Pescara, Italy, July 2019

DIGRAPHS II
Diffusion and Consensus on Digraphs

Based on:

[1]: J. S. Caughman¹, J. J. P. Veerman¹,
Kernels of Directed Graph Laplacians,

[2]: J. J. P. Veerman¹, E. Kummel¹,
Diffusion and Consensus on Weakly Connected Directed Graphs,
Linear Algebra and Its Applications, accepted, 2019.

¹ Math/Stat, Portland State Univ., Portland, OR 97201, USA.
email: veerman@pdx.edu

Conference Website:
www.sci.unich.it/mmcs2019
SUMMARY:

* This is a review of two basic dynamical processes on a weakly connected, directed graph G: consensus and diffusion, as well their discrete time analogues. We will omit proofs in this lecture. A self-contained exposition of this lecture with proofs included can be found in [1, 2].

* We consider them as dual processes defined on G by:

 $\dot{x} = -Lx$ for consensus and $\dot{p} = -pL$ for diffusion.

* We give a complete characterization of the asymptotic behavior of both diffusion and consensus — discrete and continuous — in terms of the null space of the Laplacian (defined below).

* Many of the ideas presented here can be found scattered in the literature, though mostly outside mainstream mathematics and not always with complete proofs.
OUTLINE:
The headings of this talk are color-coded as follows:

Definitions

Peculiarities of Directed Graphs

Consensus and Diffusion

Left and Right Kernels of \mathcal{L}

Asymptotics

Continuous and Discrete Processes
DEFINITIONS
Definitions: Digraphs

Definition: A directed graph (or **digraph**) is a set \(V = \{1, \cdots, n\} \) of **vertices** together with set of ordered pairs \(E \subseteq V \times V \) (the **edges**).

A directed edge \(j \rightarrow i \), also written as \(ji \).
A directed path from \(j \) to \(i \) is written as \(j \rightsquigarrow i \).

Digraphs are everywhere: models of the internet [5], social networks [6], food webs [9], epidemics [8], chemical reaction networks [12], databases [4], communication networks [3], and networks of autonomous agents in control theory [7], to name but a few.

A BIG topic: Much of mathematics can be translated into graph theory (discretization, triangulation, etc). In addition, many topics in graph theory that do not translate back to **continuous** mathematics.
Definitions: Connectedness of digraphs

Undirected graphs are connected or not. But...

Definition:
* A directed edge from i to j is indicated as $i \rightarrow j$ or ij.
* A digraph G is **strongly connected** if for every ordered pair of vertices (i, j), there is a path $i \rightsquigarrow j$. SCC!
* A digraph G is **unilaterally connected** if for every ordered pair of vertices (i, j), there is a path $i \rightsquigarrow j$ or a path $j \rightsquigarrow i$.
* A digraph G is **weakly connected** if the underlying **undirected** graph is connected.
* A digraph G is **not connected**: if it is not weakly connected.

Definition:
Multilaterally connected: weakly connected but not unilaterally connected.
Definition: Blue definitions are used downstream.

* **Reachable Set** $R(i) \subseteq V$: $j \in R(i)$ if $i \sim j$.

* **Exclusive part** $H \subseteq R$: vertices in R that do not “see” vertices from other reaches. If not in cabal, called minions.

* **Common part** $C \subseteq R$: vertices in R that also “see” vertices from other reaches.

* **Cabal** $B \subseteq H$: set of vertices from which the entire reach R is reachable. If single, called leader.

* **Gaggle** $Z \subseteq R$: an SCC with no outgoing edges. If single, called goose.

So gaggles and cabals are SCC’s. If we reverse edge orientation, then gaggles turn into cabals, and so on. SCC’s remain SCC’s. Reaches are not preserved.
Definitions: Reaches

- **reach 1**: 2
- **reach 2**: 7
- **cabal 1**: 1
- **cabal 2**: 4
- **exclusive part 1**: 2
- **exclusive part 2**: 6

Terms:
- **cabal**: SCC with no incoming edges
- **gaggle**: SCC with no outgoing edges
- **common part 1 = common part 2 = {6,7}**
- **{2} and {6,7}**: goose = minion
- **{1}**: leader

Fun exercise: Invert orientation and do the taxonomy again.

