A Semantic Approach to the Analysis of Rewriting-Based Systems

Salvador Lucas

DSIC, Universitat Politècnica de València, Spain

27th International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2017

Motivation

Is the following *true*?

$$\forall x) \qquad x+0 \ge x \tag{1}$$

Yes!... provided that the *standard* (arithmetic) interpretation A is assumed for all symbols: $A \models (1)$.

Motivation

Is the following *true*?

$$\forall x) \qquad x+0 \ge x \tag{1}$$

Yes!... provided that the *standard* (arithmetic) interpretation A is assumed for all symbols: $A \models (1)$.

What about this?

$$(\forall x_1) \qquad A_1^2(f_1^2(x_1,a_1),x_1)$$
 (2)

(1) and (2) are 'syntactically equivalent' under renaming of symbols.

Viewed as *first-order logic* (FOL) formulas, *non-logic* symbols occurring in (1) (e.g., '0', '+', and ' \geq ') have no special meaning!

Many interpretations of a_1 , f_1^2 and A_1^2 in (2) do *not* satisfy (2), i.e., $\not\models$ (2) and even $\not\models$ (1)! How to use FOL in the analysis of computational properties of rewriting-based systems?

For instance, *confluence* can be expressed as follows:

$$(\forall x, y, z) \ (x \to^* y \land x \to^* z \Rightarrow (\exists u)(y \to^* u \land z \to^* u)) \tag{3}$$

Motivation

Given a Term Rewriting System \mathcal{R} , how do we say " \mathcal{R} *is confluent*" using FOL?

- **1** $\overline{\mathcal{R}} \vdash (3)$, i.e., (3) can be *proved* from some theory $\overline{\mathcal{R}}$ associated to \mathcal{R} ?
- **2** $\overline{\mathcal{R}} \models (3)$, i.e., *every* model of $\overline{\mathcal{R}}$ satisfies (3)?
- **3** $\mathcal{A}_{\mathcal{R}} \models (3)$, i.e., (3) is satisfied by some *special* interpretation $\mathcal{A}_{\mathcal{R}}$ associated to \mathcal{R} ?

Dauchet and Tison's *first-order theory of rewriting* uses ③ with the *standard interpretation* $\mathcal{H}_{\mathcal{R}}$ where predicate symbols \rightarrow and \rightarrow^* are interpreted as the *one-step* and *many-step* rewrite relations on *ground terms* $\rightarrow_{\mathcal{R}}$ and $\rightarrow^*_{\mathcal{R}}$, respectively.

Problems

- In general, $\mathcal{H}_{\mathcal{R}}$ is not computable, and $\mathcal{H}_{\mathcal{R}} \models (3)$ is *undecidable*!
- Can we use *other* (*computable*!) interpretations? How?

Summary

- 1 Preservation of first-order formulas
- 2 Application to Horn theories
- **3** Rewriting-based systems as Horn theories
- 4 Examples of use
- 6 Related work
- 6 Conclusions and future work

Our approach is based on two well-known facts :

[Hodges97,Theorem 1.5.2]

Every set S of ground atoms has an initial (Herbrand) model \mathcal{I}_S , i.e.,

- $\mathcal{I}_{\mathcal{S}} \models \mathcal{S}$ and
- for all models \mathcal{A} of \mathcal{S} , there is a homomorphism $h: \mathcal{I}_{\mathcal{S}} \to \mathcal{A}$.

