
Erlang Code Evolution
Control

1Universitat Politècnica de València
2Universidad Politécnica de Madrid

David Insa1, Sergio Pérez1, Josep Silva1, Salvador Tamarit2

LOPSTR 2017 12/10/2017

Content

• Introduction
• The technique in	detail
• Type Analysis Phase
• Test	Case	Generation Phase
• Comparison Phase

• Recording the trace
• SecEr tool
• Conclusions&	FutureWork

Introduction
• In	debugging programmers use	breakpoints to	observe	the values of	an
expression during an execution

• Is this feature available in	testing?

• It would be	useful to	focus the test	cases	on an specific point without code
modifications

OUR	PROPOSAL
Ø Introduce	the ability to	specify Points Of	Interest (POI) in	the context of	

testing

Ø A	technique to	compare	two equivalent POIs in	different versions
of	the same program for Erlang

Old Version

main(X,Y) ->
A = X + Y,

D = X – Y,
A * D.

New Version

main(X,Y) ->
A = add(X,Y),

D = sub(X,Y),
A * D.

add(X,Y)->

X + Y.

sub(X,Y) ->

X – Y.

1.- Identify a POI and a set of input functions
2.- A test suite is automatically generated

Each test case contains:
• A call to an input function with specific arguments
• The sequence of values the POI is evaluated to (trace)

3.- Each test case is passed against the new
version and both traces are compared

4.- A report of the success or failure of the test
cases is provided

main(5,4)
OldVersionTrace:	1
NewVersionTrace:	1

Success

Introduction

We have implemented our approach for Erlang
in	a	tool named SecEr

Old Version

main(X,Y) ->
A = X + Y,

D = X – Y,
A * D.

New Version

main(X,Y) ->
A = add(X,Y),

D = sub(X,Y),
A * D.

add(X,Y)->

X + Y.

X – Y.

1.- Identify a POI and a set of input functions
2.- A test suite is automatically generated

Each test case contains:
• A call to an input function with specific arguments
• The sequence of values the POI is evaluated to (trace)

3.- Each test case is passed against the new
version and both traces are compared

4.- A report of the success or failure of the test
cases is provided

main(5,4)
OldVersionTrace:	1
NewVersionTrace:	1

Success

Introduction

We have implemented our approach for Erlang
in	a	tool named SecEr

sub(Y,X) ->

main(5,4)
OldVersionTrace:	1
NewVersionTrace:	-1

Failure

Content

• Introduction
• The technique in	detail
• Type Analysis Phase
• Test	Case	Generation Phase
• Comparison Phase

• Recording the trace
• SecEr tool
• Conclusions&	FutureWork

Type
Analysis
Phase

Test	Case	
Generation

Phase

Comparison
Phase

Input Test
Case

Final	
Report

The technique in detail

Type
Analysis
Phase

Test	Case	
Generation

Phase

Comparison
Phase

Input Test
Case

Final	
Report

The technique in detail

TypEr PropEr CutErInput InputTypes
Module.erl

TypEr PropEr CutEr
Function

Type analysis phase

TypEr
.erl

Fun

2.- The length of	the list is unkwnown

3.- The repeated-variable	restriction is ignored

f(1,[1,2,5,6])

f(1,[2,5])

Solution:	 Consider each clause independently and	refine	the result to	types per	clause

TypEr
+	new	code PropEr CutEr InputsTypes〈Clause

,Types〉
Input

f(A,[A,B]) “-spec f(1|2,[1|2|5|6])->…”

1.- The infered types refer to	the whole function

g(0,0)->…
g(1,1)->… “-spec g(0|1, 0|1)->…”

g(0,1)

Type analysis phase

.erl

Fun
TypEr

+	new	code PropEr

Property
test

prop_identity() ->
?FORALL(X, any(), id(X) = X).

id(X) -> X.

gen
PropEr
Types Value

CutEr InputsInput〈Clause
,Types〉

gen

PropEr

true	|	false

Type analysis phase

.

PropEr
gen

PropEr
types Input

.erl

Fun
TypEr

+ new	code PropErPropEr
+	new	code CutEr InputsInput〈Clause

,Types〉

TypEr
types

TypEr to
PropEr

Clause
Parameters

2.- The length of	the list is unknown

3.- Repeated variable	relation is lost
Solution:	 Traverse the list parameters of	the clause element by element

Solution:	 Store	the values of	already treated variables

f(A,[A,B])

Type analysis phase

〈Clause
,Types〉

PropEr
types

TypEr
types ≠

.erl

Fun
TypEr

+	new	code
PropEr

+	new	code
Input

concolic
gen	

Input

Runtime
Errors

〈Clause
,Types〉

CutEr Inputs
CutEr

+	new	code

CutEr

Inputs.	.	.

.	.	.

