CARET analysis of multithreaded programs

Huu-Vu Nguyen®, Tayssir Touili?
1 University Paris Diderot and LIPN
2 LIPN, CNRS and University Paris 13

Malware detection is a big challenge.

Existing Techniques (not robust)

@ Signature-matching based technique: can easily be overcome by
obfuscation techniques

@ Code emulation based techniques: limitation in execution time

CARET analysis of multithreaded programs 2/42

Malware detection is a big challenge.

Existing Techniques (not robust)

@ Signature-matching based technique: can easily be overcome by
obfuscation techniques

@ Code emulation based techniques: limitation in execution time

Solution to have a robust technique

Model-checking for malware detection

@ allow us to analyse the behaviors (not the syntax) of the program
without executing it

CARET analysis of multithreaded programs 2/42

Model-checking for Malware Detection

Binary Codes

CARET analysis of multithreaded programs 3/42

Model-checking for Malware Detection

Malicious
Binary Codes

Behaviors

CARET analysis of multithreaded programs 4/42

Model-checking for Malware Detection

Malicious

Binary Codes e e Behaviors

CARET analysis of multithreaded programs 5/42

Model-checking for Malware Detection

Malicious

Binary Codes -‘L_ Behaviors

CARET analysis of multithreaded programs 6 /42

Model-checking for Malware Detection

Malicious
Behaviors

Binary Codes

CARET analysis of multithreaded programs 7/42

Model-checking for Malware Detection

Malicious

Binary Codes 12 Behaviors

CARET analysis of multithreaded programs 8/42

Model-checking for Malware Detection

Malicious

Binary Codes e 4 Behaviors

ﬁ

CARET analysis of multithreaded programs 9/42

Model-checking for Malware Detection

Malicious

Binary Codes L2 Behaviors

ﬁ

No Benign

Ve

CARET analysis of multithreaded programs 10/ 42

Model-checking for Malware Detection

Malicious

Binary Codes e 4 Behaviors

-

No Benign

Ve

CARET analysis of multithreaded programs 11/42

Model-checking for Malware Detection

Malicious

Binary Codes sy Behaviors

==

No Benign

(

CARET analysis of multithreaded programs 12 /42

Why Pushdown Systems?

Stack of binary codes
important for malware detection [Song and Touili 2012, 2013]

Pushdown Systems (PDSs)

@ natural model of sequential programs

@ allow taking into account the procedure contexts and stack content in
the model

CARET analysis of multithreaded programs 13 /42

Why Pushdown Systems?

Stack of binary codes

important for malware detection [Song and Touili 2012, 2013]

Pushdown Systems (PDSs)

@ natural model of sequential programs

@ allow taking into account the procedure contexts and stack content in
the model J
PDSs for Binary Codes

@ Control locations of PDSs correspond to program points

@ Stack of PDSs correspond to stack of binary programs

A\

CARET analysis of multithreaded programs 13 /42

Model-checking for Malware Detection
Malicious
Binary Codes e

z =
B H
= a
E =
R 2

ﬁ

Benign

No /

—> Problem: This can be applied only for
sequential programs. However, several malware is

concurrent.

CARET analysis of multithreaded programs 14 /42

Concurrent Malware Example

The email worm Bagle

is a multithreaded malware:

@ Main thread: register itself into the registry listing: to be started at the boot time

@ Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

@ Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

@ Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.)

CARET analysis of multithreaded programs 15 /42

Concurrent Malware Example
The email worm Bagle

is a multithreaded malware:
@ Main thread: register itself into the registry listing: to be started at the boot time
@ Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

@ Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

@ Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.

v
How instances of threads are spawn?

@ Thread 1 dynamically spawn instances of Thread 2,3,4 depending on the needs

@ The number of instances is not fixed, depending on specific executions

@ Instances of threads can be spawn dynamically during executions

CARET analysis of multithreaded programs 15 /42

Concurrent Malware Example
The email worm Bagle

is a multithreaded malware:

@ Main thread: register itself into the registry listing: to be started at the boot time

@ Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

@ Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

@ Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.

v
How instances of threads are spawn?

