
CARET analysis of multithreaded programs

Huu-Vu Nguyen1, Tayssir Touili2
1 University Paris Diderot and LIPN

2 LIPN, CNRS and University Paris 13

Motivation

Malware detection is a big challenge.

Existing Techniques (not robust)

Signature-matching based technique: can easily be overcome by
obfuscation techniques

Code emulation based techniques: limitation in execution time

Solution to have a robust technique

Model-checking for malware detection

allow us to analyse the behaviors (not the syntax) of the program
without executing it

CARET analysis of multithreaded programs 2 / 42

Motivation

Malware detection is a big challenge.

Existing Techniques (not robust)

Signature-matching based technique: can easily be overcome by
obfuscation techniques

Code emulation based techniques: limitation in execution time

Solution to have a robust technique

Model-checking for malware detection

allow us to analyse the behaviors (not the syntax) of the program
without executing it

CARET analysis of multithreaded programs 2 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 3 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 4 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 5 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 6 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 7 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 8 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 9 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 10 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 11 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 12 / 42

Why Pushdown Systems?

Stack of binary codes

important for malware detection [Song and Touili 2012, 2013]

Pushdown Systems (PDSs)

natural model of sequential programs

allow taking into account the procedure contexts and stack content in
the model

PDSs for Binary Codes

Control locations of PDSs correspond to program points

Stack of PDSs correspond to stack of binary programs

CARET analysis of multithreaded programs 13 / 42

Why Pushdown Systems?

Stack of binary codes

important for malware detection [Song and Touili 2012, 2013]

Pushdown Systems (PDSs)

natural model of sequential programs

allow taking into account the procedure contexts and stack content in
the model

PDSs for Binary Codes

Control locations of PDSs correspond to program points

Stack of PDSs correspond to stack of binary programs

CARET analysis of multithreaded programs 13 / 42

Model-checking for Malware Detection

=⇒ Problem: This can be applied only for
sequential programs. However, several malware is
concurrent.

CARET analysis of multithreaded programs 14 / 42

Concurrent Malware Example

The email worm Bagle

is a multithreaded malware:

Main thread: register itself into the registry listing: to be started at the boot time

Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.

How instances of threads are spawn?

Thread 1 dynamically spawn instances of Thread 2,3,4 depending on the needs

The number of instances is not fixed, depending on specific executions

Instances of threads can be spawn dynamically during executions

=⇒ Bagle is a multithreaded malware, with
dynamic thread creation during its execution. How
to model such a concurrent malware?

CARET analysis of multithreaded programs 15 / 42

Concurrent Malware Example

The email worm Bagle

is a multithreaded malware:

Main thread: register itself into the registry listing: to be started at the boot time

Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.

How instances of threads are spawn?

Thread 1 dynamically spawn instances of Thread 2,3,4 depending on the needs

The number of instances is not fixed, depending on specific executions

Instances of threads can be spawn dynamically during executions

=⇒ Bagle is a multithreaded malware, with
dynamic thread creation during its execution. How
to model such a concurrent malware?

CARET analysis of multithreaded programs 15 / 42

Concurrent Malware Example

The email worm Bagle

is a multithreaded malware:

Main thread: register itself into the registry listing: to be started at the boot time

Thread 2: listen on port 6777 to receive different commands; allow the attackers
to upload new file, ...

Thread 3: contacts a list of websites every 10 minutes: to announce the infection
of the current machine

Thread 4: is spawn to search on local drives to look for valid email addresses,
...then send itself to these found emails.

How instances of threads are spawn?

Thread 1 dynamically spawn instances of Thread 2,3,4 depending on the needs

The number of instances is not fixed, depending on specific executions

Instances of threads can be spawn dynamically during executions

=⇒ Bagle is a multithreaded malware, with
dynamic thread creation during its execution. How
to model such a concurrent malware?

CARET analysis of multithreaded programs 15 / 42

How to model such concurrent malware?

Ideas

1 PDS is a natural model for sequential malware.

2 =⇒ networks of PDSs can model concurrent malware.

