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SUMMARY:

* This is a review of two basic dynamical processes on a weakly
connected, directed graph G: consensus and diffusion, as well
their discrete time analogues. We will omit proofs in this lec-
ture. A self-contained exposition of this lecture with proofs
included can be found in [1, 2].

* We consider them as dual processes defined on G by:
ẋ = −Lx for consensus and ṗ = −pL for diffusion.

* We give a complete characterization of the asymptotic behav-
ior of both diffusion and consensus — discrete and continuous
— in terms of the null space of the Laplacian (defined below).

* Many of the ideas presented here can be found scattered in
the literature, though mostly outside mainstream mathematics
and not always with complete proofs.
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OUTLINE:
The headings of this talk are color-coded as follows:

Definitions

Peculiarities of Directed Graphs

Consensus and Diffusion

Left and Right Kernels of L

Asymptotics

Continuous and Discrete Processes
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Definitions: Digraphs

Definition: A directed graph (or digraph) is a set V =
{1, · · ·n} of vertices together with set of ordered pairs E ⊆
V × V (the edges).
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A directed edge j → i, also written as ji.
A directed path from j to i is written as j  i.

Digraphs are everywhere: models of the internet [5], so-
cial networks [6], food webs [9], epidemics [8], chemical reaction
networks [12], databases [4], communication networks [3], and
networks of autonomous agents in control theory [7], to name
but a few.

A BIG topic: Much of mathematics can be translated into
graph theory (discretization, triangulation, etc). In addition,
many topics in graph theory that do not translate back to
continuous mathematics.

5



Definitions: Connectedness of digraphs

Undirected graphs are connected or not. But...
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Definition:
* A directed edge from i to j is indicated as i→ j or ij.
* A digraph G is strongly connected if for every ordered
pair of vertices (i, j), there is a path i j. SCC!
* A digraph G is unilaterally connected if for every or-
dered pair of vertices (i, j), there is a path i  j or a path
j  i.
* A digraph G is weakly connected if the underlying
UNdirected graph is connected.
* A digraph G is not connected: if it is not weakly con-
nected.

Definition:
Multilaterally connected: weakly connected but not
unilaterally connected.
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Definitions: Graph Structure
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Definition: Blue definitions are used downstream.
* Reachable Set R(i) ⊆ V : j ∈ R(i) if i j.
* Reach R ⊆ V : A maximal reachable set. Or: a maximal
unilaterally connected set.
* Exclusive part H ⊆ R: vertices in R that do not “see”
vertices from other reaches. If not in cabal, called minions.
* Common part C ⊆ R: vertices in R that also “see”
vertices from other reaches.
* Cabal B ⊆ H: set of vertices from which the entire reach
R is reachable. If single, called leader.
* Gaggle Z ⊆ R: an SCC with no outgoing edges. If single,
called goose.

So gaggles and cabals are SCC’s. If we reverse edge orientation,
then gaggles turn into cabals, and so on. SCC’s remain SCC’s.
Reaches are not preserved.
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Definitions: Reaches
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reach 2

reach 1

cabal 1

cabal 2

exclusive part 1

exclusive part 2

cabal = scc w. no incoming edges

gaggle = scc w. �no outgoing edges

common part 1 = common part 2 = {6,7}

{2} and {6,7}

{2} = goose = minion

{1} = leader

Fun exercise: Invert orientation and do the taxonomy again.

Surprising exercise: The number of reaches may change if
orientation is reversed! (Thus the spectrum is not invariant.)
Example: o←− o −→ o
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Definitions: Laplacian

Definition: The combinatorial adjacency matrix Q
of the graph G is defined as:
Qij = 1 if there is an edge ji (if “i sees j”) and 0 otherwise.
If vertex i has no incoming edges, set Qii = 1 (create a loop).

Remark: Instead of creating a loop, sometimes all elements
of the ith row are given the value 1/n. This is called Teleport-
ing! The matrix is denoted by Qt.

Definition: The in-degree matrix D is a diagonal ma-
trix whose i diagonal entry equals the number of (directed,
incoming) edges xi, x ∈ V .

Definition: The matrices S ≡ D−1Q and St ≡ D−1Qt are
called the normalized adjacency matrices. By construc-
tion, they are row-stochastic (non-negative, every row adds
to 1).

Definition: Laplacians describe decentralized or rela-
tive observation. Common cases:
The combinatorial Laplacian: L ≡ D −Q.
The random walk (rw) Laplacian: L ≡ I −D−1Q.
The rw Laplacian with teleporting: L ≡ I −D−1Qt.
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Definitions: the “Usual” Laplacian

Crude discretization of 2nd deriv. of function f : IR→ IR:

f ′′(j) ≈ (f (j + 1)− f (j)) − (f (j)− f (j − 1) or

f ′′(j) ≈ f (j − 1)− 2f (j) + f (j + 1)

Suppose has period n (large). Get (combinatorial) Laplacian

L =


−2 1 0 · · · 1
1 −2 1 · · · 0

...
0 0 1 −2 1
1 0 · · · 1 −2


Graph theorists add a “-” to get eigenvalues ≥ 0.

