
Pescara, Italy, July 2019

DIGRAPHS I
Mathematical Background:

Perron-Frobenius, Jordan Normal Form,
Cauchy-Binet, Jacobi’s Formula

Based on various sources.

J. J. P. Veerman,
Math/Stat, Portland State Univ., Portland, OR

97201, USA.
email: veerman@pdx.edu

Conference Website:
www.sci.unich.it/mmcs2019

1



SUMMARY:

* This is a review of four theorems from linear algebra that are
important for the development of the algebraic theory of di-
rected graphs. These theorems are the Perron-Frobenius theo-
rem, the Cauchy-Binet formula, the Jordan Normal Form, and
Jacobi’s Formula.
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OUTLINE:
The headings of this talk are color-coded as follows:

Graph Theory Definitions

Perron-Frobenius

Jordan Normal Form

Cauchy-Binet

Jacobi’s Formula
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Definitions: Digraphs

Definition: A directed graph (or digraph) is a set V =
{1, · · ·n} of vertices together with set of ordered pairs E ⊆
V × V (the edges).
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A directed edge j → i, also written as ji.
A directed path from j to i is written as j  i.

Digraphs are everywhere: models of the internet [6], so-
cial networks [7], food webs [11], epidemics [10], chemical re-
action networks [12], databases [5], communication networks
[4], and networks of autonomous agents in control theory [8],
to name but a few.

A BIG topic: Much of mathematics can be translated into
graph theory (discretization, triangulation, etc). In addition,
many topics in graph theory that do not translate back to
continuous mathematics.
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Definitions: Connectedness of digraphs

Undirected graphs are connected or not. But...
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Definition:
* A digraph G is strongly connected if for every ordered
pair of vertices (i, j), there is a path i j. SCC !
* A digraph G is unilaterally connected if for every or-
dered pair of vertices (i, j), there is a path i  j or a path
j  i.
* A digraph G is weakly connected if the underlying
UNdirected graph is connected.
* A digraph G is not connected: if it is not weakly con-
nected.

Definition:
Multilaterally connected: weakly connected but not
unilaterally connected.
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The Adjacency Matrix

Definition: The combinatorial adjacency matrix Q
of the graph G is the matrix whose entry Qij = 1 if there is
an edge ji and equals 0 otherwise.

Interpretation: We think of Qij = 1 as information going
from j to i. Or: i “sees” j. In the graph below, both 2 and 6
“see” 1. So Q21 = Q61 = 1.
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Q =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0
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Non-Negative Matrices

Definition: A non-negative matrix Q is irreducible if for
every i, j, there is a k such that (Qk)ij > 0.

OR: for all i, j, there is path from j to i: j  i.

Definition: A non-negative matrix Q is primitive if there
is a k such that for every i, j, we have (Qk)ij > 0.

OR: ∃ k such that for all i, j, there is j  i of length k.

Q is adjacency matrix of graph G. Both imply that G is SCC.

Irreducible but not primitive: any cyclic permutation.

Q =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


1

2 3

4

9



Perron-Frobenius

The single most important theorem in algebraic graph theory!!
Gives leading eigenpair of many important matrices.
1st order description of dynamical processes on graphs.
More details in [1] and [13].

Theorem 1A: Let A ≥ 0 be irreducible. Then:
(a) Its spectral radius ρ(A) is a simple eval of A.
(b) Its associated evec is the only strictly positive
evec.

Thus its largest eval is simple, real, and positive. But there
may be other evals of the same modulus.

Theorem 1B: Let A ≥ 0 be primitive. Then also:
All other evals have modulus strictly smaller than
ρ(A).
(Note 3-fold rotational symmetry in irreducible case.)

+1−1

+i

−i

+1−1

+i

−i

primitiveirreducible
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Irreducible Has Period p

In the irreducible case, the matrix A has a period p > 1.
That is: after permutation of vertices, A is block cyclic.
Example: p = 3:

A =

 0 A1 0
0 0 A2

A3 0 0


In this cyclic block form, the Ai are rectangular!

Exercise 1: Show that

A3 =

 A1A2A3 0 0
0 A2A3A1

0 0 A3A1A2


Now, the diagonal blocks are primitive.