Surprising exercise: The number of reaches may change if orientation is reversed! (Thus the spectrum is not invariant.) Example: \(o \leftarrow o \rightarrow o \)
Definitions: Laplacian

Definition: The combinatorial adjacency matrix Q of the graph G is defined as:

$Q_{ij} = 1$ if there is an edge ji (if “i sees j”) and 0 otherwise.

If vertex i has no incoming edges, set $Q_{ii} = 1$ (create a loop).

Remark: Instead of creating a loop, sometimes all elements of the ith row are given the value $1/n$. This is called Teleporting! The matrix is denoted by Q_t.

Definition: The in-degree matrix D is a diagonal matrix whose i diagonal entry equals the number of (directed, incoming) edges xi, $x \in V$.

Definition: The matrices $S \equiv D^{-1}Q$ and $S_t \equiv D^{-1}Q_t$ are called the normalized adjacency matrices. By construction, they are row-stochastic (non-negative, every row adds to 1).

Definition: Laplacians describe decentralized or relative observation. Common cases:

The combinatorial Laplacian: $L \equiv D - Q$.

The random walk (rw) Laplacian: $\mathcal{L} \equiv I - D^{-1}Q$.

The rw Laplacian with teleporting: $\mathcal{L} \equiv I - D^{-1}Q_t$.
Definitions: the “Usual” Laplacian

Crude discretization of 2nd deriv. of function $f : \mathbb{R} \to \mathbb{R}$:

$$f''(j) \approx (f(j + 1) - f(j)) - (f(j) - f(j - 1))$$ or

$$f''(j) \approx f(j - 1) - 2f(j) + f(j + 1)$$

Suppose has period n (large). Get (combinatorial) Laplacian

$$L = \begin{pmatrix}
-2 & 1 & 0 & \cdots & 1 \\
1 & -2 & 1 & \cdots & 0 \\
1 & 0 & \cdots & 1 & -2 \\
& & & & \\
& & & & \\
& & & & \\
\end{pmatrix}$$

Graph theorists add a “-” to get eigenvalues ≥ 0.

Random walk Laplacian: Divide by 2 (and multiply by -1).

The corresponding graph G:
Definitions: rw Laplacian

\[
Q = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
D = \text{diag} \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 2 & 2
\end{pmatrix}
\]

So

\[
\mathcal{L} \equiv I - D^{-1}Q = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
-1/2 & 0 & 0 & 0 & 0 & 1 & -1/2 \\
0 & 0 & -1/2 & 0 & 0 & -1/2 & 1
\end{pmatrix}
\]

Spectrum: \[\left\{0, 0, \frac{1}{2}, 1, \frac{3}{2}, \frac{3}{2} + i \frac{\sqrt{3}}{2}, \frac{3}{2} - i \frac{\sqrt{3}}{2}\right\} \]
Definitions: Combinatorial Laplacian

\[Q = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \]

\[D = \text{diag} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 2 \end{pmatrix} \]

So

\[L \equiv D - Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & -1 & 0 & 0 & -1 & 2 \end{pmatrix} \]

Spectrum: \(\left\{ 0, 0, 1, 1, 3, \frac{3}{2} + i \frac{\sqrt{3}}{2}, \frac{3}{2} - i \frac{\sqrt{3}}{2} \right\} \).
Definitions: Generalized Laplacians

\[
\mathcal{L} \equiv I - D^{-1}Q = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 \\
-1/2 & 0 & 0 & 0 & 0 & 1 & -1/2 \\
0 & 0 & -1/2 & 0 & 0 & -1/2 & 1
\end{pmatrix}
\]

Definition: A generalized Laplacian is a Laplacian plus a non-negative diagonal matrix \(D^* \). Common cases:

- The **generalized combinatorial Laplacian**: \(L^* \equiv D^* + D - Q \).
- The **generalized random walk (rw) Laplacian**: \(\mathcal{L}^* \equiv I - (D + D^*)^{-1}Q \).
- The **generalized rw Laplacian with teleporting**: \(\mathcal{L}^* \equiv I - (D + D^*)^{-1}Q_t \).