3 =⇒ networks of PDSs with dynamic creation can model concurrent
malware with dynamic creations.

4 =⇒ Dynamic Pushdown Networks [Bouajjani, Müller-Olm and Touili
2005] match our needs.

Dynamic Pushdown Networks (DPNs)

A DPN: a networks of Dynamic PDSs

a Dynamic PDS: is a PDS with the ability to spawn new instances of
PDSs during its runs

CARET analysis of multithreaded programs 16 / 42

How to model such concurrent malware?

Ideas

1 PDS is a natural model for sequential malware.

2 =⇒ networks of PDSs can model concurrent malware.

3 =⇒ networks of PDSs with dynamic creation can model concurrent
malware with dynamic creations.

4 =⇒ Dynamic Pushdown Networks [Bouajjani, Müller-Olm and Touili
2005] match our needs.

Dynamic Pushdown Networks (DPNs)

A DPN: a networks of Dynamic PDSs

a Dynamic PDS: is a PDS with the ability to spawn new instances of
PDSs during its runs

CARET analysis of multithreaded programs 16 / 42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P, Γ,∆), where

P is a finite set of control locations

Γ is a finite set of stack alphabet

∆ is the set of transition rules of the following form:

(r1): pγ
call−−→ p1γ1γ2

(r2): pγ
ret−→ p1ε

(r3): pγ
int−→ p1ω

where p, p1 ∈ P, γ, γ1, γ2 ∈ Γ, ω ∈ Γ∗

A rule of the form pγ
call−−→ p1γ1γ2 corresponds to a call statement

usually models a statement of the form γ
call proc−−−−−→ γ2

γ is the control point of the program where the function call is made, γ1 is the
entry point of the called procedure and γ2 is the return point of the call.

A configuration: pω where p ∈ P is the current control location, ω ∈ Γ∗ is the current
stack content.

CARET analysis of multithreaded programs 17 / 42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P, Γ,∆), where

P is a finite set of control locations

Γ is a finite set of stack alphabet

∆ is the set of transition rules of the following form:

(r1): pγ
call−−→ p1γ1γ2

(r2): pγ
ret−→ p1ε

(r3): pγ
int−→ p1ω

where p, p1 ∈ P, γ, γ1, γ2 ∈ Γ, ω ∈ Γ∗

A rule of the form pγ
call−−→ p1γ1γ2 corresponds to a call statement

usually models a statement of the form γ
call proc−−−−−→ γ2

γ is the control point of the program where the function call is made, γ1 is the
entry point of the called procedure and γ2 is the return point of the call.

A configuration: pω where p ∈ P is the current control location, ω ∈ Γ∗ is the current
stack content.

CARET analysis of multithreaded programs 17 / 42

Definition of PDSs

A Pushdown System (PDS) P is a tuple (P, Γ,∆), where

P is a finite set of control locations

Γ is a finite set of stack alphabet

∆ is the set of transition rules of the following form:

(r1): pγ
call−−→ p1γ1γ2

(r2): pγ
ret−→ p1ε

(r3): pγ
int−→ p1ω

where p, p1 ∈ P, γ, γ1, γ2 ∈ Γ, ω ∈ Γ∗

A rule of the form pγ
call−−→ p1γ1γ2 corresponds to a call statement

usually models a statement of the form γ
call proc−−−−−→ γ2

γ is the control point of the program where the function call is made, γ1 is the
entry point of the called procedure and γ2 is the return point of the call.

A configuration: pω where p ∈ P is the current control location, ω ∈ Γ∗ is the current
stack content.