By Cauchy-Binet (later):
each diagonal block D of A3 has same non-zero spectrum.
Suppose non-zero spectrum D is: {λi}si=1.

The non-zero spectrum ofA consists of all 3rd roots of these.
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Example
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7∑
i=1

Ai =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 2 2 3 0 0
0 0 3 2 2 0 0
0 0 2 3 2 0 0
4 0 5 3 4 3 4
3 0 7 4 5 14 3


So, Q is block-triangular and thus not irreducible. But:
The two non-trivial blocks are irreducible but not prim-
itive. Notice the grouping of the evals.

The spectrum is {0, 0, 1, e2πi/3, e−2πi/3, 1,−1}.
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Other Eigenvectors

Theorem 1C: Let A be irreducible. Any other evec
but the leading cannot be real and non-negative.

This is clear if the eigenvalue is non-real. So only needs proof
for real evecs.

This is the beginning of the study of Nodal Domains.
A classical problem in analysis (since Courant): count the
number of nodal domains of e.fns to the Laplace operator.
See Figure.

For undirected graphs there are many results. But for digraphs
very little is known. (After all, evecs may not be real!)
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Spectral Theorem

From now: A is n× n matrix with real or complex coeff’s:
real symmetric ⊂ self-adjoint ⊂ normal.
(A is normal if A∗A = AA∗.)

Theorem 2 (spectral): A has orthonormal basis of
evecs {vi}ni=1 iff A normal.

These evals are real, if A is self-adjoint.

Computations simplify (e.g. quantum mechanics and statisti-
cal physics):
Let A a (normal) matrix with e.pairs {λi, vi}.
Suppose ẋ = Ax with initial condition x(0) = x0. Then:

x(t) =
∑
i

(vi, x0)e
λitvi

where (., .) is real or Hermitian inner product.
(vi, x0) is the orthogonal projection of x0 onto vi.

Exercise 2: The matrix norm ‖A‖ ≡ supx{Ax | |x| =
1} equals norm of its largest eval if A is normal.
(Hints: a) Show

∑
(vi, x)2 = 1; b) Show that Ax =

∑
λi(vi, x);

c) Show that (Ax,Ax) is a weighted mean of λ2i .)
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Life in a Non-normal Universe

1
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v
v

x(0) = v

Let ẋ = Ax. Sps evecs v1 and v2 nearly parallel.

x(t) = A1e
λ1tv1 + A2e

λ2tv2

Example: λi = {−0.1,−1.0} and init. condn x(0) as indi-
cated.

Large transient! Stable system may initially “look” unstable.
Below we plot |x(t)|.

Exercise 3: Define a 2-dim. system of ODE plus initial
condition that exhibits this type of behavior.
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Case I: n Eigenvectors

Let A be n× n matrix.
In general, it may have real and/or complex epairs.

Evals are the solutions {λi}ki=1 (with k ≤ n) of

det(A− λI) = 0

Case I: n linearly independent evecs {vi}ni=1.
Given λi, then {vi} is the solution of

(A− λiI)v = 0

Let H the matrix whose ith column equals vi. Then A is
diagonalizable, or:

D = H−1AH

with D diagonal with Dii = λi (real if A is self-adjoint).

Application: Suppose ẋ = Ax with init. cond. x0. Then:

x(t) =
∑
i

αie
−λitvi

But the αi are less simple to calculate. Set t = 0, you get:

Hα = x0
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Case II: Less than n Eigenvectors

Let A be n× n matrix.

Case II: less than n linearly independent evecs {vi}ni=1.

This happens when for some i, λi is a root of order k of

det(A− λI) = 0

but
(A− λiI)v = 0

has less than k linearly independent solutions for v.

Definition: The algebraic multiplicity of an eigenvalue
λi of A is the order of the root λi of det(A− λI).
The geometric multiplicity of λi is the number of lin-
early independent evecs associated with λi.

In this case A is not diagonalizable but block diagonaliz-
able. There is matrix H so that

J = H−1AH

Exercise 4: J has diagonal Jordan blocks (or JB), all of
the form:

Bi =


λi 1 0 ..
0 λi 1 ..
.. .. .. 1
.. .. 0 λi
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Case II: Not Enough LI Eigenvectors

Find all evals λ satisfying

det(A− λI) = 0

For each eval λi, find its evecs:

(A− λiI)v = 0

These vectors span the eigenspace of λi.
For simplicity: assume there is only one: vi.

