
A VERIFICATION TECHNIQUE FOR
DETERMINISTIC PARALLEL PROGRAMS
MARIEKE HUISMAN
UNIVERSITY OF TWENTE, NETHERLANDS

JOINT WORK WITH SAEED DARABI AND STEFAN BLOM

11-10-2017A Verification Technique for Deterministic Parallel Programs

THE CHALLENGE OF RELIABLE SOFTWARE

Mars Climate Orbiter:
Crash due to different units

ICT problems Dutch gouvernment

Unreachable
banks because
of network
problems

Toyata Prius: software errors
due to lack of testing

2

Use logic to describe behaviour of program components

§ Precondition: what do you know in advance?
Example: increaseBy(int n)

requires n > 0
§ Postcondition: what holds afterwards

Example: increaseBy(int n)
x increased by n

ensures x == old(x) + n

11-10-2017

SPECIFYING PROGRAM BEHAVIOUR

Bob Floyd
(1936 – 2001)

Tony Hoare
(1934 -)

Dates
back to
the 60-ies

Notation: {P}S{Q}

Hoare triples

A Verification Technique for Deterministic Parallel Programs

precondition postcondition
3

11-10-2017

HISTORY OF PROGRAM VERIFICATION

Floyd - Hoare

Krakatoa/Why3

My thesis
(around 2000) State-of-the-art

Dijkstra

A Verification Technique for Deterministic Parallel Programs 4

11-10-2017A Verification Technique for Deterministic Parallel Programs

THE FUTURE OF COMPUTING IS MULTICORE

Multicore Cell
Processor

Multiple threads of execution

Coordination problem shifts
from hardware to software

Single core processors:
The end of Moore’s law

Solution:
Multi-core processors

5

11-10-2017

MULTIPLE THREADS CAUSE PROBLEMS

shared memory

read v

write v

§ Order?
§ More threads?

Possible consequences:
errors such as data races caused
lethal bugs as in Therac-25

A Verification Technique for Deterministic Parallel Programs 6

Silicon
Verifast

11-10-2017

VERIFICATION OF MULTITHREADED PROGRAMS

Owicki - Gries

Jones

Concurrency
(multithreading)

VerCors
O’Hearn

2004
separation logic

Floyd - Hoare
Dijkstra

A Verification Technique for Deterministic Parallel Programs 7

Krakatoa/Why3

1975 1980 2007 2016

Jones

Owicki - Gries O’Hearn Brookes

Concurrent	
Separation Logic

Viper VerCors
VeriFast

lowed to be arbitrary separation logic formulas and the usual Hoare logic proof rule for
conjoining postconditions is allowed. During the evolution of the semantic foundations
John Reynolds played an important guiding rôle, and it is entirely appropriate that
the two CSL papers bear dedication to him.

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007) RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Fig. 1. CSL Family Tree (courtesy of Ilya Sergey)

3. DEVELOPMENTS IN THEORY
3.1. Logic
There have been many logics that extend or build on the ideas in CSL; Figure 1 gives
an indication. The motivation for several of these logics has simply been to treat varied
programming primitives that are used when writing concurrent programs. For exam-
ple:

— Storable locks. The original CSL used statically allocated locks, whereas real pro-
grams often use dynamically-allocated locks that can themselves be stored [Gotsman
et al. 2011];

— Re-entrant locks. CSL’s critical sections cannot be nested, and similarly if you hold a
semaphore and attempt to grab it again you will deadlock. On the other hand, Java’s
locks are such that a thread that holds a lock can acquire it again [Haack et al. 2008];

— Fork/join. CSL is formulated using structured parbegin/parend or parallel composi-
tion k to describe concurrent threads, which has been extended to fork/join concur-
rency constructs [Haack and Hurlin 2008; Dodds et al. 2009];

— Message Passing. [Villard et al. 2009; Bell et al. 2010; Lei et al. 2014];
— Relaxed memory. [Vafeiadis and Narayan 2013].

A very unexpected development has been the demonstration that the most basic
principles of concurrent separation logic, particularly independent reasoning about
threads using the separating conjunction, cover a much broader range of situations

ACM SIGLOG News 54 July 2016, Vol. 3, No. 3

CSL	Family	Tree

requires true

ensures x is the last element in the list
void addToList(Elem x) {

// code
}

21-06-2017Verification of Concurrent Software

SPECIFICATIONS IN A CONCURRENT SETTING

Any other thread
might invalidate
this!

‘x is in the list’
cannot even be
guaranteed!