CARET analysis of multithreaded programs 17 / 42

Definition of DPNs

A Dynamic Pushdown Network (DPN) M is a set {P1, ...,Pn} s.t. for
every 1 ≤ i ≤ n, Pi = (Pi , Γi ,∆i) is a Dynamic Pushdown System
(DPDS)

where psωs ∈
⋃

1≤j≤n Pj × Γ∗j

(NonSpawn)(r1) pγ
call−−→i p1γ1γ2

(NonSpawn)(r2) pγ
ret−→i p1ε

(NonSpawn)(r3) pγ
int−→i p1ω1

CARET analysis of multithreaded programs 18 / 42

Definition of DPNs

A Dynamic Pushdown Network (DPN) M is a set {P1, ...,Pn} s.t. for
every 1 ≤ i ≤ n, Pi = (Pi , Γi ,∆i) is a Dynamic Pushdown System
(DPDS) where psωs ∈

⋃
1≤j≤n Pj × Γ∗j

(NonSpawn)(r1) pγ
call−−→i p1γ1γ2

(NonSpawn)(r2) pγ
ret−→i p1ε

(NonSpawn)(r3) pγ
int−→i p1ω1

(Spawn) (r4) pγ
call−−→i p1γ1γ2B psωs

(Spawn) (r5) pγ
ret−→i p1εB psωs

(Spawn) (r6) pγ
int−→i p1ω1B psωs

CARET analysis of multithreaded programs 18 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 19 / 42

Specification Formalisms for Malware Behaviors

Recent works: extensions of LTL, CTL were used as specifications

CTPL [Kinder, Katzenbeisser,Schallhart and Veith 2005]

SLTPL, SCTPL [Song and Touili 2012, 2013]

However, these are not expressive enough for malicious behaviors

CARET analysis of multithreaded programs 20 / 42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

Firstly, call the API FindFirstFileA =⇒ return a search handle h

After that, call the API FindNextFileA with h as parameter =⇒
search remaining matching files

Then,..

Cannot be expressed by LTL or CTL since it requires that the return
value of the function FindFirstFileA should be used as the input to
the function FindNextFileA

=⇒ we need a formalism that can talk about matching calls and
returns =⇒ CARET.

CARET analysis of multithreaded programs 21 / 42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

Firstly, call the API FindFirstFileA =⇒ return a search handle h

After that, call the API FindNextFileA with h as parameter =⇒
search remaining matching files

Then,..

Cannot be expressed by LTL or CTL since it requires that the return
value of the function FindFirstFileA should be used as the input to
the function FindNextFileA

=⇒ we need a formalism that can talk about matching calls and
returns =⇒ CARET.

CARET analysis of multithreaded programs 21 / 42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

Firstly, call the API FindFirstFileA =⇒ return a search handle h

After that, call the API FindNextFileA with h as parameter =⇒
search remaining matching files

Then,..

Cannot be expressed by LTL or CTL since it requires that the return
value of the function FindFirstFileA should be used as the input to
the function FindNextFileA

=⇒ we need a formalism that can talk about matching calls and
returns =⇒ CARET.

CARET analysis of multithreaded programs 21 / 42

CARET

linear temporal logic of Calls and Returns [Alur, Etessami and
Madhusudan 2004]

Interpreted over transition systems where each state is associated
with a tag in the set {call, ret, int}

call : a call statement
ret : a return statement
int : an internal statement (neither call nor return)

CARET analysis of multithreaded programs 22 / 42

Global Successor

Global Successor(X g): standard successor (X g (si) = si+1)

Global Path: standard path like for LTL

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

CARET analysis of multithreaded programs 23 / 42

Abstract Successor

Abstract Successor (X a)

The abstract successor of a call is its corresponding return-point

Abstract Path: apply repeatedly the abstract successor

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

CARET analysis of multithreaded programs 24 / 42

Abstract Path

Abstract path:

From s0: s0s1s2sk

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

CARET analysis of multithreaded programs 25 / 42

Abstract Path

Abstract path:

From s3: s3s4s5s9s10....