A positive boolean combination of atoms is a formula

$$\bigvee_{i=1}^{m}\bigwedge_{j=1}^{n_{i}}A_{ij}$$
(4)

where the A_{ij} are *atoms*. Satisfiability of the *existential closure* of (4) is *preserved* under homomorphism

[Hodges97, Theorem 2.4.3(a)]
Given interpretations
$$\mathcal{A}$$
 and \mathcal{A}' with an homomorphism $h : \mathcal{A} \to \mathcal{A}'$,
 $\mathcal{A} \models (\exists x_1) \cdots (\exists x_k) \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{ij} \implies \mathcal{A}' \models (\exists x_1) \cdots (\exists x_k) \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{ij}$ (5)

According to these results, we have the following:

Corollary

Let S be a set of ground atoms, and A_{ij} be atoms with variables x_1, \ldots, x_k . Then,

$$\mathcal{I}_{\mathcal{S}} \models (\exists x_1) \cdots (\exists x_k) \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{ij} \implies \mathcal{S} \models (\exists x_1) \cdots (\exists x_k) \bigvee_{i=1}^{m} \bigwedge_{j=1}^{n_i} A_{ij} \quad (6)$$

If the set of atoms S is generated by a set S_0 of Horn sentences, then the interpretation of each predicate symbol P by \mathcal{I} consists of the set of ground atoms $P(t_1, \ldots, t_n)$ such that $S_0 \vdash P(t_1, \ldots, t_n)$.

Corollary (Semantic criterion)

Let S be a Horn theory, φ be the existential closure of a positive boolean combination of atoms, and A be a model of S. If $A \models \neg \varphi$, then $\mathcal{I}_{S} \models \neg \varphi$.

Many-sorted theories

The previous corollaries easily generalize to many-sorted signatures: as usual, we just treat sorted variables $x_i : s_i$ by using atoms $S_i(x_i)$ which are added as a new conjunction $\bigwedge_{i=1}^k S_i(x_i)$ to the matrix formula (4).

In the following, we focus on *oriented* CTRSs \mathcal{R} , with rules

$$\ell \to r \Leftarrow s_1 \to t_1, \ldots, s_n \to t_n$$

whose operational semantics is given by the following inference system:

(Rf)
$$x \to x$$
 (C) $\frac{x_i \to y_i}{f(x_1, \dots, x_i, \dots, x_k) \to f(x_1, \dots, y_i, \dots, x_k)}$
for all $f \in \mathcal{F}$ and $1 \le i \le k = arity(f)$
(T) $\frac{x \to z \quad z \to y}{x \to y}$ (Rp) $\frac{s_1 \to t_1 \dots s_n \to t_n}{\ell \to r}$
for all $\ell \to r \Leftarrow s_1 \to t_1 \dots s_n \to t_n \in \mathcal{R}$

The Horn theory $\overline{\mathcal{R}}$ for a CTRS \mathcal{R} is obtained by *specializing* (*C*) and (*Rp*). Inference rules $\frac{B_1 \cdots B_n}{A}$ become universally quantified *implications* $(\forall \vec{x})B_1 \land \cdots \land B_n \Rightarrow A$.

Example

For the CTRS \mathcal{R} (from [Giesl & Arts, AAECC'01])

$$a \rightarrow b$$
 $g(x) \rightarrow g(a) \Leftarrow f(x) \rightarrow x$
 $(a) \rightarrow b$

its associated theory $\overline{\mathcal{R}}$ is

$$\begin{array}{ll} (\forall x) & x \to^* x & & \mathsf{a} \to \mathsf{b} \\ (\forall x, y, z) & x \to y \land y \to^* z \Rightarrow x \to^* z & & \mathsf{f}(\mathsf{a}) \to \mathsf{b} \\ (\forall x, y) & x \to y \Rightarrow \mathsf{f}(x) \to \mathsf{f}(y) & & (\forall x) & \mathsf{f}(x) \to^* x \Rightarrow \mathsf{g}(x) \to \mathsf{g}(\mathsf{a}) \\ (\forall x, y) & x \to y \Rightarrow \mathsf{g}(x) \to \mathsf{g}(y) \end{array}$$

Infeasibility of conditional rules

For infeasibity of $\ell \rightarrow r \Leftarrow s_1 \rightarrow t_1, \dots, s_n \rightarrow t_n$ we use φ_{Feas} given by:

$$(\exists \vec{x})s_1 \rightarrow^* t_1 \wedge \cdots \wedge s_n \rightarrow^* t_n$$

