

x(t) = Γx(0)

Left multiplying by
1

n
1T has the effect of taking an average of

these displacements.

Definition: The influence I(i) of the vertex i is average
of the displacements caused by unit displacement ei:

I(i) ≡ 1

n
1T Γ ei =

1

n
1T

(
k∑

m=1

γm ⊗ γ̄m

)
ei

1 is the all ones vector.

Problem:
By assoc., non-zero only if γ̄m ei 6= 0 for some m.
Thus I(i) > 0 only if i is in a cabal (by defn γ̄m). Not inter-
esting!

Definition: The extended graph Gα. for every vertex v
in V , attach a new vertex bv and an edge bvv with strength α.

Think of bv as the boss/owner/administrator of the page v.

8



Dual Approach to Pagerank 2
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b

b

Gα has n leaders bi. Each of these has a non-zero influence
Ĩ(bi). The tilde (̃.) indicates extended graph.

Theorem 1 (Pagerank Theorem) [1]: If we choose
α = 1−β

β , then the pagerank ℘(i) of i equals 2Ĩ(bi)− 1
n.

The factor 2 is because the pagerank in Gα is averaged over
2n vertices. We have to subtract 1

n because we do not want to
count the displacement of the “virtual” page bi.
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Sketch of Proof Pagerank Theorem

The extended Laplacians are:

L̃ =

(
0 0
−αI αI + L

)
and L̃ =

1

1 + α

(
0 0
−αI αI + L

)

Theorem 4 (in D II) says that the kernel of L̃ has basis

(
em
ηm

)
where m ∈ {1, · · ·n}. Substituting gives:

ηm = (I + α−1L)−1em

Thus the influence of bm on the “rest” (non-leaders) is

I(m) =
1

n
1T (I + α−1L)−1em

Theorem 10 (D II) implies∗ that
∑

m I(m) = 1 and so

p =
1

n
1T (I + α−1L)−1

is a row-vector of influences and a probability measure.

∗Alternatively: If all leaders move 1 unit, all others even-
tually do the same.
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Sketch of Proof Continued

Exercise 1: J is the all ones matrix. Show that

βS +
1− β
n

J = I +
α

1 + α

(
1

n
J − (I + α−1L)

)
Hint: α = 1−β

β or β = 1
1+α.

Exercise 2: Show that(
1

n
1T (I + α−1L)−1

) (
1

n
J − (I + α−1L)

)
= 0

Hint: For a probability measure p, we have pJ = 1T .

The exercises show that the probability measure p satisfies

p = p

(
βS +

1− β
n

J

)
And thus p equals the pagerank ℘.

Exercise 3: Relate this to the influence of bm in the extended
graph.
Hint: the extended graph has 2n vertices and the initial
condition xbn = 1 moves none of the leaders except bn itself.
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The Two Cases

Lemma: J is the all ones matrix. For any probability vector
p, we have

pJ = 1T

So, to find the pagerank, we find the unique solution of:

℘ = ℘

(
βS +

1− β
n

J

)
=⇒ ℘(I − βS) =

1− β
n

1

There are two cases:
Case I: no teleporting.
Case II: with teleporting, marked by an overbar (S̄).

Partition vert’s in B, set of leaders, and comple-
ment R. The ith rows of the S’s differ only if i ∈ L.(
℘B, ℘T

) [(IB 0
0 IR

)
− β

(
SBB SBR
SRB SRR

)]
=

1− β
n

(
1B,1T

)
Case I: (

SBB SBR
SRB SRR

)
=

(
IBB 0
SRB SRR

)
Case II: (

S̄BB S̄BR
S̄RB S̄RR

)
=

(
1
n JBB

1
n JBR

SRB SRR

)
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The Two Cases

Exercise 4: Write out the orange equation for the two
cases. Show that ℘B, ℘̄R, and ℘̄B all can be expressed in terms
of ℘R.
Hint: you need to use the lemma.

Definition: Use π for probability that walker is in L:

π := ℘B 1B and π̄ := ℘̄B 1B

Exercise 5: Exercise 4 and the definition imply the following.