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

CARET analysis of multithreaded programs 26 / 42

Caller Successor

Caller Successors (X c)

the caller successor of a point is the caller point of the current
procedure

Caller Path: apply repeatedly the caller successor

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

CARET analysis of multithreaded programs 27 / 42

CARET successors

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

sk

call

call

ret

global-successor

abstract-successor caller-successor

CARET analysis of multithreaded programs 28 / 42

CARET Definition

Given a finite set of atomic propositions AP. A CARET formula over AP is
defined as follows:

ψ := e | {call , ret, int} | ψ ∨ ψ | ¬ψ | X gψ | X aψ | X cψ | ψUaψ | ψUgψ | ψUcψ

where

e ∈ AP: atomic proposition

X g : global successor

X a: abstract successor

X c : caller successor

Ug : until operator on global path

Ua: until operator on abstract path

Uc : until operator on caller path

CARET analysis of multithreaded programs 29 / 42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

Firstly, call the API FindFirstFileA =⇒ return a search handle h

After that, call the API FindNextFileA with h as parameter =⇒
search remaining matching files

Using CARET to describe ...

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

CARET analysis of multithreaded programs 30 / 42

Malicious Behavior Example

Spyware Behavior

search directories for personal information (emails, bank account info, ...)

To do that

Firstly, call the API FindFirstFileA =⇒ return a search handle h

After that, call the API FindNextFileA with h as parameter =⇒
search remaining matching files

Using CARET to describe ...

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

CARET analysis of multithreaded programs 30 / 42

Spyware Behavior Formula

Malicious behavior by CARET

ψsf =
∨
d∈D

F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

∨
d∈D : disjunction over all possible memory addresses d containing search handles

call(FindFirstFileA) ∧ X a(eax = d)

eax : contain the return value of an API function when the function
finish its execution
X a of a call is its corresponding return point

→ there is a call to FindFirstFileA and the return value is d

call(FindNextFileA) ∧ dΓ∗

dΓ∗: d is on top of the stack
parameters: passed to function by pushing on the stack

→ there is a call to FindNextFileA where d is used as parameter.

F g : the standard F operator

F a: in the future after call(FindFirstFileA) finishes

=⇒ ψsf : there exists a path s.t there is a call to FindFirstFileA where the return value is
d , and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31 / 42

Spyware Behavior Formula

Malicious behavior by CARET

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

∨
d∈D : disjunction over all possible memory addresses d containing search handles

call(FindFirstFileA) ∧ X a(eax = d)

eax : contain the return value of an API function when the function
finish its execution
X a of a call is its corresponding return point

→ there is a call to FindFirstFileA and the return value is d

call(FindNextFileA) ∧ dΓ∗

dΓ∗: d is on top of the stack
parameters: passed to function by pushing on the stack

→ there is a call to FindNextFileA where d is used as parameter.

F g : the standard F operator

F a: in the future after call(FindFirstFileA) finishes

=⇒ ψsf : there exists a path s.t there is a call to FindFirstFileA where the return value is
d , and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31 / 42

Spyware Behavior Formula

Malicious behavior by CARET

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

∨
d∈D : disjunction over all possible memory addresses d containing search handles

call(FindFirstFileA) ∧ X a(eax = d)

eax : contain the return value of an API function when the function
finish its execution
X a of a call is its corresponding return point

→ there is a call to FindFirstFileA and the return value is d

call(FindNextFileA) ∧ dΓ∗

dΓ∗: d is on top of the stack
parameters: passed to function by pushing on the stack

→ there is a call to FindNextFileA where d is used as parameter.

F g : the standard F operator

F a: in the future after call(FindFirstFileA) finishes

=⇒ ψsf : there exists a path s.t there is a call to FindFirstFileA where the return value is
d , and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31 / 42

Spyware Behavior Formula

Malicious behavior by CARET

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a (call(FindNextFileA) ∧ dΓ∗))

∨
d∈D : disjunction over all possible memory addresses d containing search handles

call(FindFirstFileA) ∧ X a(eax = d)

eax : contain the return value of an API function when the function
finish its execution
X a of a call is its corresponding return point

→ there is a call to FindFirstFileA and the return value is d

call(FindNextFileA) ∧ dΓ∗

dΓ∗: d is on top of the stack
parameters: passed to function by pushing on the stack

→ there is a call to FindNextFileA where d is used as parameter.