The following structure \mathcal{A} over $\mathbb{N} - \{0\}$:

$$\begin{array}{ll} \mathbf{a}^{\mathcal{A}} = 1 & \mathbf{b}^{\mathcal{A}} = 2 & \mathbf{f}^{\mathcal{A}}(x) = x + 1 & \mathbf{g}^{\mathcal{A}}(x) = 1 \\ x \rightarrow^{\mathcal{A}} y \Leftrightarrow y \geq x & x \ (\rightarrow^{*})^{\mathcal{A}} y \Leftrightarrow y \geq x \end{array}$$

is a model of $\overline{\mathcal{R}} \cup \{\neg(\exists x) f(x) \rightarrow^* x\}$ for our running CTRS \mathcal{R} .

Automation

This model has been automatically generated by using the tool AGES: http://zenon.dsic.upv.es/ages/

Thus, rule

$$g(x) \rightarrow g(a) \Leftarrow f(x) \rightarrow x$$

is proved \mathcal{R} -infeasible.

Salvador Lucas

The following CTRS \mathcal{R} (Example 23 in [Sternagel & Sternagel, FSCD'16])

$$g(x) \rightarrow f(x,x)$$
 (7)

$$g(x) \rightarrow g(x) \Leftarrow g(x) \rightarrow f(a, b)$$
 (8)

has a conditional critical pair $f(x, x) \downarrow g(x) \leftarrow g(x) \rightarrow f(a, b)$. The following structure A over the finite domain $\{0, 1\}$:

$$\begin{aligned} \mathsf{a}^{\mathcal{A}} &= 1 \qquad \mathsf{b}^{\mathcal{A}} &= 0 \qquad \qquad \mathsf{f}^{\mathcal{A}}(x, y) = \left\{ \begin{array}{ll} x - y + 1 & \text{if } x \geq y \\ y - x + 1 & \text{otherwise} \end{array} \right. \\ \mathsf{g}^{\mathcal{A}}(x) &= 1 \qquad x \to^{\mathcal{A}} y \Leftrightarrow x = y \qquad x \, (\to^*)^{\mathcal{A}} y \Leftrightarrow x \geq y \end{aligned}$$

is a model $\overline{\mathcal{R}} \cup \{\neg(\exists x) \ g(x) \rightarrow^* f(a, b)\}$. The critical pair is infeasible.

In the FSCD'16 paper, this is proved by using unification tests together with a transformation. It is discussed that the alternative tree automata techniques investigated in the paper do *not* work for this example.

A term *t* loops if there is a rewrite sequence $t = t_1 \rightarrow_{\mathcal{R}} \cdots \rightarrow_{\mathcal{R}} t_n$ for some n > 1 such that *t* is a (non-necessarily strict) subterm of t_n , written $t_n \ge t$. A CTRS is non-looping if no term loops.

We can check (non)loopingness of terms t or CTRSs \mathcal{R} by using

$$\begin{array}{ll} \varphi_{\text{Loopt}} & \Leftrightarrow & (\exists x, y) \ t \to x \land x \to^* y \land y \trianglerighteq t \\ \varphi_{\text{Loop}} & \Leftrightarrow & (\exists x, y, z) \ x \to y \land y \to^* z \land z \trianglerighteq x \end{array}$$

for $\overline{\mathcal{R}} \cup H_{\geq}$ where H_{\geq} describe the subterm relation \geq :

$$(\forall x) \ x \trianglerighteq x \tag{9}$$

$$(\forall x, y, z) \ x \trianglerighteq y \land y \trianglerighteq z \Rightarrow x \trianglerighteq z$$
(10)

$$(\forall x_1,\ldots,x_k) f(x_1,\ldots,x_k) \ge x_i$$
 (11)

for each k-ary function symbol $f \in \mathcal{F}$ and argument $i, 1 \leq i \leq k$.