Observation: The charpoly of the Laplacian of a weakly connected graph is the product of the charpolys of generalized Laplacians of its strongly connected components.
PECULIARITIES OF DIRECTED GRAPHS
Directed and Undirected

In the math community, directed graphs are still much less studied than undirected graphs (especially true for the algebraic aspects). As a consequence, very few good text books.

What are the reasons for this?

Directed graphs are a lot messier than undirected graphs:
- Combinatorial Laplacians of undirected graphs are symmetric. So: real eigenvalues, orthogonal basis of eigenvectors, no non-trivial Jordan blocks, etc.
- Connectedness of undirected graphs is much simpler.
- No standard convention on how to orient a digraph.

rw Laplacians of undirected graphs are “almost symmetric”, because they are conjugate to symmetric matrices.

Exercise: Show that $D^{-1}Q = D^{-\frac{1}{2}} \cdot D^{-\frac{1}{2}}QD^{-\frac{1}{2}} \cdot D\frac{1}{2}$.

Proposition: G undirected. Then the eigenvectors of the rw Laplacian form a complete basis, and the eigenvalues are real.

(Well-known result: mathematicians like ‘clean’, not ‘messy’.)
Two strongly connected digraphs. The first has rw Laplacian

\[
\mathcal{L} = \begin{pmatrix}
1 & -1 & 0 & 0 \\
-1/2 & 1 & -1/2 & 0 \\
-1/2 & 0 & 1 & -1/2 \\
0 & -1/2 & -1/2 & 1
\end{pmatrix}
\]

with spectrum \(\{0, 1.62 \pm 0.40i, 0.77\}\) (approximately). The second has rw Laplacian

\[
\mathcal{L} = \begin{pmatrix}
1 & -1 & 0 & 0 \\
-1/2 & 1 & 0 & -1/2 \\
-1/2 & 0 & 1 & -1/2 \\
0 & 0 & -1 & 1
\end{pmatrix}
\]

with spectrum \(\{0, 1^{(2)}, 2\}\). The eigenvalue 1 has an associated 2-dimensional Jordan block.
In this review, we are interested in information flow, as opposed to a physical flow (oil, traffic, for example). We propose a new convention:

The direction of the edges should be the same as the direction of the flow of the information.

In many cases, this makes sense. In a food web, the predator needs to locate the prey. Thus arrows go from prey to predator. See this food web. Taken from the US Geological Survey [11].
Bow-tie Structure of Web

- **LSCC or core**: Large strongly connected component.
- **IN component**: there is directed path to core.
- **OUT component**: directed path from core;
- **TENDRILS**: pages reachable from IN, or that can reach OUT.
- **TUBES**: paths from IN to OUT.
- **DISCONNECTED**: All other pages.

(These arrows run *against* the information flow!)

DUAL PROCESSES: CONSENSUS AND DIFFUSION
Consensus and Diffusion

The Laplacian \mathcal{L} has the form $I - S$ or $I - S_t$ where S and S_t are row-stochastic.
From now on x is a column vector and p is a row vector.

Consensus: $\dot{x} = -\mathcal{L}x$. (Usual matrix multiplication.)

Properties: The all ones vector 1 is a solution.
Given an edge ki, this edge will give a contribution to \dot{x}_i proportional to $x_k - x_i$.
Influence of opinion is felt downstream!

Diffusion: $\dot{p} = -p\mathcal{L}$. (Usual matrix multiplication.)

Properties: $\sum_i \dot{p}_i = 0$ (row-sum \mathcal{L} is zero).
Given an edge ki, then this edge will give a contribution to \dot{p}_k proportional to $p_k - p_i$.
Random Walker moves upstream (against arrows)!

Remark: The physicist’s definition of \mathcal{L} would be the negative of the one we use here (cf. “Usual Laplacian”). Graph theorists like eigenvalues of symmetric Laplacians to be non-negative.