Except when no
other thread can
update the list

8

x

§ Separation logic for sequential Java (Parkinson)

§ Concurrent Separation Logic (O’Hearn)
§ Permissions (Boyland)

Permission-based Separation Logic for Java

A Verification Technique for Deterministic Parallel Programs

RECIPE FOR REASONING ABOUT JAVA

11-10-2017 9

where X and Y are logical variables

Points-to permissions e.f ® v

§ e.f contains v

§ grants access to e.f

SEPARATION LOGIC FOR JAVA

{e.f ® _} e.f := v {e.f ® v}

{X = e Ù X.f ® Y}v := e.f {X.f ® Y Ù v = Y}

Matthew
Parkinson

Verification of Concurrent Software 21-06-2017 10

where no variable free in Pi or Qi is changed in Sj (if i ¹ j)

Verification of Concurrent Software

JOHN REYNOLDS’S 70TH BIRTHDAY PRESENT:
CONCURRENT SEPARATION LOGIC

{P1}S1{Q1} {Pn}Sn{Qn}
{P1 à ... à Pn} S1 || ... || Sn {Q1 à ... à Qn}

21-06-2017 11

§ Permission to access a variable

§ Value between 0 and 1
§ Full permission 1 allows to change the variable

§ Fractional permission in (0, 1) allows to inspect a variable
§ Points-to predicate decorated with a permission

§ Global invariant: for each variable, the sum of all the permissions in
the system is never more than 1

§ Permissions can be split and combined

§ Thus: simultaneous reads allowed,
but no read-write or write-write conflicts
(data races)

Verification of Concurrent Software

PERMISSIONS

John
Boyland

21-06-2017 12

§ Permission-based separation logic

§ Rather than defining new logics, reuse existing verification technology

11-10-2017A Verification Technique for Deterministic Parallel Programs 13

VERCORS LOGIC

For convenience, we use implicit dynamic frames:
Perm(x,1/2) ** x == 4

Notation separating conjunction
• ** in textual representation, program annotations
• in formal notation

§ Collection of verified concurrent data structures

§ Generic verification theory of concurrent programming
§ Different concurrency and synchronisation techniques

§ Functional program properties
§ Different programming languages

§ Different concurrency paradigms

§ Tool support
§ To be continued:

§ Annotation generation

§ Automation

A Verification Technique for Deterministic Parallel Programs

VERCORS TECHNOLOGY

√Automated verification of concurrent software

Stefan

Marina

11-10-2017 14
MAXIMAL RELIABILITY OF CONCURRENT AND DISTRIBUTED SOFTWARE

11-10-2017A Verification Technique for Deterministic Parallel Programs 15

VERCORS TOOL ARCHITECTURE

Z3

VerCors
Tool

Silicon

Silver
Viper

Transformations

OpenCL

OpenMP

PVL

Java

Developed at
ETH Zurich

§ Parallel programming is difficult and error-prone
§ In many cases concurrency is an optimization rather than intrinsic

to the behavior of the program
§ Intended behavior is often the same as sequential counterpart of

the concurrent program

§ Write a sequential program, and let the compiler parallellise it!

11-10-2017A Verification Technique for Deterministic Parallel Programs 16

A DIFFERENT APPROACH TO CONCURRENCY

11-10-2017A Verification Technique for Deterministic Parallel Programs 17

DETERMINISTIC PARALLEL PROGRAMMING

§ Compiler directives: hints to compiler to know where and how to
parallelize sequential code

§ Examples are ample: OpenMP, OpenACC, PENCIL, parallel_for
constructs

§ Homogeneous parallellism

Multi-threaded Program
or

GPU Kernel

Compiled into
Sequential Program

annotated by
Compiler Directives

Earlier work (FASE 2015): how to reason about the correctness of Loop
Parallelisations

11-10-2017A Verification Technique for Deterministic Parallel Programs 18

BACKGROUND: LOOP PARALLELLISATIONS

Multi-threaded Program
or

GPU Kernel

Loop
annotated by

Compiler Directives

for t[] ={1, 2, 3, …}

Specify a contract for every iteration of a loop.