@ Thread 1 dynamically spawn instances of Thread 2,3,4 depending on the needs

@ The number of instances is not fixed, depending on specific executions

@ Instances of threads can be spawn dynamically during executions

—> Bagle is a multithreaded malware, with
dynamic thread creation during its execution. How
to model such a concurrent malware?

CARET analysis of multithreaded programs 15 /42

How to model such concurrent malware?

Ideas

@ PDS is a natural model for sequential malware.
@ — networks of PDSs can model concurrent malware.

© — networks of PDSs with dynamic creation can model concurrent
malware with dynamic creations.

© — Dynamic Pushdown Networks [Bouajjani, Miiller-Olm and Touili
2005] match our needs.

CARET analysis of multithreaded programs 16 /42

How to model such concurrent malware?

Ideas
@ PDS is a natural model for sequential malware.
@ — networks of PDSs can model concurrent malware.

© — networks of PDSs with dynamic creation can model concurrent
malware with dynamic creations.

© — Dynamic Pushdown Networks [Bouajjani, Miiller-Olm and Touili
2005] match our needs.

Dynamic Pushdown Networks (DPNs)

@ A DPN: a networks of Dynamic PDSs

@ a Dynamic PDS: is a PDS with the ability to spawn new instances of
PDSs during its runs

CARET analysis of multithreaded programs 16 /42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P,I', A), where

@ P is a finite set of control locations
@ [is a finite set of stack alphabet

@ A is the set of transition rules of the following form:

call
o (n): py — p1m2
o (n): py ret, p1€

int
o (r3): py — prw

where p,p1 € P, v, 11,12 €, weT”

CARET analysis of multithreaded programs 17 /42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P,I', A), where

@ P is a finite set of control locations
@ [is a finite set of stack alphabet

@ A is the set of transition rules of the following form:

I
o (n): py L p17172
ret
o (n): py —>' p1€
o (r3): py Aty p1w
where p,p1 € P, v, 11,12 €, weT”

I
A rule of the form py == p1y12 corresponds to a call statement

il
@ usually models a statement of the form v =—2°% ~,

@ ~y is the control point of the program where the function call is made, 7 is the
entry point of the called procedure and ~; is the return point of the call.

CARET analysis of multithreaded programs 17 /42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P,I', A), where

@ P is a finite set of control locations
@ [is a finite set of stack alphabet

@ A is the set of transition rules of the following form:

I
o (n): py L p17172
ret
o (n): py —>' p1€
o (r3): py Aty p1w
where p,p1 € P, v, 11,12 €, weT”

I
A rule of the form py == p1y12 corresponds to a call statement

il
@ usually models a statement of the form v =—2°% ~,

@ ~y is the control point of the program where the function call is made, 7 is the
entry point of the called procedure and ~; is the return point of the call.

A configuration: pw where p € P is the current control location, w € '™ is the current
stack content.

CARET analysis of multithreaded programs 17 /42

Definition of DPNs

A Dynamic Pushdown Network (DPN) M is a set {P1,..., Py} s.t. for
every 1 <i<n, P;=(P;,l,A;)is a Dynamic Pushdown System
(DPDS)

I
o (NonSpawn)(r1) py == piyie
o (NonSpawn)(r) py =i pre

o (NonSpawn)(r3) py "™5; pror

CARET analysis of multithreaded programs 18 /42

Definition of DPNs

A Dynamic Pushdown Network (DPN) M is a set {P1, ..., Pp} s.t. for
every 1 <i<n, P;=(P;,l;A;) is a Dynamic Pushdown System
(DPDS) where psws € Ul ;< I

g;<n

CARET analysis of multithreaded programs 18 /42

Model-checking for Malware Detection

Malicious

Binary Codes e 4 Behaviors

STy e

No Benign

Ve

CARET analysis of multithreaded programs 19/42

Specification Formalisms for Malware Behaviors

Recent works: extensions of LTL, CTL were used as specifications
e CTPL [Kinder, Katzenbeisser,Schallhart and Veith 2005]
e SLTPL, SCTPL [Song and Touili 2012, 2013]

However, these are not expressive enough for malicious behaviors

CARET analysis of multithreaded programs 20 /42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

