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Introduction
• In	debugging programmers use	breakpoints to	observe	the values of	an
expression during an execution

• Is this feature available in	testing?

• It would be	useful to	focus the test	cases	on an specific point without code
modifications

OUR	PROPOSAL
Ø Introduce	the ability to	specify Points Of	Interest (POI) in	the context of	

testing

Ø A	technique to	compare	two equivalent POIs in	different versions
of	the same program for Erlang



Old Version

main(X,Y) ->
A = X + Y,

D = X – Y,
A * D.

New Version

main(X,Y) ->
A = add(X,Y),

D = sub(X,Y),
A * D.

add(X,Y)->

X + Y.

sub(X,Y) ->

X – Y.

1.- Identify a POI and a set of input functions
2.- A test suite is automatically generated

Each test case contains:
• A call to an input function with specific arguments
• The sequence of values the POI is evaluated to (trace)

3.- Each test case is passed against the new
version and both traces are compared

4.- A report of the success or failure of the test
cases is provided

main(5,4)
OldVersionTrace:	1
NewVersionTrace:	1

Success

Introduction

We have implemented our approach for Erlang
in	a	tool named SecEr
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Introduction

We have implemented our approach for Erlang
in	a	tool named SecEr

sub(Y,X) ->

main(5,4)
OldVersionTrace:	1
NewVersionTrace:	-1

Failure
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TypEr PropEr CutErInput InputTypes
Module.erl

TypEr PropEr CutEr
Function

Type analysis phase



TypEr
.erl

Fun

2.- The length of	the list is unkwnown

3.- The repeated-variable	restriction is ignored

f(1,[1,2,5,6])

f(1,[2,5])

Solution:	 Consider each clause independently and	refine	the result to	types per	clause

TypEr
+	new	code PropEr CutEr InputsTypes〈Clause

,Types〉
Input

f(A,[A,B]) “-spec f(1|2,[1|2|5|6])->…”

1.- The infered types refer to	the whole function

g(0,0)->…
g(1,1)->… “-spec g(0|1, 0|1)->…”

g(0,1)

Type analysis phase



.erl

Fun
TypEr

+	new	code PropEr

Property
test

prop_identity() ->
?FORALL(X, any(), id(X) = X).

id(X) -> X.

gen
PropEr
Types Value

CutEr InputsInput〈Clause
,Types〉

gen

PropEr

true	|	false

Type analysis phase

.	.	. .	.	.



PropEr
gen

PropEr
types Input

.erl

Fun
TypEr

+ new	code PropErPropEr
+	new	code CutEr InputsInput〈Clause

,Types〉

TypEr
types

TypEr to
PropEr

Clause
Parameters

2.- The length of	the list is unknown

3.- Repeated variable	relation is lost
Solution:	 Traverse the list parameters of	the clause element by element

Solution:	 Store	the values of	already treated variables

f(A,[A,B])

Type analysis phase

〈Clause
,Types〉

PropEr
types

TypEr
types ≠



.erl

Fun
TypEr

+	new	code
PropEr

+	new	code
Input

concolic
gen	

Input

Runtime
Errors

〈Clause
,Types〉

CutEr Inputs
CutEr

+	new	code

CutEr

Inputs.	.	.

.	.	.

Inputs

Type analysis phase
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.erl1

POI1

code
instrumentator

.erl1’

Input Input execute Trace1input	
selector

random
gen

mutating
genNew? New

Input
T

New	
Input

F

add

Continue until a	limit is reached

Store	all the generated test	cases	(Input	+	Trace)

Test
Case

Test case generation phase
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.erl2

POI2

code
instrumentator

.erl2’

Test	
Case

test	case
selector

Test	 case

Trace1

Input

execute Trace2 trace	
comparator

Comparison
Result

Result

Final	
Report

Result
analyzer

add

Comparison phase
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Recording the trace

• There are	several tools for tracing executions in	Erlang
• None of	them allows us to	collect the trace	of	patterns
• Debuggers will not provide a	value for a	POI	if it is inside an
expression whose evaluation fails
OUR	PROPOSAL

Ø Collect the traces	as	a	side effect when executing the code
Ø Approach based on message passing to	a	tracing server