§ Simpler than classical loop invariants
§ Parallellisability of loop follows

§ Both data race freedom and functional specifications

§ Method can account for dependences too:
§ loop vectorization

§ reductions

11-10-2017A Verification Technique for Deterministic Parallel Programs 19

BACKGROUND: ITERATION CONTRACT

Example

11-10-2017A Verification Technique for Deterministic Parallel Programs 20

OPENMP COMPILER DIRECTIVES

Parallel ProgramCompiled into
Sequential Program

annotated by compiler
directives

…
#pragma omp parallel {
#pragma omp for schedule(static) nowait
for(int i =0;i<N;i++)

c[i] = a[i];
#pragma omp for schedule(static) nowait
for(int i =0;i<N;i++)

d[i] = c[i]+b[i];
} …

…
#pragma omp parallel {
#pragma omp for
for(int i =0;i<N;i++)

c[i] =a[i];
#pragma omp for
for(int i =0;i<N;i++)

d[i]=c[i+1]+b[i];
} …

OpenMP Examples
…
#pragma omp parallel {
#pragma omp sections
{
#pragma omp section
#pragma omp parallel for

for(int i =0;i<N;i++)
c[i]=a[i];

#pragma omp section
#pragma omp parallel for

for(int i =0;i<N;i++)
d[i]=d[i]+b[i];

} …

§ Define a language to capture the exact semantics of these OpenMP
annotations (with precise semantics)

§ Develop verification technique for core language
§ Encode OpenMP into this core language

§ Future: encode more deterministic parallel programming languages
into core language

11-10-2017A Verification Technique for Deterministic Parallel Programs 21

APPROACH

11-10-2017A Verification Technique for Deterministic Parallel Programs 22

PARALLEL PROGRAMMING LANGUAGE: PPL

Par(N) body1(tid);

Par(N) body2(tid);

Sequential composition
of parallel blocks

Par(N) body1(tid);

Par(N) body2(tid);

Fusion of parallel blocks

Par(N) body1(tid);

Par(N) body2(tid);

Parallel composition
of parallel blocks

Observation
OpenMP annotations define the code blocks and their composition

#pragma omp parallel {
#pragma omp for schedule(static) nowait
for(int i =0;i<N;i++)

c[i] = a[i];
#pragma omp for schedule(static) nowait
for(int i =0;i<N;i++)

d[i] = c[i] + b[i];
}

#pragma omp parallel {
#pragma omp for
for(int i =0;i<N;i++)

c[i] = a[i];
#pragma omp for
for(int i =0;i<N;i++)

d[i] = c[i+1] + b[i];
}

#pragma omp parallel {
#pragma omp sections
{
#pragma omp section

#pragma omp parallel for
omp_for(int i =0;i<N;i++)

c[i] = a[i];
#pragma omp section

#pragma omp parallel for
omp_ for(int i =0;i<N;i++)

d[i] = d[i] + b[i];
}}

PPL: a core language for deterministic parallel programming

11-10-2017A Verification Technique for Deterministic Parallel Programs 23

SYNTAX OF PPL

Block Compositions

Parallel and Sequential
basic blocks

Paper: formal semantics
for full language

11-10-2017A Verification Technique for Deterministic Parallel Programs 24

SHAPE OF PPL PROGRAMS
THE FORK-JOIN MODEL

Sequential Basic
Blocks

Parallel Basic
Blocks

Iterations
(threads)

ShM Shared
Memory

Composite
Blocks

ShM

11-10-2017A Verification Technique for Deterministic Parallel Programs 25

VERIFICATION OF PPL PROGRAMS

Problem1: Data race freedom

§ No two (parallel) threads have
racy access (read/write or
write/write) to the shared
memory

§ Implies correctness of high-
level annotations (e.g.
OpenMP annotations)

Problem 2: Functional
correctness
A verified PPL program is correct
w.r.t. its specified functional
behavior:

{P} PPL-Prog {Q}

ShM P

ShM’ Q

11-10-2017A Verification Technique for Deterministic Parallel Programs 26

DATA RACE FREEDOM

Solution:
1. Verify all basic blocks in isolation
w.r.t iteration contract

Requires extra contracts for composite
blocks L….

2. Verify block compositions

C

C
C

C

CC

C C C

C

ShM

C Iteration Contract C

However, iteration contracts are sufficient
to prove data race freedom of whole
program

11-10-2017A Verification Technique for Deterministic Parallel Programs 27

DATA RACE FREEDOM – COMPOSITE BLOCKS

Observation
PPL program is a partial order over the set
of all iterations under happens-before
relation

Set of independent iteration pairs :
All iterations (from different basic blocks)
which are not ordered under happens-
before relation

Block composition is correct if

CPC

C
C

C

CC

C C C

C

ShM= RCP ** FP

11-10-2017A Verification Technique for Deterministic Parallel Programs 28

FUNCTIONAL CORRECTNESS

Solution:
Extend Iteration Contracts with
functional properties:

Example:

R FC

C PC

C
C

C

CC

C C C

C

ShM

ShM’

P

Q

for(int i =0;i<N;i++)
/*@ requires	Perm(a[i],1)	**	Perm(b[i],1/2)
requires	b[i]	=1;
ensures	Perm(a[i],1)	**	Perm(b[i],1/2)
ensures		a[i]	=	2;

@*/
{a[i]	=	b[i]	*	2;}

Given P and all iteration contracts, can we
conclude Q?