Random walk Laplacian: Divide by 2 (and multiply by −1).

The corresponding graph G:

n−1 n

1
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Definitions: rw Laplacian
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Q =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0


D = diag



1
1
1
1
1
2
2


So

L ≡ I −D−1Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1



Spectrum:

{
0, 0,

1

2
, 1,

3

2
,
3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
.
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Definitions: Combinatorial Laplacian

1
2

5

6
7

4

3

Q =



1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0


D = diag



1
1
1
1
1
2
2


So

L ≡ D −Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1 0 0 0 0 2 −1
0 0 −1 0 0 −1 2



Spectrum:

{
0, 0, 1, 1, 3,

3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
.

12



Definitions: Generalized Laplacians

L ≡ I −D−1Q =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


Definition: A generalized Laplacian is a Laplacian plus a
non-negative diagonal matrix D∗. Common cases:
The generalized combinatorial Laplacian:
L∗ ≡ D∗ + D −Q.
The generalized random walk (rw) Laplacian:
L∗ ≡ I − (D + D∗)−1Q.
The generalized rw Laplacian with teleporting:
L∗ ≡ I − (D + D∗)−1Qt.

Observation: The charpoly of the Laplacian of a weakly
connected graph is the product of the charpolys of generalized
Laplacians of its strongly connected components.
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Directed and Undirected

In the math community, directed graphs are still much less
studied than undirected graphs (especially true for the alge-
braic aspects). As a consequence, very few good text books.

What are the reasons for this?

Directed graphs are a lot messier than undirected graphs:
- Combinatorial Laplacians of undirected graphs are sym-
metric. So: real eigenvalues, orthogonal basis of eigenvectors,
no non-trivial Jordan blocks, etc.
- Connectedness of undirected graphs is much simpler.
- No standard convention on how to orient a digraph.

rw Laplacians of undirected graphs are “almost symmet-
ric”, because they are conjugate to symmetric matrices.

Exercise: Show that D−1Q = D−
1
2 ·D−1

2QD−
1
2 ·D 1

2 .

Proposition: G undirected. Then the eigenvectors
of the rw Laplacian form a complete basis, and the
eigenvalues are real.

(Well-known result: mathematicians like ‘clean’, not ‘messy’.)
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Digraphs are Messy
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Two strongly connected digraphs. The first has rw Lapla-
cian

L =


1 −1 0 0
−1/2 1 −1/2 0
−1/2 0 1 −1/2

0 −1/2 −1/2 1


with spectrum {0, 1.62± 0.40i, 0.77} (approximately).
The second has rw Laplacian

L =


1 −1 0 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 0 −1 1


with spectrum {0, 1(2), 2}. The eigenvalue 1 has an associated
2-dimensional Jordan block.
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Which Direction??

In this review, we are interested in information flow, as opposed
to a physical flow (oil, traffic, for example). We propose a new
convention:
The direction of the edges should be the same as
the direction of the flow of the information.

In many cases, this makes sense. In a food web, the predator
needs to locate the prey. Thus arrows go from prey to predator.
See this food web. Taken from the US Geological Survey [11].
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Bow-tie Structure of Web

(These arrows run against the information flow!)

- LSCC or core: Large strongly connected component.
- IN component: there is directed path to core.
- OUT component: directed path from core;
- TENDRILS: pages reachable from IN, or that can reach
OUT.
- TUBES: paths from IN to OUT.
- DISCONNECTED: All other pages.

(Sources: [5] in 2000, and [10] in 2015.)
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Consensus and Diffusion

The Laplacian L has the form I − S or I − St where S and
St are row-stochastic.
From now on x is a column vector and p is a row vector.

Consensus: ẋ = −Lx. (Usual matrix multiplication.)
Properties: The all ones vector 1 is a solution.
Given an edge ki, this edge will give a contribution to ẋi pro-
portional to xk − xi.
Influence of opinion is felt downstream!

Diffusion: ṗ = −pL. (Usual matrix multiplication.)
Properties:

∑
i ṗi = 0 (row-sum L is zero).

Given an edge ki, then this edge will give a contribution to ṗk
proportional to pk − pi.
Random Walker moves upstream (against arrows)!

Remark: The physicist’s definition of L would be the neg-
ative of the one we use here (cf. “Usual Laplacian”). Graph
theorists like eigenvalues of symmetric Laplacians to be non-
negative.