If geom mult(λi) < alg mult(λi):
Start with evec vi.
Find vector wi1 such that

(A− λiI)wi1 = vi

Find wi2 such that

(A− λiI)wi2 = wi1

Etc. The vi together with wij are generalized eigenvec-
tors. They span the generalized eigenspace of λi.

Thus there are exactly n linearly independent generalized
eigenvectors vi.
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Case II: Construction of the Matrix H

H is the matrix whose columns are:

{v1,w11, · · w1n1, v2,w21, · · w2n2, ··, vk,wk1, · · wknk
}

equals vi. Then

J = H−1AH

and J has non-trivial Jordan blocks.

Example: If 1st block has dim ≥ 3 (or n1 ≥ 2):

λ1e1
H−1←− λ1v1

A←− v1
H←− e1

λ1e2 + e1
H−1←− λ1w11 + v1

A←− w11
H←− e2

λ1e3 + e2
H−1←− λ1w12 + w11

A←− w12
H←− e3

Definition: Thus J becomes:
λ1 1 0 · · · · · ·
0 λ1 1 · · · · · ·
0 0 λ1 · · · · · ·
· · · · · · · · · · · · · · ·


This is called Jordan normal form.
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ẋ = Ax, General Case

Exercise 1: Let I be the identity and

N =

(
0 1
0 0

)
and J = λI + N =

(
λ 1
0 λ

)
a) Compute eJt via the usual expansion.

(Hint: eλt
(

1 t
0 1

)
.)

b) Use a) to give solutions of ẋ = Jx, where x(0) = (a1, a2)
T .

(Hint: eλt
(
a1 + a2t
a2

)
.)

The expansion of eJt in the exercise

eJt = I + Jt +
J2t2

2
+
J3t3

3!
+ · · ·

simplifies because J = λI + N and N 2 = 0.

Back to the general problem ẋ = Ax, x(0) = x0.
Step 1: Write init. cond as sum of gener. evecs.

x0 =
∑

αivi where Hα = x0

Step 2: Suppose x0 = α12w12. Then

x(t) = α12 e
λt

(
t2

2
v1 + t w11 + w12

)
Step 3: Sum those contributions.
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Examples
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Two digraphs. The first has adjacency matrix

Q =


0 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0


with spectrum {1.68,−1.03± 0.74i, 0.37} (approximately).
The second has adjacency matrix

Q =


0 1 0 0
1 0 0 1
1 0 0 1
0 0 1 0


with spectrum {0(2),±

√
2}. The eigenvalue 0 has an associ-

ated 2-dimensional Jordan block.
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Additional Exercises

Exercise 2: Show that the matrix(
a− b c
−cd a + b

)
has a non-trivial Jordan block (JB) if b2 = c2d and c 6= 0 and
d 6= 0.

Exercise 3: So you may think JB’s are rare (co-dimension
one). But symmetries can change that. Show that
a) Newton’s equation ẍ = 0 gives rise to a JB.
b) That JB explains why two bodies without forcing separate
linearly in time (Newton’s first law).
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Generalized Cauchy-Binet

A is a n× e matrix and B is a e×m matrix.

me

e

n

K in

K in

I in

J in

A

B

Notation: k ≤ n,m ≤ e. (See figure). Let I ⊆ {1, · · ·n},
J ⊆ {1, · · ·m}, and K ⊆ {1, · · · e}. All subsets have the
same cardinality k.

Definition: The matrix consisting of the entries ofA in I×K
is called a minor of A. Principal minor if I = K. It is
denoted by A[I,K].

Theorem 3 (generalized Cauchy-Binet):

det ((AB)[I, J ]) =
∑
K

det(A[I,K]) det(B[K, J ])

where the sum is over all K ⊆ {1, · · · e} with |K| = k.
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Corollaries

A and B as depicted, where n ≤ e. Now I = J = {1, · · ·n}
e

e

n A

B

n

Corollary (Cauchy-Binet): We have

det (AB) =
∑

det(A[J,K]) det(B[K, J ])

where the sum is over all K ⊆ {1, · · · e} with |K| = n.