Inputs

Type analysis phase

Type
Analysis
Phase

Test	Case	
Generation

Phase

Comparison
Phase

Input Test
Case

Final	
Report

The technique in detail

.erl1

POI1

code
instrumentator

.erl1’

Input Input execute Trace1input	
selector

random
gen

mutating
genNew? New

Input
T

New	
Input

F

add

Continue until a	limit is reached

Store	all the generated test	cases	(Input	+	Trace)

Test
Case

Test case generation phase

Type
Analysis
Phase

Test	Case	
Generation

Phase

Comparison
Phase

Input Test
Case

Final	
Report

The technique in detail

.erl2

POI2

code
instrumentator

.erl2’

Test	
Case

test	case
selector

Test	 case

Trace1

Input

execute Trace2 trace	
comparator

Comparison
Result

Result

Final	
Report

Result
analyzer

add

Comparison phase

Content

• Introduction
• The technique in	detail
• Type Analysis Phase
• Test	Case	Generation Phase
• Comparison Phase

• Recording the trace
• SecEr tool
• Conclusions&	FutureWork

Recording the trace

• There are	several tools for tracing executions in	Erlang
• None of	them allows us to	collect the trace	of	patterns
• Debuggers will not provide a	value for a	POI	if it is inside an
expression whose evaluation fails
OUR	PROPOSAL

Ø Collect the traces	as	a	side effect when executing the code
Ø Approach based on message passing to	a	tracing server

Ø The code needs to	be	instrumented (4	STEPS)

{1,B,3} = {1,2,4}

Recording the trace (1 & 2)

1. Obtain and	annotate the Abstract Syntax Tree of	the program.	
Annotate each node with two lists of	variables:

2. Find the selected POI	in	the AST	with a	top-down traversal:

§ Variables	beingbound in	its subtree
§ Variables	thatwere alreadyboundwhen reaching the node

§ Store	the current traversed pathwith tuples of	the
form (Node,ChildIndex)

§ The result is a	path that yields directly to	the POI

A

B C

D

POI

GF

(POI,1)

(F,1)

(E,2)

(B,1)

E

3. Analyze the location of	the POI
• Expressions:	 Add a	send command to	inform the tracing server
• Patterns:	Need special treatment

Recording the trace (3)

{1,B,3} = {1,2,4}

Target	expressions
• Pattern-matching
• List comprehension
• Expressions with clauses:

• if
• case
• functions
• etc.

2

Recording the trace (3)

Divide	the AST	path into two sub-paths:
• PathBefore:	Root ->	deepest target	expression
• PathAfter:	First child of	the target	expression ->	POI

A

B C

D TE

POI

GF

(POI,1)

(F,1)

(TE,2)

(B,1)
PathBefore
(B,1),(TE,2)

PathAfter
(F,1),(POI,1)

B

TE

F

POI

Recording the trace (4)

4. Perform the actual	instrumentation
• Traverse the PathBefore
• Transform the code following a	rule	according to	PathAfter
• TraversePathBefore backwards to	update the AST

Five exclusive	rules	to	instrument expressions
• LEFT_PM	(pattern-matching)
• PAT_GEN_LC	 (list comprehensions)
• CLAUSE_PAT	 (pattern in	expressions with clauses)
• CLAUSE_GUARD	 (guard in	expressions with clauses)
• EXPR	(expressions)

A

B C

D TE

GF

B

TE

F

POI

New
Subtree

p = e → p = begin np = e, tracer!{add, npoi}, np end
(p = e, _) = last(PathBefore)
⋀ (_, pos(p)) = hd(PathAfter)

(_, npoi, np) = pfv(p,PathAfter)

(LEFT_PM)
if

where

Recording the trace (4)

{1,B,3} = {1,2,4}

{1,B,3} = begin
{1,POI,FV} = {1,2,4},
tracer ! {add,POI},
{1,POI,FV}

end

p = e → p = begin np = e, tracer!{add, npoi}, np end
(p = e, _) = last(PathBefore)
⋀ (_, pos(p)) = hd(PathAfter)

(_, npoi, np) = pfv(p,PathAfter)

p = e

p = begin

np = e
tracer!{add, npoi}

np
end

Content

• Introduction
• The technique in	detail
• Type Analysis Phase
• Test	Case	Generation Phase
• Comparison Phase

• Recording the trace
• SecEr tool
• Conclusions&	FutureWork

SecEr command:
$./secer -f FILE –li LINE – var VARIABLE [-oc OCCURRENCE]

-f FILE –li LINE – var VARIABLE [-oc OCCURRENCE]
[-funs INPUT_FUNCTIONS] –to TIMEOUT

SecEr tool

Old_Version_POI

New_Version_POI

SecEr tool
happy0.erl happy1.erl

$./secer -f happy0.erl –li 9 – var Happy -oc 1

-f happy1.erl –li 18 – var Happy -oc 1

-funs [main/2] –to 15

SecEr tool

SecEr tool

SecEr tool

Content

• Introduction
• The technique in	detail
• Type Analysis Phase
• Test	Case	Generation Phase
• Comparison Phase

• Recording the trace
• SecEr tool
• Conclusions&	FutureWork

Conclusions
Conclusions

• Combination of	Erlang existing tools and	mutation to	improve the result
• New	approach to	automatically check the behaviour preservation between
versions

• New	tracing process that allows for placing a	POI	in	patterns,	guards and	
expressions

Type Analysis
Phase

Test	Case	
Generation

Phase

Comparison
PhaseInput Test

Case

Final	
Report

{1,B,3} = {1,2,4}

{1,B,3} = begin
{1,POI,FV} = {1,2,4},
tracer ! POI,
{1,POI,FV}

end

FutureWork
• Adapt the approach to	deal with indeterminism
• Increase the information stored in	traces	to	report non-
functional properties such as	efficiency

• Allow for the specification of	a	list of	POIs instead of	a	single	POI
• Make the tool compatible with tests previously defined by the
user

Future Work

Thank you for your attention!!

Any question?