Theorem 2 [1]: We have

℘̄B = ℘B − β(1− π̄)℘B
℘̄R = ℘R + β

1−β π̄ ℘R

Upon “teleporting”, leaders go down a bit, “rest” goes up.
Like a card shuffle. The two subsets maintain relative rankings
within them.
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One Loose Thread

To complete the picture, need to express π̄ in terms of “un-
teleported” quantities.

Exercise 5: Sum the components of the first equation of
Theorem 2 to show:

Corollary: π̄ =
(1− β)π

(1− βπ)
.

Exercise 6: Substitute this into Theorem 2 to show:

Corollary:

℘̄B =

(
1− β

1− βπ

)
℘B

℘̄R =

(
1

1− βπ

)
℘R

Thus pagerank with teleporting can be trivially expressed in
terms of pagerank without teleporting.
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Example
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L =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


Pagerank as function of β:

℘ = 7−11T (I + α−1L)−1 = 7−11T
(
I +

β

1− β
L
)−1

℘(0.10) = (0.165, 0.129, 0.150, 0.143, 0.144, 0.135, 0.135)
℘(0.40) = (0.236, 0.086, 0.166, 0.147, 0.152, 0.107, 0.107)
℘(0.60) = (0.290, 0.057, 0.174, 0.154, 0.162, 0.082, 0.082)
℘(0.90) = (0.388, 0.014, 0.186, 0.178, 0.182, 0.026, 0.026)

℘̄(0.10) = (0.151, 0.131, 0.152, 0.145, 0.146, 0.138, 0.138)
℘̄(0.40) = (0.156, 0.095, 0.183, 0.162, 0.168, 0.118, 0.118)
℘̄(0.60) = (0.140, 0.069, 0.211, 0.186, 0.196, 0.099, 0.099)
℘̄(0.90) = (0.060, 0.022, 0.286, 0.273, 0.279, 0.040, 0.040)
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Fitness
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G initially has blue vertices. Color 1 vertex red (the ‘seed’).

Definition: Fitness is the probability (a priori likelihood)
of procreating. How many kids are you likely to have? More
precisely: anyone of “your” population group.

Definition: Assume from now on that

fitness(red) = r · fitness(blue)

Contagion/procreation occurs along a directed graph. Gene
flow is information flow, so it follows the arrows.
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First Results

Definition: Fixation probability P is the probability
that 1 red takes over the entire graph by contagion.

Gene flow follows the arrows. So in essence we look for
influence vectors (see DII).

Corollary: Given a digraph G.
a) Red cannot take all (P = 0) if G has more than 1 reach.
b) Red dies out (P = 0) if the seed is not in a cabal.

Proposition: Given a digraph G with n vertices. If red
conquers cabal m, then red will average a proportion 1

n1γm of
the population.

Idea of Proof: By DII, Thm 6: γm(j) is the probability that
j’s information comes from cabal m.

Thus the relevant question becomes:
Investigate P for Strongly Connected Components (SCC’s).
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Contagion on SCC’s

Definition: Probability measure µ on outgoing edges:
-Assign blue vertices a probability b (normaliza-
tion).
-Assign red vertices a probability r · b.
-Assign each of the outgoing edges at a vertex equal
probability whose sum is the probability of that
vertex.

From now on x(n)(i) is the color of vertex i at time n.

x(n)(i) = 0 if uninfected ; x(n)(i) = 1 if infected

An “evolutionary” dynamical system F : Zn2 → Zn2 :
At time step n, choose a µ-random (outgoing) edge v → w.
Then v ‘spreads’ to w, or w assumes the color of v:

x(n+1)(7) := x(n)(6)

7
6

Now denote by m the numbers of infected, and by n−m
the number of uninfected.
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The Dynamical System F

As in DII, set Qij = 1 if there is edge ji and 0 otherwise.
But this time the average is over outbound edges.
There are no loops (Qii = 0).