CARET analysis of multithreaded programs 21 /42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

o Firstly, call the APl FindFirstFileA = return a search handle h

@ After that, call the API FindNextFileA with h as parameter —-
search remaining matching files

CARET analysis of multithreaded programs 21 /42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

o Firstly, call the APl FindFirstFileA = return a search handle h

@ After that, call the API FindNextFileA with h as parameter —-
search remaining matching files

@ Cannot be expressed by LTL or CTL since it requires that the return
value of the function FindFirstFileA should be used as the input to
the function FindNextFileA

@ —> we need a formalism that can talk about matching calls and
returns =—> CARET.

CARET analysis of multithreaded programs 21 /42

CARET

e linear temporal logic of Calls and Returns [Alur, Etessami and
Madhusudan 2004]

@ Interpreted over transition systems where each state is associated
with a tag in the set {call, ret, int}

o call : a call statement
e ret : a return statement
e int : an internal statement (neither call nor return)

CARET analysis of multithreaded programs 22 /42

Global Successor

@ Global Successor(X#): standard successor (X&(s;) = sjt1)
@ Global Path: standard path like for LTL J

call

CARET analysis of multithreaded programs 23 /42

Abstract Successor

@ Abstract Successor (X?)

e The abstract successor of a call is its corresponding return-point

@ Abstract Path: apply repeatedly the abstract successor

CARET analysis of multithreaded programs 24 /42

Abstract Path

Abstract path:
@ From sp: spsisos.... J

CARET analysis of multithreaded programs 25 /42

Abstract Path

Abstract path:
@ From S3. 53545559S510---- J
call
B s/‘ y
C
D

CARET analysis of multithreaded programs 26 /42

Caller Successor

o Caller Successors (X€)

e the caller successor of a point is the caller point of the current
procedure

@ Caller Path: apply repeatedly the caller successor

CARET analysis of multithreaded programs 27 /42

CARET successors

—— global-successor

-------- > abstract-successor -~ caller-successor

CARET analysis of multithreaded programs 28 /42

CARET Definition

Given a finite set of atomic propositions AP. A CARET formula over AP is
defined as follows:

V=e|{callret int} |V |~ | X8 | X% | XY | QU | YUEY | U
where

@ e € AP: atomic proposition

@ X&: global successor

@ X?: abstract successor

@ X°¢: caller successor

@ U&: until operator on global path

@ U?: until operator on abstract path

@ U°: until operator on caller path

CARET analysis of multithreaded programs 29 /42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

o Firstly, call the APl FindFirstFileA = return a search handle h

@ After that, call the APl FindNextFileA with h as parameter —-
search remaining matching files

CARET analysis of multithreaded programs 30/42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

o Firstly, call the APl FindFirstFileA = return a search handle h

@ After that, call the APl FindNextFileA with h as parameter —-
search remaining matching files

Using CARET to describe ...

st = \ gep F&(call(FindFirstFileA) A X?(eax = d) A F?(call(FindNextFileA) A dT*))

CARET analysis of multithreaded programs 30/ 42

Spyware Behavior Formula

Malicious behavior by CARET

Ysr = v Fé&(call(FindFirstFileA) A X?(eax = d) A F?(call(FindNextFileA) A dT'*))
deD

@ \/,cp: disjunction over all possible memory addresses d containing search handles

CARET analysis of multithreaded programs 31/42

Spyware Behavior Formula

Malicious behavior by CARET

Vst = gep FE(call(FindFirstFileA) A X?(eax = d) A F2(call(FindNextFileA) A dT*))

@ \/,cp: disjunction over all possible memory addresses d containing search handles
@ call(FindFirstFileA) A X?(eax = d)
e eax: contain the return value of an API function when the function
finish its execution
e X? of a call is its corresponding return point
— there is a call to FindFirstFileA and the return value is d

CARET analysis of multithreaded programs 31/42

Spyware Behavior Formula

Malicious behavior by CARET

st =V yep FE(call(FindFirstFileA) A X?(eax = d) A F?(call(FindNextFileA) A dI*))

@ \/,cp: disjunction over all possible memory addresses d containing search handles
@ call(FindFirstFileA) A X?(eax = d)

e eax: contain the return value of an API function when the function
finish its execution
e X? of a call is its corresponding return point
— there is a call to FindFirstFileA and the return value is d

@ call(FindNextFileA) A dT*

e dI'*: d is on top of the stack
e parameters: passed to function by pushing on the stack

— there is a call to FindNextFileA where d is used as parameter.