Theorem 1: The eigenvalues of S lie within the
closed unit disk (Gersgorin). So the non-zero eigen-
values of L = I − S have positive real part.
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Orientation of the Web

A web page can be linked to another one (see picture). This
means that there is a reference to data in another page that
you can land on by tapping or clicking.

The pagerank algorithm employs these links to make ran-
dom walks following links. The stationary measure determines
the expected frequency of visits to pages. The higher the fre-
quency, the more “important” the pages.

Important Remark: The flow of information is opposite
to the direction of the links. In other words, with our
convention the orientation of the edges is reversed.

Important Remark: For rw, Sij is the probability i → j.
For discrete consensus, Sij, is the step x(i) makes following a
unit step of x(j).
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First: Eigenvalue Zero
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SCC: i ∼ j if i and j are in same SCC. This is an equivalence.
Partial order on SCC’s: S1 < S2 if S1  S2.
Topological sorting: extend partial order to total order.

Theorem 2: S and L are block triangular with
SCC’s as blocks. The blocks are generalized rw
Laplacians.

L =



0 0 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 −1 1 0 0 0
0 0 0 −1 1 0 0
−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


1st and 3rd block both give a zero eigenvalue. To understand
how SCC’s are connected, we will look at their eigenvectors,
i.e.: the kernel of L.
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The Right Kernel of L

Recall for a digraph G: reach Ri, exclusive part Hi, cabal Bi,
and common part Ci. FROM NOW ON assume there are
exactly k reaches {Ri}ki=1.

Theorem 3 [1]: The algebraic and geometric mul-
tiplicity of the eigenvalue 0 of L = I − S equals k.

Thus: no non-trivial Jordan blocks in kernel!

Theorem 4 [1]: The right kernel of L consists of
the column vectors {γ1, · · · , γk}, where:

γm(j) = 1 if j ∈ Hm (excl.)
γm(j) ∈ (0, 1) if j ∈ Cm (common)
γm(j) = 0 if j 6∈ Rm (reach)∑k
m=1 γm(j) = 1
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γT1 =
(

1 1 0 0 0 2
3

1
3

)
and γT2 =

(
0 0 1 1 1 1

3
2
3

)
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The Left Kernel of L

Theorem 5 [2]: The left kernel of L consists of the
row vectors {γ̄1, · · · , γ̄k}, where:

γ̄m(j) > 0 if j ∈ Bm (cabal)
γ̄m(j) = 0 if j 6∈ Bm∑k
j=1 γ̄m(j) = 1

{γ̄m}km=1 are orthogonal

Mnemonic: the horizontal “bar” on γ̄ indicates a
(horizontal) row vector.

Thus in this case the row vectors {γ̄1, · · · , γ̄k} are a set of
orthogonal invariant probability measures.
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γ̄1 =
(

1 0 0 0 0 0 0
)

and γ̄2 =
(

0 0 1
3

1
3

1
3 0 0

)
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Observations about the Kernels

Theorem 6 (folklore, [2]): A random walker start-
ing at vertex j has a chance γm(j) of ending up in
the mth cabal Bm.

Definition: For a digraph G with n vertices with k reaches,
we define the n× n matrix Γ whose entries are given by:

Γij ≡
k∑

m=1

γm(i)γ̄m(j) or Γ =

k∑
m=1

γm ⊗ γ̄m

In the following G is a (weakly connected) digraph with rw
Laplacian L. The union of its cabals is called B. Its comple-
ment is denoted as Bc.

Theorem 7 (folklore): If τ (i) is the expected time
for a rw starting at vertex i to reach B, then τ is
the unique solution of

Lτ = 1Bc with τ |B = 0

τ is often called the expected hitting time.
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Sketch of Proof of Thm 7

The boundary condition (τ |B = 0) is clearly correct.

Recall: a) Sij > 0 means ‘i sees j.
b) But rw goes against arrows. So

Since Sij is the probability for i→ j, we have for i ∈ Bc:

τ (i) = 1 +
∑
j

Sijτ (j)

Rewriting gives the equation of the theorem.

Existence and uniqueness: Reorder the vertices so that
vertices in B appear before vertices in Bc. Then by Theorem
2, L is lower block triangular. The equation becomes(

LBB 0
LBcB LBcBc

)(
0
τBc

)
=

(
0
1

)
The matrix LBcBc is non-singular [1]. So the solution exists
and is unique.
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Asymptotics of Self-Adjoint

If L is a symmetric (or self-adjoint) square matrix with eigen-
pairs λm and ηm, then

ẋ = −Lx
is solved by

x(t) =

n∑
m=1

(ηm, x
(0))e−λmt ηm

Notation: x has n components labeled by i. Each of these
depends on time (t): x(t)(i).
Random walk: similar, but now time is discrete (n): p(n)(i).

x(t)(i) =

n∑
j=1

(
n∑

m=1

ηm(i)ηm(j)e−λmt

)
x(0)(j)

The terms with Re(λm) positive, converge to 0.