Definition: Normalized out-degree adjacency matrix
W ≡ QD−1 where D is the diagonal matrix of column sums.

Thus the time-dependent prob. to select the edge ji equals

Pr(ji) =
Wij

n−m+ rm

if j is uninfected, and r times that if j is infected.

πm,m+1 (resp. πm,m−1) is the probability that in next time step
the system goes from m to m + 1 (resp. m− 1) infected.
Lemma: For m ∈ {1, · · ·n− 1} we have

πm,m+1 =
r
∑

ij Wij (1− x(i))x(j)

n−m+ rm

πm,m−1 =

∑
ij Wij x(i)(1− x(j))

n−m+ rm

Exercise 7: Compute πm,m.

Exercise 8: Use that W is column stochastic to verify
that πm,m+1 + πm,m−1 + πm,m = 1.
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The Associated Graph

Definition: The associated graph A is a graph on n+ 1
vertices. The vertex i stands for the total number of infected
in G. The dynamical system F induces a random walk R
on A with transition probabilities πi,i±1 (see figure).

1 2 n−1 n

pp p

pp p n−1,n−2

0

1,2 2,3
n−1,ni i i

i i i

pi

pi

pi
1,1

2,2

n−1,n−1

1,0 2,1

Definition: Let S be the rw adjacency matrix on A. Thus

Sij = πi,j with row-sum 1

Important: S flips the arrows in the graph. Random walk
becomes

p(n+1) = p(n)S

The problem is that the transition probabilities πi,i±1 depend
on which i vertices are infected.

Reversing the arrows, we see.....
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Standard Format of Associated Graph

Reversing the arrows, we see.....

1 2 n−1 n

pp p

pp p n−1,n−2

0

1,2 2,3
n−1,ni i i

i i i

pi

pi

pi
1,1

2,2

n−1,n−1

1,0 2,1

Now the rw moves against the arrows, as per the conventions
in DII.
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Doubly Stochastic SCC’s

Doubly stochastic: row sum is 1 and column sum is 1. All
elemts ≥ 0.

Theorem 3: We have the following:
a) G is SCC ⇐⇒ A has reaches {0, · · ·n − 1} with 0
as leader and {1, · · ·n} with n as leader.
b) [4] W is doubly stochastic⇐⇒ πm,m+1 = r πm,m−1.

(b) holds ifW symm. But there are interesting other examples.
1

2

3

4

Example: This graph has norm. outdegr. adj. matrix W

Q =


0 1 0 0
1 0 0 1
1 0 0 1
0 0 1 0

 =⇒ W =


0 1 0 0

1/2 0 0 1/2
1/2 0 0 1/2
0 0 1 0


Spectrum {−1, 0(2), 1} with one 2-dimensional Jordan block.
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Sketch of Proof of Theorem 3

Proof of (a).

0 and n are leaders. If there are 0 infected, no infections
can occur. So S0i = 0 for all i. Same for n.

Recall that the πi,i+1 depend on which vertices are infected.
Suppose that at any point in the process G is not
SCC. This can happen if and only if there is a non-trivial
set V of i red or blue vertices that cannot infect V c. In this
case one of πi,i±1 is zero. And that means A has reaches
different from the theorem (see figure).

1 2 n−1 n

pp p

pp p n−1,n−2

0

1,2 2,3
n−1,ni i i

i i i

pi

pi

pi
1,1

2,2

n−1,n−1

1,0 2,1
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Sketch of Proof of Theorem 3, Cont’d

Proof of (b).

Suppose W doubly stochastic. Recall

(n−m + rm)πm,m+1 = r (1− x)Wx = r (1Wx− xWx)

(n−m + rm)πm,m−1 = xW (1− x) = xW1− xWx

Use double stochasticity of W to see that 1Wx = xW1.
Then πm,m+1 equals r πm,m−1.

If πm,m+1 equals r πm,m+1, set x = e`. The same com-
putation now shows that then 1We` = e`W1. Then W is
doubly stochastic.

Remark. It is possible that πm,m±1 = 0. This can happen,
for example, if G is not an SCC.