F g : the standard F operator

F a: in the future after call(FindFirstFileA) finishes

=⇒ ψsf : there exists a path s.t there is a call to FindFirstFileA where the return value is
d , and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31 / 42

Spyware Behavior Formula

Malicious behavior by CARET

ψsf =
∨

d∈D F g (call(FindFirstFileA) ∧ X a(eax = d) ∧ F a(call(FindNextFileA) ∧ dΓ∗))

∨
d∈D : disjunction over all possible memory addresses d containing search handles

call(FindFirstFileA) ∧ X a(eax = d)

eax : contain the return value of an API function when the function
finish its execution
X a of a call is its corresponding return point

→ there is a call to FindFirstFileA and the return value is d

call(FindNextFileA) ∧ dΓ∗

dΓ∗: d is on top of the stack
parameters: passed to function by pushing on the stack

→ there is a call to FindNextFileA where d is used as parameter.

F g : the standard F operator

F a: in the future after call(FindFirstFileA) finishes

=⇒ ψsf : there exists a path s.t there is a call to FindFirstFileA where the return value is
d , and after this call finishes, there is a call to FindNextFileA s.t d is used as parameter.

CARET analysis of multithreaded programs 31 / 42

Model-checking for Malware Detection

CARET analysis of multithreaded programs 32 / 42

Problem: DPNs � CARET??

1 model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F (ai ∧ bj)

2 LTL is a subclass of CARET

3 =⇒ model-checking CARET properties for networks of PDSs is
undecidable

4 =⇒ We consider: model-checking single-indexed CARET properties
for DPNs, where:

single-indexed properties: properties in the form f = f1 ∧ f2... ∧ fn,
where fi is the CARET formula corresponding to Pi

CARET analysis of multithreaded programs 33 / 42

Problem: DPNs � CARET??

1 model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F (ai ∧ bj)

2 LTL is a subclass of CARET

3 =⇒ model-checking CARET properties for networks of PDSs is
undecidable

4 =⇒ We consider: model-checking single-indexed CARET properties
for DPNs, where:

single-indexed properties: properties in the form f = f1 ∧ f2... ∧ fn,
where fi is the CARET formula corresponding to Pi

CARET analysis of multithreaded programs 33 / 42

Problem: DPNs � CARET??

1 model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F (ai ∧ bj)

2 LTL is a subclass of CARET

3 =⇒ model-checking CARET properties for networks of PDSs is
undecidable

4 =⇒ We consider: model-checking single-indexed CARET properties
for DPNs, where:

single-indexed properties: properties in the form f = f1 ∧ f2... ∧ fn,
where fi is the CARET formula corresponding to Pi

CARET analysis of multithreaded programs 33 / 42

Problem: DPNs � CARET??

1 model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F (ai ∧ bj)

2 LTL is a subclass of CARET

3 =⇒ model-checking CARET properties for networks of PDSs is
undecidable

4 =⇒ We consider: model-checking single-indexed CARET properties
for DPNs, where:

single-indexed properties: properties in the form f = f1 ∧ f2... ∧ fn,
where fi is the CARET formula corresponding to Pi

CARET analysis of multithreaded programs 33 / 42

Problem: DPNs � CARET??

1 model-checking LTL properties for networks of PDSs is undecidable
[Kahlon and Gupta 2006], e.g., for properties that mix different
indices of different threads like F (ai ∧ bj)

2 LTL is a subclass of CARET

3 =⇒ model-checking CARET properties for networks of PDSs is
undecidable

4 =⇒ We consider: model-checking single-indexed CARET properties
for DPNs, where:

single-indexed properties: properties in the form f = f1 ∧ f2... ∧ fn,
where fi is the CARET formula corresponding to Pi

CARET analysis of multithreaded programs 33 / 42

Problem to solve

Given:

a DPN M = {P1,P2, ...,Pn}
a single-indexed CARET formula f = f1 ∧ f2... ∧ fn

Model-checking problem:

Does there exist an execution of M s.t. every instance of the DPDS
Pi satisfies the corresponding CARET formula fi?