Theorem 1: The eigenvalues of S lie within the closed unit disk (Gershgorin). So the non-zero eigenvalues of $\mathcal{L} = I - S$ have positive real part.
A web page can be **linked** to another one (see picture). This means that there is a reference to data in another page that you can land on by tapping or clicking.

The **pagerank** algorithm employs these links to make random walks following links. The stationary measure determines the expected frequency of visits to pages. The higher the frequency, the more “important” the pages.

Important Remark: The flow of information is **opposite to the direction of the links**. In other words, with our convention the orientation of the edges is reversed.

Important Remark: For rw, S_{ij} is the probability $i \rightarrow j$. For discrete consensus, S_{ij}, is the step $x(i)$ makes following a unit step of $x(j)$.

LEFT AND RIGHT KERNELS OF \mathcal{L}
First: Eigenvalue Zero

SCC: $i \sim j$ if i and j are in same SCC. This is an equivalence. Partial order on SCC’s: $S_1 < S_2$ if $S_1 \sim S_2$.

Topological sorting: extend partial order to total order.

Theorem 2: S and \mathcal{L} are block triangular with SCC’s as blocks. The blocks are generalized rw Laplacians.

$$
\mathcal{L} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & 0 \\
-1/2 & 0 & 0 & 0 & 0 & 1 & -1/2 \\
0 & 0 & -1/2 & 0 & 0 & -1/2 & 1
\end{pmatrix}
$$

1st and 3rd block both give a zero eigenvalue. To understand how SCC’s are connected, we will look at their eigenvectors, i.e.: the kernel of \mathcal{L}.
The Right Kernel of \mathcal{L}

Recall for a digraph G: reach R_i, exclusive part H_i, cabal B_i, and common part C_i. **FROM NOW ON** assume there are exactly k reaches $\{R_i\}_{i=1}^k$.

Theorem 3 [1]: The algebraic and geometric multiplicity of the eigenvalue 0 of $\mathcal{L} = I - S$ equals k.

Thus: **no non-trivial Jordan blocks in kernel!**

Theorem 4 [1]: The *right* kernel of \mathcal{L} consists of the column vectors $\{\gamma_1, \cdots, \gamma_k\}$, where:

$$
\begin{cases}
\gamma_m(j) = 1 & \text{if } j \in H_m \quad \text{(excl.)} \\
\gamma_m(j) \in (0, 1) & \text{if } j \in C_m \quad \text{(common)} \\
\gamma_m(j) = 0 & \text{if } j \notin R_m \quad \text{(reach)} \\
\sum_{m=1}^{k} \gamma_m(j) = 1
\end{cases}
$$

$$
\gamma_1^T = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix} \quad \text{and} \quad \gamma_2^T = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}
$$
The Left Kernel of L

Theorem 5 [2]: The left kernel of L consists of the row vectors $\{\tilde{\gamma}_1, \cdots, \tilde{\gamma}_k\}$, where:

$$
\begin{cases}
\tilde{\gamma}_m(j) > 0 & \text{if } j \in B_m \text{ (cabal)} \\
\tilde{\gamma}_m(j) = 0 & \text{if } j \notin B_m \\
\sum_{j=1}^{k} \tilde{\gamma}_m(j) = 1
\end{cases}
$$

$\{\tilde{\gamma}_m\}_{m=1}^{k}$ are orthogonal

Mnemonic: the horizontal “bar” on $\tilde{\gamma}$ indicates a (horizontal) row vector.

Thus in this case the row vectors $\{\tilde{\gamma}_1, \cdots, \tilde{\gamma}_k\}$ are a set of orthogonal invariant probability measures.

$$
\tilde{\gamma}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \tilde{\gamma}_2 = \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \end{pmatrix}
$$
Observations about the Kernels

Theorem 6 (folklore, [2]): A random walker starting at vertex \(j \) has a chance \(\gamma_m(j) \) of ending up in the \(m \)th cabal \(B_m \).