CARET analysis of multithreaded programs 31/42

Spyware Behavior Formula

Malicious behavior by CARET

st = V yep 8 (call(FindFirstFileA) A X?(eax = d) A [F?|(call(FindNextFileA) A dI™))

@ \/, cp: disjunction over all possible memory addresses d containing search handles
@ call(FindFirstFileA) A X?(eax = d)
e eax: contain the return value of an API function when the function
finish its execution
e X2 of a call is its corresponding return point
— there is a call to FindFirstFileA and the return value is d
@ call(FindNextFileA) A dT*

e dI'*: d is on top of the stack
e parameters: passed to function by pushing on the stack
— there is a call to FindNextFileA where d is used as parameter.
@ F%: the standard F operator
@ F7: in the future after call(FindFirstFileA) finishes

CARET analysis of multithreaded programs 31/42

Spyware Behavior Formula

Malicious behavior by CARET

s = \ gep F&(call(FindFirstFileA) A X?(eax = d) A F?(call(FindNextFileA) A dT*))

@ \/,cp: disjunction over all possible memory addresses d containing search handles
@ call(FindFirstFileA) A X?(eax = d)
e eax: contain the return value of an API function when the function
finish its execution
e X7 of a call is its corresponding return point
— there is a call to FindFirstFileA and the return value is d
@ call(FindNextFileA) A dT*

e dI'*: dis on top of the stack
e parameters: passed to function by pushing on the stack
— there is a call to FindNextFileA where d is used as parameter.
@ F%: the standard F operator
@ F?: in the future after call(FindFirstFileA) finishes

—> 1) there exists a path s.t there is a call to FindFirstFileA where the return value is
d, and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31/42

Model-checking for Malware Detection

Malicious

Binary Codes e 4 Behaviors

ST - I

No Benign

Ve

CARET analysis of multithreaded programs 32/42

Problem: DPNs = CARET?7?

@ model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F(a; A b;)

CARET analysis of multithreaded programs 33 /42

Problem: DPNs = CARET?7?

@ model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F(a; A b;)

@ LTL is a subclass of CARET

CARET analysis of multithreaded programs 33 /42

Problem: DPNs = CARET?7?

@ model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F(a; A b;)

@ LTL is a subclass of CARET

© — model-checking CARET properties for networks of PDSs is
undecidable

CARET analysis of multithreaded programs 33 /42

Problem: DPNs = CARET?7?

@ model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F(a; A b;)

@ LTL is a subclass of CARET

© — model-checking CARET properties for networks of PDSs is
undecidable

@ — We consider: model-checking single-indexed CARET properties
for DPNs, where:

CARET analysis of multithreaded programs 33 /42

Problem: DPNs = CARET?7?

@ model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F(a; A b;)

@ LTL is a subclass of CARET

© — model-checking CARET properties for networks of PDSs is
undecidable

@ — We consider: model-checking single-indexed CARET properties
for DPNs, where:

e single-indexed properties: properties in the form f = i A ... A £y,
where f; is the CARET formula corresponding to P;

CARET analysis of multithreaded programs 33 /42

Problem to solve

Given:

@ a DPN M = {P1,Pa,...., Pn}

@ a single-indexed CARET formula f = 4 A fh... A f,
Model-checking problem:

@ Does there exist an execution of M s.t. every instance of the DPDS
‘P; satisfies the corresponding CARET formula £;7

CARET analysis of multithreaded programs 34 /42

Single-indexed CARET Model Checking for DPNs

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

@ We reduce this problem to the emptiness problem of Biichi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016).