Exercise 9: Analyze the associated graph (and its reaches)
for the graph in the figure.

1
2

5

6
7

4

3
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Fixation Probability for Doubly Stoch.

Recall that infected vertices have relative fitness r. The
fixation probability, is the probability that 1 red vertex takes
over the entire graph.

Theorem 4: If G is an SCC whose norm. out-
degree adj. matrix is doubly stochastic, then G

has fixation probability equal to
1− r−1

1− r−n
.

When r = 1, use L’Hôpital.

The fixation probability as function of r and n.

n

r

4

8

32

64

4 2 1 0.5 0.25

0.753

0.75

0.75

0.75

0.53

0.502

0.50

0.50

1/4

1/8

1/16

1/32

0.15

3.9E−3

1.5E−5

2
−10

1.18E−2

4.5E−5

6.9E−10

1.6E−19
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Sketch of Proof of Theorem 4

Thm 3a): The associated graph A has reach {1, · · ·m}.

DII, Thm 5): KerL contains γ st γ(n) = 1 and γ(0) = 0.

DII, Thm 6): γ(1) is the fixation probability.

Thm 3b): The rw adjacency of the assoc. graph A is

S =


1 0 · · ·
π1,0 π1,1 rπ1,0 · · ·

· · · · · ·
· · · πn−1,n−2 πn−1,n−1 rπn−1,n−2

· · · 0 1


with row-sum 1.

Exercise 10: From (I − S)γ = 0, derive

(γ(i + 1)− γ(i)) = r−1(γ(i)− γ(i− 1))

Furthermore, by telescoping, and the fact that γ(n) = 1:

n−1∑
i=0

(γ(i + 1)− γ(i)) = 1

Exercise 11: Show that exercise 9 implies that

1 =

n−1∑
i=0

(γ(i + 1)− γ(i)) =

n−1∑
i=0

r−iγ(1)

from which the fixation probability follows.
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Definitions

Our treatment is mostly based on [2] and [6].

Here: edges correspond to physical conduits. Oil or water
pipes (of differing diameters), transportation networks, nutri-
ent networks in ecology, etc. So for now: arrows indicate
direction of physical flow.

Definition: An FF network N is a digraph with 1 leader
(called source s) and 1 goose (called sink t) together with a
flow satisfying feasibility conditions.

Definition: Every edge e has a capacity c(e) ≥ 0 and a
flow f (e). The value val(f ) of the flow is the output at t.

Feasibility Conditions:

1. f (e) = −f (−e) ; c(e) = −c(−e)
2. 0 ≤ f (e) ≤ c(e) (or c(e) ≤ f (e) ≤ 0)
3. At every vertex, except s and t: flow in = flow out.
4. flow into s = flow out of t. The VALUE of the flow.

This amounts to conservation of mass in the graph.

Remark: Could be any digraph with input in cabals and
output in gaggles. For example, can create one super source.
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Maximize Flow

Want to find the maximum flow.

Notation: a(b) means flow(capacity) along arrow (see figure).

A maximal flow: cannot increase flow on any edge (left).
A maximum flow: exists no flow with greater value (right).

s t

a

b
1(1)

1(1)0(1)

1(1)

0(1)

s t

a

b
1(1)

1(1)

1(1)

1(1)

0(1)

Definition: An augmenting path is a continuous path
from s to t with spare capacity.

Example: In left figure, γ = sabt has spare capacity of 1.
Feasibility onditions require:

f (sa) ∈ [0, 1] , f (ab) ∈ [−1, 0] , f (bt) ∈ [0, 1]

Let fγ be flow along γ with value 1. Flow of right figure:

f ′ := f + fγ

is a feasible flow with a higher value than f .
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Max-Flow Min-Cut

Definition: An st cut, [S, T ], is a partition of the ver-
tices into S containing s and T containing t. Its capacity,
cap[S, T ], is the sum of the capacities of edges from S to T .

Theorem 5: flow is maximum ⇐⇒ no augm. path.