Definition: For a digraph \(G \) with \(n \) vertices with \(k \) reaches, we define the \(n \times n \) matrix \(\Gamma \) whose entries are given by:

\[
\Gamma_{ij} \equiv \sum_{m=1}^{k} \gamma_m(i)\bar{\gamma}_m(j) \quad \text{or} \quad \Gamma = \sum_{m=1}^{k} \gamma_m \otimes \bar{\gamma}_m
\]

In the following \(G \) is a (weakly connected) digraph with rw Laplacian \(\mathcal{L} \). The union of its cabals is called \(B \). Its complement is denoted as \(B^c \).

Theorem 7 (folklore): If \(\tau(i) \) is the expected time for a rw starting at vertex \(i \) to reach \(B \), then \(\tau \) is the unique solution of

\[
\mathcal{L}\tau = 1_{B^c} \text{ with } \tau|_B = 0
\]

\(\tau \) is often called the expected hitting time.
Sketch of Proof of Thm 7

The boundary condition $(\tau|_B = 0)$ is clearly correct.

Recall:

a) $S_{ij} > 0$ means ‘i sees j.

b) But rw goes against arrows. So

Since S_{ij} is the probability for $i \rightarrow j$, we have for $i \in B^c$:

$$\tau(i) = 1 + \sum_j S_{ij}\tau(j)$$

Rewriting gives the equation of the theorem.

Existence and uniqueness: Reorder the vertices so that vertices in B appear before vertices in B^c. Then by Theorem 2, \mathcal{L} is lower block triangular. The equation becomes

$$\begin{pmatrix} L_{BB} & 0 \\ L_{BcB} & L_{BcB^c} \end{pmatrix} \begin{pmatrix} 0 \\ \tau_{B^c} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The matrix L_{BcB^c} is non-singular [1]. So the solution exists and is unique.
ASYMPTOTIC BEHAVIOR
Asymptotics of Self-Adjoint

If \mathcal{L} is a symmetric (or self-adjoint) square matrix with eigen-pairs λ_m and η_m, then

$$\dot{x} = -\mathcal{L}x$$

is solved by

$$x(t) = \sum_{m=1}^{n} (\eta_m, x^{(0)}) e^{-\lambda_m t} \eta_m$$

Notation: x has n components labeled by i. Each of these depends on time (t): $x^{(t)}(i)$. Random walk: similar, but now time is discrete (n): $p^{(n)}(i)$.

$$x^{(t)}(i) = \sum_{j=1}^{n} \left(\sum_{m=1}^{n} \eta_m(i) \eta_m(j) e^{-\lambda_m t} \right) x^{(0)}(j)$$

The terms with Re(λ_m) positive, converge to 0.

But non-orthogonality and Jordan blocks destroy this! However, for our bases for kernels of \mathcal{L}, we still get the following.
Theorem 8 [2]: The consensus problem:

$$\dot{x} = -\mathcal{L}x$$

satisfies

$$\lim_{t \to \infty} x(t) = \sum_{j=1}^{n} \left(\sum_{m=1}^{k} \gamma_m(i) \bar{\gamma}_m(j) \right) x(0)(j)$$

or

$$\lim_{t \to \infty} x(t) = \Gamma x(0)$$

Theorem 9 [2]: The random walk:

$$p^{(n+1)} = p^{(n)} S$$

satisfies

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} p^{(i)} = p^{(0)} \Gamma$$

The p are probability row vectors.
Note: in the discrete case we must \textit{first} average, \textit{then} take limit!

Similar theorems can be formulated for discrete consensus and continuous diffusion.
Another Interpretation of γ_m

From Thm 8: Displacements in consensus caused by initial displacement x_0:

$$\dot{x} = -\mathcal{L}x \implies \lim_{t \to \infty} x^{(t)} = \Gamma x^{(0)}$$

Left multiplying by $\frac{1}{n} 1^T$ has the effect of taking an average of these displacements.

Definition: The influence $I(i)$ of the vertex i is average of the displacements caused by unit displacement e_i:

$$I(i) \equiv \frac{1}{n} 1^T \Gamma e_i = \frac{1}{n} 1^T \left(\sum_{m=1}^{k} \gamma_m \otimes \bar{\gamma}_m \right) e_i$$

1 is the **all ones** vector.