CARET analysis of multithreaded programs 35 /42

Single-indexed CARET Model Checking for DPNs

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

@ We reduce this problem to the emptiness problem of Biichi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016).

o a BDPN BM is a set {BP1,...,BP,} where BP;(1</i<n)isa
Biichi Dynamic Pushdown System

CARET analysis of multithreaded programs 35 /42

Single-indexed CARET Model Checking for DPNs
Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:
@ We reduce this problem to the emptiness problem of Biichi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016).
o a BDPN BM is a set {BP1,...,BP,} where BP;(1</i<n)isa
Biichi Dynamic Pushdown System
o a Biichi Dynamic Pushdown System BP; = (P;,T;, A;, F;) is a PDS
with a set of accepting control locations F;

CARET analysis of multithreaded programs 35 /42

Single-indexed CARET Model Checking for DPNs
Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:
@ We reduce this problem to the emptiness problem of Biichi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016).
o a BDPN BM is a set {BP1,...,BP,} where BP;(1</i<n)isa
Biichi Dynamic Pushdown System
o a Biichi Dynamic Pushdown System BP; = (P;,T;, A;, F;) is a PDS
with a set of accepting control locations F;

e We compute BDPNs BM = {BP1, ..., BP,} such that BP; is a kind
of product between P; and the CARET formula f; which ensures that:

CARET analysis of multithreaded programs 35 /42

Single-indexed CARET Model Checking for DPNs
Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:
@ We reduce this problem to the emptiness problem of Biichi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016).
o a BDPN BM is a set {BP1,...,BP,} where BP;(1</i<n)isa
Biichi Dynamic Pushdown System
o a Biichi Dynamic Pushdown System BP; = (P;,T;, A;, F;) is a PDS
with a set of accepting control locations F;

e We compute BDPNs BM = {BP1, ..., BP,} such that BP; is a kind
of product between P; and the CARET formula f; which ensures that:

e The problem of checking whether an instance of P; starting from pw
satisfies f; can be reduced to the membership problem of BP;

CARET analysis of multithreaded programs 35 /42

BDPDS Computation - Intuition

At state s;, we encode a set of formulas A; such that for every ¢ € A;, ¢
holds at s;

CARET analysis of multithreaded programs 36 /42

BDPDS Computation-X Operators-Call statements

dg PrWi
O ==== ====3
Powo call \Piwi
ret
Pi+1Wij+1 Pk—1Wk—1

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

dg PrWi
O ==== ====3
Powo call \Piwi
ret
Pi+1Wij+1 Pk—1Wk—1

for piv < pi1y'y” in Pi:

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

dg PrWi
O === ====3
Powo call \Piwi
ret
Pi+1Wi+1 Pk—1Wk—1

for pi~y 1IN pir1y' Y in P

® (pi, {X20})v = (pi+1, {#})7" in
BP;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

... S
oo P cal \< I

Pi+1Wij+1 Pk—1Wk—1

piwi E X8 iff pipiwivi E ¢
for piy cal, pir1y' Y in P

@ (pi, {XEd})y = (pit1, {¢})yy” in
BP;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

°'"")°_Q ====3
Powo call \PiwWi I

Pi+1Wij+1 Pk—1Wk—1

piwi E X?¢ iff prwk F ¢
for piy cal, pir1y' Y in P

@ (pi, {XEd})y = (pit1, {¢})yy” in
BP;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

... S
oo P cal \< I

Pi+1Wij+1 Pk—1Wk—1

piwi E X?¢ iff prwk F ¢
for piy cal, pir1y' Y in P

@ (pi, {XEd})y = (pit1, {¢})yy” in
BP;

o (pi, {X°¢}v — piciy (" {S)) in
BP;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

0----- ===
Poo call f i I

Pi+1Wi+1 Pk—1Wk—1

PiWi E Xagf) Iff PkWk E QZS
for piy <l pi+1y' Y in Py

@ (pi, {X8d})y = (pit1, {&})yy” in
BP;

o (pi, {X*¢})y — Py [(@Y in
BP;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