Ø The code needs to	be	instrumented (4	STEPS)

{1,B,3} = {1,2,4}



Recording the trace (1 & 2)

1. Obtain and	annotate the Abstract Syntax Tree of	the program.	
Annotate each node with two lists of	variables:

2. Find the selected POI	in	the AST	with a	top-down traversal:

§ Variables	beingbound in	its subtree
§ Variables	thatwere alreadyboundwhen reaching the node

§ Store	the current traversed pathwith tuples of	the
form (Node,ChildIndex)

§ The result is a	path that yields directly to	the POI

A

B C

D

POI

GF

(POI,1)

(F,1)

(E,2)

(B,1)

E



3. Analyze the location of	the POI
• Expressions:	 Add a	send command to	inform the tracing server
• Patterns:	Need special treatment

Recording the trace (3)

{1,B,3} = {1,2,4}

Target	expressions
• Pattern-matching
• List comprehension
• Expressions with clauses:

• if
• case
• functions
• etc.

2



Recording the trace (3)

Divide	the AST	path into two sub-paths:
• PathBefore:	Root ->	deepest target	expression
• PathAfter:	First child of	the target	expression ->	POI

A

B C

D TE

POI

GF

(POI,1)

(F,1)

(TE,2)

(B,1)
PathBefore
(B,1),(TE,2)

PathAfter
(F,1),(POI,1)

B

TE

F

POI



Recording the trace (4)

4. Perform the actual	instrumentation
• Traverse the PathBefore
• Transform the code following a	rule	according to	PathAfter
• TraversePathBefore backwards to	update the AST

Five exclusive	rules	to	instrument expressions
• LEFT_PM	(pattern-matching)
• PAT_GEN_LC	 (list comprehensions)
• CLAUSE_PAT	 (pattern in	expressions with clauses)
• CLAUSE_GUARD	 (guard in	expressions with clauses)
• EXPR	(expressions)

A

B C

D TE

GF

B

TE

F

POI

New
Subtree



p = e → p = begin np = e, tracer!{add, npoi}, np end
(p = e, _ ) = last(PathBefore)
⋀ (_, pos(p)) = hd(PathAfter)

(_, npoi, np) = pfv(p,PathAfter)

(LEFT_PM)
if

where

Recording the trace (4)

{1,B,3} = {1,2,4}

{1,B,3} = begin
{1,POI,FV} = {1,2,4},
tracer ! {add,POI},
{1,POI,FV}

end

p = e → p = begin np = e, tracer!{add, npoi}, np end
(p = e, _ ) = last(PathBefore)
⋀ (_, pos(p)) = hd(PathAfter)

(_, npoi, np) = pfv(p,PathAfter)

p = e 

p = begin

np = e
tracer!{add, npoi}

np
end
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SecEr command:
$ ./secer -f FILE –li LINE – var VARIABLE [-oc OCCURRENCE] 

-f FILE –li LINE – var VARIABLE [-oc OCCURRENCE]
[-funs INPUT_FUNCTIONS] –to TIMEOUT

SecEr tool

Old_Version_POI

New_Version_POI



SecEr tool
happy0.erl happy1.erl

$ ./secer -f happy0.erl –li 9 – var Happy -oc 1 

-f happy1.erl –li 18 – var Happy -oc 1

-funs [main/2] –to 15



SecEr tool



SecEr tool



SecEr tool
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Conclusions
Conclusions

• Combination of	Erlang existing tools and	mutation to	improve the result
• New	approach to	automatically check the behaviour preservation between
versions

• New	tracing process that allows for placing a	POI	in	patterns,	guards and	
expressions

Type Analysis
Phase

Test	Case	
Generation

Phase

Comparison
PhaseInput Test

Case

Final	
Report

{1,B,3} = {1,2,4}

{1,B,3} = begin
{1,POI,FV} = {1,2,4},
tracer ! POI,
{1,POI,FV}

end



FutureWork
• Adapt the approach to	deal with indeterminism
• Increase the information stored in	traces	to	report non-
functional properties such as	efficiency

• Allow for the specification of	a	list of	POIs instead of	a	single	POI
• Make the tool compatible with tests previously defined by the
user

Future Work



Thank you for your attention!!

Any question?