CARET analysis of multithreaded programs 34 / 42

Single-indexed CARET Model Checking for DPNs

Theorem

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

We reduce this problem to the emptiness problem of Büchi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016].

a BDPN BM is a set {BP1, ...,BPn} where BP i (1 ≤ i ≤ n) is a
Büchi Dynamic Pushdown System
a Büchi Dynamic Pushdown System BP i = (Pi , Γi ,∆i ,Fi) is a PDS
with a set of accepting control locations Fi

We compute BDPNs BM = {BP1, ...,BPn} such that BP i is a kind
of product between Pi and the CARET formula fi which ensures that:

The problem of checking whether an instance of Pi starting from pω
satisfies fi can be reduced to the membership problem of BP i

CARET analysis of multithreaded programs 35 / 42

Single-indexed CARET Model Checking for DPNs

Theorem

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

We reduce this problem to the emptiness problem of Büchi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016].

a BDPN BM is a set {BP1, ...,BPn} where BP i (1 ≤ i ≤ n) is a
Büchi Dynamic Pushdown System

a Büchi Dynamic Pushdown System BP i = (Pi , Γi ,∆i ,Fi) is a PDS
with a set of accepting control locations Fi

We compute BDPNs BM = {BP1, ...,BPn} such that BP i is a kind
of product between Pi and the CARET formula fi which ensures that:

The problem of checking whether an instance of Pi starting from pω
satisfies fi can be reduced to the membership problem of BP i

CARET analysis of multithreaded programs 35 / 42

Single-indexed CARET Model Checking for DPNs

Theorem

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

We reduce this problem to the emptiness problem of Büchi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016].

a BDPN BM is a set {BP1, ...,BPn} where BP i (1 ≤ i ≤ n) is a
Büchi Dynamic Pushdown System
a Büchi Dynamic Pushdown System BP i = (Pi , Γi ,∆i ,Fi) is a PDS
with a set of accepting control locations Fi

We compute BDPNs BM = {BP1, ...,BPn} such that BP i is a kind
of product between Pi and the CARET formula fi which ensures that:

The problem of checking whether an instance of Pi starting from pω
satisfies fi can be reduced to the membership problem of BP i

CARET analysis of multithreaded programs 35 / 42

Single-indexed CARET Model Checking for DPNs

Theorem

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

We reduce this problem to the emptiness problem of Büchi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016].

a BDPN BM is a set {BP1, ...,BPn} where BP i (1 ≤ i ≤ n) is a
Büchi Dynamic Pushdown System
a Büchi Dynamic Pushdown System BP i = (Pi , Γi ,∆i ,Fi) is a PDS
with a set of accepting control locations Fi

We compute BDPNs BM = {BP1, ...,BPn} such that BP i is a kind
of product between Pi and the CARET formula fi which ensures that:

The problem of checking whether an instance of Pi starting from pω
satisfies fi can be reduced to the membership problem of BP i

CARET analysis of multithreaded programs 35 / 42

Single-indexed CARET Model Checking for DPNs

Theorem

Single-indexed CARET Model Checking for DPNs is decidable.

Intuition:

We reduce this problem to the emptiness problem of Büchi Dynamic
Pushdown Networks (BDPNs) [Song and Touili 2013, 2016].

a BDPN BM is a set {BP1, ...,BPn} where BP i (1 ≤ i ≤ n) is a
Büchi Dynamic Pushdown System
a Büchi Dynamic Pushdown System BP i = (Pi , Γi ,∆i ,Fi) is a PDS
with a set of accepting control locations Fi

We compute BDPNs BM = {BP1, ...,BPn} such that BP i is a kind
of product between Pi and the CARET formula fi which ensures that:

The problem of checking whether an instance of Pi starting from pω
satisfies fi can be reduced to the membership problem of BP i

CARET analysis of multithreaded programs 35 / 42

BDPDS Computation - Intuition

At state si , we encode a set of formulas Ai such that for every φ ∈ Ai , φ
holds at si