0""90_‘} ====3
Powo call \Piwi I

Pi+1Wi+1 Pk—1Wk—1

PiWi E Xagf) Iff PkWk E QZS
for piy <l pi+1y' Y in Py

@ (pi, {X8d})y = (pit1, {&})yy” in
BP;

o (pi, {X*¢})y — Py [(@Y in
BP;

for px—15 ret, pke in P;

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators-Call statements

°'"")°_<§ ====3
Powo call \Piwi I

Pi+1Wi+1 Pk—1Wk—1

PiWi E Xa(f) iff PkWk F (jS
for piy <l pi+1y' Y in Py
@ (pi, {X20})y — (pis1, {¢})y7" in
BP; o p (4} — (s, {8})"

o (pi, {X*¢})y — Py [(@Y in
BP;

for px—18 LN pke in Pj:

CARET analysis of multithreaded programs 37/42

BDPDS Computation-X Operators- Int statements

call

for Pi7Y ﬂ) Pi+1w in 73,':

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

call

for Pi7Y ﬂ) Pi+1w in 73,':

o (pi {XE6})y = (piss, {d}Hw in
BP;

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

call

XE¢ %

o>
piw; Pi+1Wit1

piw; E X&¢ iff piiiwii1 E ¢
for piy % pryaw in P

o (pi, {X80})y = (pit1, {¢}Hw in
BP;

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

call

for Pi7Y ﬂ) Pi+1w in 73,':

g qpiv {XgQS}D’V - qpi+17 {¢}Dw in
BP;

o (pi X6}y = (pisr, {@}w in
BP;

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

call

X?¢ ¢

piwi F X2¢ iff piiwit F ¢
for pi~y nt, piriw in Pj:

° qpiv {XgQS}D’Y - qpi-‘rla {¢}Dw in
BP;

L qpiv {Xa(b}l)’y - (]Pi+17 {¢}DW in
BP;

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

o
call
Yo mmmmmmn
in . for p; ot 1wl psws in P
for piy nt, piriw in Py (pscﬁje P, ;3:+1 p

° qpiv {Xg(b}D’y — qpi+17 {¢}Dw in

BPi
o (pi. {X*0}v = (pit1. {¢})w in

BP;

CARET analysis of multithreaded programs 38 /42

BDPDS Computation-X Operators- Int statements

call

for Pi7Y ﬂ) Pi+1w in 73,':

g qpiv {XgQS}D’V - qpi+17 {¢}Dw in
BP;

o (pi, {X?¢})v = (pit1, {#})w in
BP;

for piy ey pit1wl> psws in P;
(psws € Pj):
° (pi, {Xe0})y — _
(pit1, {@Hwr (ps, fi)ws in BP;
(
(

o (pi, {X?¢})y —
pi+1; {oHw> (ps. fi)lws in BP;

CARET analysis of multithreaded programs 38 /42

Given a DPN M = {Px, ..., Pn}, a single-indexed CARET formula
f="HfAf..Af,, we can compute a BDPN BM = {BP,..., BP,} such
that M E f iff BM has an accepting run.

CARET analysis of multithreaded programs 39 /42

DPNs communicating via Locks (L-DPNs)

a L-DPN is a DPN where pushdown processes communicate via locks.

CARET analysis of multithreaded programs 40 /42

DPNs communicating via Locks (L-DPNs)

a L-DPN is a DPN where pushdown processes communicate via locks.

Nested Lock Access

a L-DPNs with Nested Lock Access: is a L-DPN s.t. in all executions, the
locks are accessed in a well-nested manner, i.e, an execution can only
release the latest lock it acquired that is not released yet.

CARET analysis of multithreaded programs 40 /42

DPNs communicating via Locks (L-DPNs)

a L-DPN is a DPN where pushdown processes communicate via locks.

Nested Lock Access

a L-DPNs with Nested Lock Access: is a L-DPN s.t. in all executions, the
locks are accessed in a well-nested manner, i.e, an execution can only
release the latest lock it acquired that is not released yet.

o
Theorem

Single-indexed CARET model-checking for L-DPNs with nested Lock
access can be reduced to single-indexed CARET model-checking for DPNs

CARET analysis of multithreaded programs 40 /42

Q&A

Thank you for your listening!

CARET analysis of multithreaded programs