Sketch of Proof: To prove: no augm. path ⇒ flow max.
S the set of vertices in augmenting semi-paths out of s (pink
in the figure). T is its complement.
By defn of S, in the absence of an augm. path, we have:
1. s ∈ S and t ∈ T .
2. e ∈ [S, T ] =⇒ f (e) = c(e) and e ∈ [T, S] =⇒ f (e) = 0.
Thus val(f )=cap[S, T ], and f must be maximum.

s tS T

By mass conserv., no flow is greater than minimum of cap[S, T ].
A flow with val(f )=cap[S, T ] can be constructed. Thus:

Theorem 6 (Max-flow min-cut theorem, FF 1956):

max
feas. flows

val(f) = min
st cuts

cap[S, T ]

33



The Ford Fulkerson Algorithm

Definition: At every step of the algorithm, the set of vertices
is partitioned into the following sets. S stands for searched, R
stands for reached, and C, the complement of S ∪R.

s t

u v

x y

0(2)

0(2)

0(2)

0(1)

0(1)

0(1)

0(2)

Steps of the algorithm:

step S R comment
1. ∅ s start
2. s u, x find spare cap. su
3. s, u v find spare cap. suv
4. s, u, v x, t find augm. path suvt
... ... ... start again at s until no spare cap.

Remark. Note that when searching a vertex v, there is no
strategy specified how to order edges incident to v. Improved
formulations specify search strategy.
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Ford Fulkerson Exercises

Exercise 12: Use the algorithm to find an augm. path.

s t

u v

x y

0(2)

0(2)

1(1)

1(1)

1(2)1(1)

1(2)

Exercise 13 (FF for Artists): Given FF network with
many sources and many sinks. Each sources inputs a specific
color of paint. What is color mix of each output? (See below.)

Comment. Answer is not unique as figure below shows. Use
flow adjacency matrix of the flow computed by FF.

0(4)

0(4)

0(2)
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Remarks

Example: In ex. 12, you should have found flow of value 2.
There is cut of capacity 2. By Thm 5, max-flow=min-cut=2.

s t

u v

x y
1(2)

1(1)

1(2)

1(2)

1(2)

1(1)

0(1)

Corollary: If the capacities are rational, then FF converges
to the max flow solution in finitely many steps.

Proof: Sufficient to do this for integers. Every augm. path
has spare cap. at least 1. So FF terminates after finite steps.

Remark: The result of the FF algorithm depends of the
search strategy. The outcome is not unique (see below).

s t

0(1) 0(1)

0(1)0(1)
0(1)
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The Smallest Counter-Example 1

In presence of irrational capacity, convergence can be beaten,
but one has to be really clever to carefully craft a search strat-
egy so that FF fails to converge to max flow [7].

All unmarked edges have capacity m ≥ 2. Furthermore:

c(e1) = c(e3) = 1

c(e2) = r :=
√
5−1
2 ≈ 0.618

p0 = (s, v2, v3, t)
p1 = (s, v4, v3, v2, v1, t)
p2 = (s, v2, v3, v4, t)
p3 = (s, v1, v2, v3, t)

Exercise 14: Start with f = 0. Execute FF in such a way
that the sequence of augm. paths is (p0, p1, p2, p1, p3, p1, p2, · · · ).
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The Smallest Counter-Example 2

Exercise 15: Check the listed flow and spare capacities in
the following table. (Hint: use that r2 = 1− r.)
step augm. path val(path) sp. cap. e1 sp. cap. e2 sp. cap. e3
0. ∅ 0 r0 r1 1
1. p0 r0 r0 r1 0
2. p1 r1 r2 0 r1

3. p2 r1 r2 r1 0
4. p1 r2 0 r3 r2

5. p3 r2 r2 r3 0
... ... ... ... ... ...

Exercise 15: Conclude that FF does not terminate, and that
the value of the (total) flow converges to 1 + 2r

∑
i≥0 r

i =
r−3 ≈ 4.24.

Exercise 16: Exhibit a cut and a flow of value 2m+ 1 ≥ 5.
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