11-10-2017A Verification Technique for Deterministic Parallel Programs 29

FUNCTIONAL CORRECTNESS: B-LIN REDUCTION

ShM’ ShM’=

ShM’ShM’ =

Data race freedom of basic blocks

Data race freedom of block
compositions:

implies

w.r.t to their iteration contracts
(FASE 2015)

ShM ShM’B-linearized variant of P

ShM ShM’PPL Program P

ShM’ShM Sequential variant of P

11-10-2017A Verification Technique for Deterministic Parallel Programs 30

VERIFICATION OF PPL PROGRAMS

Verify all basic blocks in isolation
w.r.t. iteration contract

Data race freedom
Parallelisation is correct if block
composition is correct

Functional correctness
If parallelization is correct, then
the behavior of PPL program is
equivalent to the behavior of its
sequential counterpart.

§ SIMD: Single Instruction Multiple Data

§ Also known as vector instructions
§ SIMD support from OpenMP 4.0 with simd and for simd annotations

where loop body executes in lock-step fashion.

11-10-2017A Verification Technique for Deterministic Parallel Programs 31

DATA PARALLELLISM

#pragma omp parallel for simd simdlen(M)
for(int i =0;i<N;i++) {

c[i]=a[i] +2;

d[i] = c[i] *b[i];
}

#pragma omp simd simdlen(M)
for(int i =0;i<N;i++) {

c[i]=a[i] +2;

d[i] = c[i+M] *b[i];
}

11-10-2017A Verification Technique for Deterministic Parallel Programs 32

SHAPE OF PPL PROGRAMS WITH SIMD

Sequential Basic Blocks

Parallel Basic Blocks

Iterations (threads)

Vectorized Basic Blocks

ShM

Composite Blocks

for(int i=0; i < N; i++)

{ a[i]=b[i]+1;
if (i>0) c[i]=a[i−1]+2; }

11-10-2017A Verification Technique for Deterministic Parallel Programs 33

LOOP WITH FORWARD DEPENDENCE

Send/receive:
§ Transfer

permissions to
different iteration

§ Needed for
verification of this
iteration contract

§ Send indicates the
necessary
synchronisation

/∗@ requires Perm(a[i],1) ** Perm(b[i],1/2) ** Perm(c[i],1);

ensures Perm(b[i],1/2) ** Perm(a[i],1/2) ** Perm(c[i],1);
ensures i>0 ==> Perm(a[i−1],1/2);
ensures i==N−1 ==> Perm(a[i],1/2);

@∗/

//@ L1:if (i< N−1) send Perm(a[i],1/2) to L2,1;

//@ L2:if (i>0) recv Perm(a[i−1],1/2) from L1,1;

FASE 2015

Challenge: identify the
independent iterations pairs

§ VerCors project: verification of concurrent software using permission-
based separation logic as specification language

§ Formalizing PPL: a core language for deterministic parallel
programming

§ A verification technique for reasoning about data race freedom and
functional correctness of PPL program

§ Soundness of our approach is proven

§ Enabling verification of OpenMP programs via encoding into PPL
§ Investigating how to address state-of-the-art features of OpenMP such

as simd loops

11-10-2017A Verification Technique for Deterministic Parallel Programs 34

CONCLUSIONS

§ Extend approach to handle intra-block data dependencies which
requires permission transfer between the iterations of the loop

§ Including more complicated cases of for-simd in OpenMP
§ Supporting atomic operations and reductions in OpenMP

§ Supporting OpenMP tasks
§ Encoding other DPP languages (e.g. Cilk) into PPL
§ Automatic generation of iteration contracts

11-10-2017A Verification Technique for Deterministic Parallel Programs 35

FUTURE WORK

THE END...

Automated verification of
concurrent software

11-10-2017A Verification Technique for Deterministic Parallel Programs

More information and try the tool:
http://www.utwente.nl/vercors

36