Example (A non-looping term)

For
$$\mathcal{R} = \{a \to c(b), b \to c(b)\}, \overline{\mathcal{R}} \cup H_{\unrhd}$$
 is:
 $(\forall x) x \to^* x$ (12) $(\forall x) x \trianglerighteq x$ (17)
 $(\forall x, y, z) (x \to y \land y \to^* z \Rightarrow x \to^* z)$ (13) $(\forall x, y, z) x \trianglerighteq y \land y \trianglerighteq z \Rightarrow x \trianglerighteq z$ (18)
 $(\forall x, y) (x \to y \Rightarrow c(x) \to c(y))$ (14) $(\forall x) c(x) \trianglerighteq x$ (19)
 $a \to c(b)$ (15)
 $b \to c(b)$ (16)

The following structure over $\mathbb{N} \cup \{-1\}$:

$$\begin{array}{ll} \mathbf{a}^{\mathcal{A}} = -1 & \mathbf{b}^{\mathcal{A}} = 1 & \mathbf{c}^{\mathcal{A}}(x) = x \\ x \rightarrow^{\mathcal{A}} y \Leftrightarrow x \leq 1 \land y \geq 1 & x \ (\rightarrow^{*})^{\mathcal{A}} y \Leftrightarrow x \leq y & x \geq^{\mathcal{A}} y \Leftrightarrow x \leq y \end{array}$$

satisfies $\overline{\mathcal{R}} \cup \mathcal{H}_{\triangleright} \cup \{\neg \varphi_{Loopt}\}$ where

$$\varphi_{Loopt} \Leftrightarrow (\exists x, y) \ \mathsf{a} \to x \land x \to^* y \land y \trianglerighteq \mathsf{a}.$$

Therefore, a is non-looping.

Example (A non-cycling TRS)

Although b is a looping term (for $\mathcal{R} = \{a \to c(b), b \to c(b)\}$), we can prove it non-cycling (i.e., it does not rewrite into itself in at least one step).

Actually, we can prove \mathcal{R} non-cycling (i.e., no term rewrites into itself in at least one step) with the following structure over $\mathbb{N} \cup \{-1\}$

$$\begin{array}{ll} \mathsf{a}^{\mathcal{A}} = -1 & \mathsf{b}^{\mathcal{A}} = -1 \\ \mathsf{x} \to^{\mathcal{A}} y \Leftrightarrow \mathsf{x} < y & \mathsf{x} \ (\to^*)^{\mathcal{A}} y \Leftrightarrow \mathsf{x} \le y \end{array} \mathbf{c}^{\mathcal{A}}(\mathsf{x}) = 2\mathsf{x} + 2$$

which is a model of $\overline{\mathcal{R}} \cup \{\neg \varphi_{Cycl}\}$ where

$$\varphi_{Cycl} \Leftrightarrow (\exists x, y) \ x \to y \land y \to^* x.$$

We have presented a semantic approach to disprove properties of Horn theories which can be expressed as the satisfability of the existential closure of a positive boolean combination of atoms.

We can apply this approach to rewriting-based systems with

- many-sorted signatures,
- alternative satisfiability notions for the conditions (e.g., joinability), or
- more general components there (e.g., memberships).

We could handle many examples coming from papers developing different specific techniques to deal with these problems.

We have presented a semantic approach to disprove properties of Horn theories which can be expressed as the satisfability of the existential closure of a positive boolean combination of atoms.

We can apply this approach to rewriting-based systems with

- many-sorted signatures,
- alternative satisfiability notions for the conditions (e.g., joinability), or
- more general components there (e.g., memberships).

We could handle many examples coming from papers developing different specific techniques to deal with these problems.

Future work

- Use other *preservation* results for FOL.
- Use these techniques in *tools* for proving computational properties of rewriting-based systems (e.g., confluence, termination, etc.)

16

Thanks!