But non-orthogonality and Jordan blocks destroy this! How-
ever, for our bases for kernels of L, we still get the following.
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Asymptotics

Theorem 8 [2]: The consensus problem:

ẋ = −Lx
satisfies

lim
t→∞

x(t)(i) =

n∑
j=1

(
k∑

m=1

γm(i)γ̄m(j)

)
x(0)(j)

or
lim
t→∞

x(t) = Γx(0)

Theorem 9 [2]: The random walk:

p(n+1) = p(n)S

satisfies

lim
n→∞

1

n

n−1∑
i=0

p(i) = p(0)Γ

The p are probability row vectors.
Note: in the discrete case we must first average, then take
limit!

Similar theorems can be formulated for discrete consensus and
continuous diffusion.
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Another Interpretation of γm

From Thm 8: Displacements in consensus caused by initial
displacement x0:

ẋ = −Lx =⇒ lim
t→∞

x(t) = Γx(0)

Left multiplying by
1

n
1T has the effect of taking an average of

these displacements.

Definition: The influence I(i) of the vertex i is average
of the displacements caused by unit displacement ei:

I(i) ≡ 1

n
1T Γ ei =

1

n
1T

(
k∑

m=1

γm ⊗ γ̄m

)
ei

1 is the all ones vector.

Theorem 10: The influence I(i) of vertex i in the
mth cabal is given by

Im(i) =
1

n
1T γm

All other influences are zero. The sum of these
influences equals 1.
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Asymptotics: Example

1
2

5

6
7

4

3

γT1 =
(

1 1 0 0 0 2
3

1
3

)
and γT2 =

(
0 0 1 1 1 1

3
2
3

)
γ̄1 =

(
1 0 0 0 0 0 0

)
and γ̄2 =

(
0 0 1

3
1
3

1
3 0 0

)
So

Γ =

k∑
m=1

γm ⊗ γ̄m =
1

9



9 0 0 0 0 0 0
9 0 0 0 0 0 0
0 0 3 3 3 0 0
0 0 3 3 3 0 0
0 0 3 3 3 0 0
6 0 1 1 1 0 0
3 0 2 2 2 0 0


Let x(0) and p(0) be concentrated on vertex 7 only. Then

lim
t→∞

x(t) = 0 and lim
n→∞

1

n

n−1∑
i=0

p(i) =
1

9
(3, 0, 2, 2, 2, 0, 0)
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From Continuous to Discrete

Start with the continuous processes: ẋ = −Lx (consensus)
. ṗ = −pL (diffusion)

Soln: x(t) = e−Ltx(0). Time one map: x(n+1) = e−Lx(n).

(1) S(d) ≡ e−L = I − L +
L2

2
+ · · ·

(2) S(d) ≡ e−L = eS−I = e−1
(
I + S +

S2

2
+ · · ·

)
Properties of e−L: (1) row-sum one, (2) non-negative. Thus
S(d) is row-stochastic matrix. So....

Obtain Discrete Consensus: x(n+1) = S(d)x(n).

and Discrete Diffusion: p(n+1) = p(n)S(d).
(The usual term is random walk.)

Define the discrete Laplacian: L(d) = I − S(d). From (1):

Theorem 11 [2]: L(d) and L have the same kernels.

As before: the leading eigenspace of S(d) is kernel of L(d).

Corollary: The discrete processes have the same
asymptotic behavior as the original continuous ones.
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Every Discrete Process??

One more Property of e−L: Recall

(2) S(d) = e−L = eS−I = e−1
(
I + S +

S2

2
+ · · ·

)
Thus e−L is transitively closed: if there is a path i  j,
then there is an edge ij.

So, the answer is NO !

Digraphs like o � o with S =

(
0 1
1 0

)
cannot occur as time one maps (not transitively closed).

Another obstruction is that S(d) = e−L cannot have 0 as eigen-
value.

The question exactly which maps can be considered as a
time one map of a Laplacian system is open, though several
obstructions are known (such as the ones above).
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Periodic Behavior

Possibility of periodic behavior changes asymptotics:
Consider:
Consensus (continuous): ẋ = −Lx.
Consensus (discrete): x(n+1) = Sx(n).

The eigenvalues of S lie within the closed unit disk.

Asymptotic behavior as t→∞ is determined by
Continuous: null space of L.
Discrete: (i) eigenspace of S assoc. to eigenvalue 1 or
. (ii) eigenspaces of S assoc. to roots of unity.
All else converges to zero.

+1−1

+i

−i

0−2

eigenvalues S eigenvalues −Lapl=S−I

To get asymptotics
For discrete: must average: limn→∞

1
n

∑n−1
k=0 x

(k).

For continuous, no need: limt→∞ x
(t).
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