B

C

D

s0 s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

A0

A8

AkA2

call

ret

CARET analysis of multithreaded programs 36 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0
X gφ

φ ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X gφ iff pi+1ωi+1 � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

φ

X aφ

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X aφ iff pkωk � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

φ

X aφ

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X aφ iff pkωk � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

φ

X aφ Lγ′′, {φ}M

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X aφ iff pkωk � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

φ

X aφ Lγ′′, {φ}M

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X aφ iff pkωk � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators-Call statements

call

Φ0

φ

X aφ Lγ′′, {φ}M

ret

p0ω0 piωi

pi+1ωi+1 pk−1ωk−1

pkωk

piωi � X aφ iff pkωk � φ

for piγ
call−−→ pi+1γ

′γ′′ in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mγγ′′ in
BP i

Lpi , {X aφ}Mγ −→ pi+1γ
′ Lγ′′, {φ}M in

BP i

for pk−1β
ret−→ pkε in Pi :

pk Lγ′′, {φ}M −→ Lpk , {φ} Mγ′′

CARET analysis of multithreaded programs 37 / 42

BDPDS Computation-X Operators- Int statements

call

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

piωi pi+1ωi+1

X gφ φ

piωi � X gφ iff pi+1ωi+1 � φ

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

φX aφ

piωi � X aφ iff pi+1ωi+1 � φ

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

BDPDS Computation-X Operators- Int statements

call

for piγ
int−→ pi+1ω in Pi :

Lpi , {X gφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

Lpi , {X aφ}Mγ −→ Lpi+1, {φ}Mω in
BP i

for piγ
int−→ pi+1ωB psωs in Pi

(psωs ∈ Pj):

Lpi , {X gφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

Lpi , {X aφ}Mγ −→
Lpi+1, {φ}MωB Lps , fjMωs in BP i

CARET analysis of multithreaded programs 38 / 42

Theorem

Theorem

Given a DPN M = {P1, ...,Pn}, a single-indexed CARET formula
f = f1 ∧ f2... ∧ fn, we can compute a BDPN BM = {BP1, ...,BPn} such
that M � f iff BM has an accepting run.

CARET analysis of multithreaded programs 39 / 42

DPNs communicating via Locks (L-DPNs)

L-DPNs

a L-DPN is a DPN where pushdown processes communicate via locks.

Nested Lock Access

a L-DPNs with Nested Lock Access: is a L-DPN s.t. in all executions, the
locks are accessed in a well-nested manner, i.e, an execution can only
release the latest lock it acquired that is not released yet.

Theorem

Single-indexed CARET model-checking for L-DPNs with nested Lock
access can be reduced to single-indexed CARET model-checking for DPNs

CARET analysis of multithreaded programs 40 / 42

DPNs communicating via Locks (L-DPNs)

L-DPNs

a L-DPN is a DPN where pushdown processes communicate via locks.

Nested Lock Access

a L-DPNs with Nested Lock Access: is a L-DPN s.t. in all executions, the
locks are accessed in a well-nested manner, i.e, an execution can only
release the latest lock it acquired that is not released yet.

Theorem

Single-indexed CARET model-checking for L-DPNs with nested Lock
access can be reduced to single-indexed CARET model-checking for DPNs

CARET analysis of multithreaded programs 40 / 42

DPNs communicating via Locks (L-DPNs)

L-DPNs

a L-DPN is a DPN where pushdown processes communicate via locks.

Nested Lock Access

a L-DPNs with Nested Lock Access: is a L-DPN s.t. in all executions, the
locks are accessed in a well-nested manner, i.e, an execution can only
release the latest lock it acquired that is not released yet.

Theorem

Single-indexed CARET model-checking for L-DPNs with nested Lock
access can be reduced to single-indexed CARET model-checking for DPNs

CARET analysis of multithreaded programs 40 / 42

Q & A

Thank you for your listening!

CARET analysis of multithreaded programs 41 / 42