If X is n× n, by standard matrix computation

det(X + z Id) = · · · + zn−k
∑
|K|=k detX [K,K] + · · ·

By generalized C-B, we also have for k ≤ n:∑
|K|=k

∑
|L|=k detA[K,L] detB[L,K]

equals
∑
|K|=k det(AB)[K,K] and

∑
|L|=k det(BA)[L,L].

Corollary: We have

det(BA+ z Id) = ze−n det(AB + z Id)
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Sketch of Proof of Cauchy-Binet

Inspired by Gessel-Viennot [9].

1 2

a b

c d

1 2

1 2 3 4

1 2 3 4
I

J

K
E

B

A

I = J = {1, · · ·n} and E = {1, · · · e} with n ≤ e. (n = 4.)

detAB =
∑

σ sgnσ
∏

i (AB)iσ(i)

=
∑

σ sgnσ
∏

i∈I
∑

`∈E Ai`B`σ(i)

Crossing paths give canceling contributions.
For the crossing as pictured (right figure):

(AB)11(AB)22(AB)3σ(3) · · · = (AB)12(AB)21(AB)3σ(3) · · ·
All other terms equal. But σ changes by 1 transpos.: 1 ↔ 2.
Thus: ∏

i∈I
∑

`∈E Ai`B`σ(i) =(∑
`1
A1`1B`1σ(1)

)(∑
`2
A2`2B`2σ(2)

)
· · ·
(∑

`n
An`nB`nσ(n)

)
Where now ` ≡ (`1, · · · `n) runs over ALL n-tuples
of distinct members of E. (No two `i’s are the
same.)
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Sketch of Proof Continued

Idea: Regroup the sums so that for any given K ⊂
E of size n, the permutations of K are grouped
together. Then:∏

i∈I
∑

`∈E Ai`B`σ(i) =∑
K,|K|=n

(∑
`1
A1`1B`1σ(1)

)
· · ·
(∑

`n
An`nB`nσ(n)

)
For each K, the `i run over the permutations of K.

For fixed K, choose permutations ρ and τ :

I
τ→ K

ρ→ J so that ρ(τ ) = σ :

· · · =
∑
|K|=4

∏
i

∑
τ Aiτ(i)Bτ(i)ρ(τ(i))

We obtain:

detAB =
∑
|K|=4

∑
σ sgnσ

∏
i

∑
τ Aiτ(i)Bτ(i)ρ(τ(i))

For fixed K, this is determ. of product of square matrices:

· · · =
∑
|K|=4 det(A[I,K]) det(B[K, J ])
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The Formula and Its Corollaries

A a square matrix, adj(A) its adjugate:

A adj(A) = adj(A) A = det(A) I

Suppose A depends (differentiably) on a parameter t.

Theorem 4:
d

dt
det(A) = Tr

(
adj(A)

dA

dt

)
.

We give some common corollaries as easy exercises.

Replace
dA

dt
by B whose only non-zero entry is Bk` = 1:

Exercise 4: Show
d

dAk`
det(A) = (adj(A))`k.

Instead, replace A by eBt and so adj(A) by e−Bt det
(
eBt
)
:

Exercise 5: Show
d

dt
det(etB) = Tr(B) det(etB).

The latter gives an ODE. Solve it:
Exercise 6: Show the latter implies: det(etB) = eTr(Bt).
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Sketch of Proof

B has evals λi (with mult.). Then I + εB has evals 1 + ελi:

det(I + εB) =
∏

i (1 + ελi)

Thus

limε→0

det(I + εB)− det(I)

ε
=
∑

i λi = Tr(B)

For an invertible A:

limε→0

det(A+ εB)− det(A)

ε
=

limε→0

det(A)
[
det(I + εA−1B)− det(I)

]
ε

=

det(A)Tr(A−1B)

Extend to non-invertible: replace det(A)A−1 by adj(A):

· · · = Tr (adj(A)B)

... And replace B by dA
dt :

· · · = Tr

(
adj(A)

dA

dt

)
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