Theorem 10: The influence $I(i)$ of vertex i in the mth cabal is given by

$$I_m(i) = \frac{1}{n} 1^T \gamma_m$$

All other influences are zero. The sum of these influences equals 1.
Asymptotics: Example

\[
\gamma_1^T = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix} \quad \text{and} \quad \gamma_2^T = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}
\]
\[
\bar{\gamma}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \bar{\gamma}_2 = \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \end{pmatrix}
\]

So

\[
\Gamma = \sum_{m=1}^{k} \gamma_m \otimes \bar{\gamma}_m = \frac{1}{9} \begin{pmatrix} 9 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 3 & 3 & 0 & 0 \\ 0 & 0 & 3 & 3 & 3 & 0 & 0 \\ 0 & 0 & 3 & 3 & 3 & 0 & 0 \\ 6 & 0 & 1 & 1 & 1 & 0 & 0 \\ 3 & 0 & 2 & 2 & 2 & 0 & 0 \end{pmatrix}
\]

Let \(x^{(0)}\) and \(p^{(0)}\) be concentrated on vertex 7 only. Then

\[
\lim_{t \to \infty} x^{(t)} = 0 \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} p^{(i)} = \frac{1}{9}(3, 0, 2, 2, 2, 0, 0)
\]
DISCRETE AND CONTINUOUS
From Continuous to Discrete

Start with the continuous processes: \(\dot{x} = -Lx \) (consensus).
\[\dot{p} = -pL \] (diffusion)

Soln: \(x(t) = e^{-Lt}x(0) \). Time one map: \(x^{(n+1)} = e^{-L}x^{(n)} \).

\[
(1) \quad S^{(d)} \equiv e^{-L} = I - L + \frac{L^2}{2} + \cdots
\]

\[
(2) \quad S^{(d)} \equiv e^{-L} = e^{S-I} = e^{-1}\left(I + S + \frac{S^2}{2} + \cdots\right)
\]

Properties of \(e^{-L} \): (1) row-sum one, (2) non-negative. Thus \(S^{(d)} \) is row-stochastic matrix. So....

Obtain Discrete Consensus: \(x^{(n+1)} = S^{(d)}x^{(n)} \).

and Discrete Diffusion: \(p^{(n+1)} = p^{(n)}S^{(d)} \).

(The usual term is random walk.)

Define the discrete Laplacian: \(L^{(d)} = I - S^{(d)} \). From (1):

Theorem 11 [2]: \(L^{(d)} \) and \(L \) have the same kernels.

As before: the leading eigenspace of \(S^{(d)} \) is kernel of \(L^{(d)} \).

Corollary: The discrete processes have the same asymptotic behavior as the original continuous ones.
One more Property of $e^{-\mathcal{L}}$: Recall

\[(2) \quad S^{(d)} = e^{-\mathcal{L}} = e^{S-I} = e^{-1}\left(I + S + \frac{S^2}{2} + \cdots\right)\]

Thus $e^{-\mathcal{L}}$ is transitively closed: if there is a path $i \sim j$, then there is an edge ij.

So, the answer is NO!

Digraphs like $o \leftrightarrow o$ with $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ cannot occur as time one maps (not transitively closed).

Another obstruction is that $S^{(d)} = e^{-\mathcal{L}}$ cannot have 0 as eigen-value.

The question exactly which maps can be considered as a time one map of a Laplacian system is open, though several obstructions are known (such as the ones above).
Possibility of periodic behavior changes asymptotics:
Consider:

Consensus (continuous): \(\dot{x} = -\mathcal{L}x. \)

Consensus (discrete): \(x^{(n+1)} = Sx^{(n)}. \)

The eigenvalues of \(S \) lie within the closed unit disk.

Asymptotic behavior as \(t \to \infty \) is determined by

- **Continuous:** null space of \(\mathcal{L} \).
- **Discrete:** (i) eigenspace of \(S \) assoc. to eigenvalue 1 or .
 (ii) eigenspaces of \(S \) assoc. to roots of unity.
All else converges to zero.

To get asymptotics
For discrete: must average: \(\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} x^{(k)}. \)
For continuous, no need: \(\lim_{t \to \infty} x^{(t)}. \)

