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Is the following true?

(Vx)  x+4+0>x (1)

Yes!... provided that the standard (arithmetic) interpretation A is assumed
for all symbols: A = (1).
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Is the following true?
(¥x)  x+0>x (1)

Yes!... provided that the standard (arithmetic) interpretation A is assumed
for all symbols: A = (1). J

What about this?
(V) AR, a1),x) (2)

(1) and (2) are ‘syntactically equivalent’ under renaming of symbols. J

Viewed as first-order logic (FOL) formulas, non-logic symbols occurring in
(1) (e.g., ‘0", '+, and ‘>") have no special meaning!
Many interpretations of a;, f? and A? in (2) do not satisfy (2), i.e.,

K~ (2) and even £ (1)!
LOPSTR'17, October 10-12 2 / 17




How to use FOL in the analysis of computational properties of
rewriting-based systems?

For instance, confluence can be expressed as follows:

(Vx,y,2) (x >y Ax =" z= Fu)(y =" uhz—"u)) (3)
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Given a Term Rewriting System R, how do we say “R is confluent” using
FOL?
® R (3), i.e., (3) can be proved from some theory R associated to R?
® R = (3), i.e., every model of R satisfies (3)?

® Ar = (3), i.e., (3) is satisfied by some special interpretation Ag
associated to R?

Dauchet and Tison's first-order theory of rewriting uses @ with the
standard interpretation Hy where predicate symbols — and —* are
interpreted as the one-step and many-step rewrite relations on ground
terms —x and —J, respectively.

Problems
e In general, Hy is not computable, and Hr = (3) is undecidable!
e Can we use other (computable!) interpretations? How?

v
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Summary

@ Preservation of first-order formulas

® Application to Horn theories

© Rewriting-based systems as Horn theories
O Examples of use

@ Related work

@ Conclusions and future work
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Preservation of first-order formulas

Our approach is based on two well-known facts :

[Hodges97, Theorem 1.5.2]

Every set S of ground atoms has an initial (Herbrand) model Zs, i.e.,
e Is =S and
e for all models A of S, there is a homomorphism h: Zgs — A.

A positive boolean combination of atoms is a formula

\V A A (4)

i=1j=1

where the Aj; are atoms. Satisfiability of the existential closure of (4) is
preserved under homomorphism

[Hodges97, Theorem 2.4.3(a)]
Given interpretations A and A’ with an homomorphism h : A — A’

AE(3x) - (Ox) \//\AU — A= (3x1) - (3x) \//\A,J

i=1j=1 i=1j=1
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Preservation of first-order formulas

According to these results, we have the following:

Corollary

Let S be a set of ground atoms, and A;; be atoms with variables
X1,...,Xg. Then,

s E (3x) - - axk)\//\A,J — Sk (3x)- Elxk)\//\AU

i=1j=1 i=1j=1
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Application to Horn theories

If the set of atoms S is generated by a set Sg of Horn sentences, then the
interpretation of each predicate symbol P by Z consists of the set of
ground atoms P(t1,...,t,) such that So = P(t1,..., ts).

Corollary (Semantic criterion)

Let S be a Horn theory, ¢ be the existential closure of a positive boolean
combination of atoms, and A be a model of S. If A = —, then Is |= —.

Many-sorted theories

The previous corollaries easily generalize to many-sorted signatures: as
usual, we just treat sorted variables x; : s; by using atoms S;(x;) which are
added as a new conjunction /\ff::l Si(x;) to the matrix formula (4).
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Rewriting-based systems as Horn theories

In the following, we focus on oriented CTRSs R, with rules
{—r<s —ty,...,5 — ty

whose operational semantics is given by the following inference system:

Xi = Yi
(Rf) x =" x (©) (X1, Xiy oo X)) = F(Xt, ooy Yy ooy Xk)
forall f € Fand 1< i< k= arity(f)
X —z z—="y st—=" "t ... sy ="t
(T x ="y (Rp) L—r

forall{ - r<si > ti---sh >th €R
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CTRSs as First-Order Theories

The Horn theory R for a CTRS R is obtained by specializing (C) and

(Rp). Inference rules % become universally quantified implications

(VR)BL A -+ A By = A.
Example

For the CTRS R (from [Giesl & Arts, AAECC'01])

a - b g) — g(a) < f(x) = x
fa) — b
its associated theory R is
(Vx) x =" x a—b
(Vx,y,2) x>y ANy =" z=>x—=>"z f(a) — b
(Vx,y) x =y = f(x) = f(y) (Vx) f(x) =* x = g(x) — g(a)
(Vx,y) x =y = g(x) = g(y)
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Examples of use Infeasible conditional rules

Infeasibility of conditional rules
For infeasibity of £ — r < s1 — t1,...,Sh, — tn We USe PFeas given by:

(3X)s1 =" t1 Ao Asp =7ty

The following structure A over N — {0}:
at =1 bA =2 Ax)=x+1 ghx)=1
x=aAysy>x x(=)yey>x
is a model of R U {—(3x) f(x) —* x} for our running CTRS R.
Automation

This model has been automatically generated by using the tool AGES:
http://zenon.dsic.upv.es/ages/

Thus, rule
g(x) = g(a) < f(x) — x

is proved R-infeasible.
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http://zenon.dsic.upv.es/ages/

The following CTRS R (Example 23 in [Sternagel & Sternagel, FSCD'16])

glx) — f(x,x) (7)
g(x) — g(x) < g(x) = f(a,b) (8)

has a conditional critical pair f(x, x) | g(x) < g(x) — f(a,b). The
following structure A over the finite domain {0,1}:

A=1 b* =0 f (va) - { y—X+1 otherwise

glx)=1 x-Ayex=y x(=)yex>y
is a model R U {—(3x) g(x) —* f(a,b)}. The critical pair is infeasible.

In the FSCD'16 paper, this is proved by using unification tests together
with a transformation. It is discussed that the alternative tree automata
techniques investigated in the paper do not work for this example.
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Examples of use Non-looping terms

A term t loops if there is a rewrite sequence t = t; — --- —g t, for
some n > 1 such that t is a (non-necessarily strict) subterm of t,, written
tp > t. A CTRS is non-looping if no term loops.

We can check (non)loopingness of terms t or CTRSs R by using

Cloopt © (Ax,y)t—=xAx—=>"yAyD>t
Cloop & (Ixy,z2)x—=yANy =" zAz>x

for R U H> where Hy describe the subterm relation >:

(Vx) x> x (9)
(Vx,y,z) xBPyAybz=xD>z (10)
(VXl,...,Xk) f(Xl,...,Xk)EX,' (11)

for each k-ary function symbol f € F and argument i, 1 </ < k.
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Examples of use Non-looping terms

Example (A non-looping term)

For R = {a — c(b),b — ¢(b)}, RU Hy is:

(Vx) x =~ x (12) (¥x) x > x (17)
(Vx,y,2) (x =2y ANy =" z=x—="2z) (13) (Vx,y,z2) xDyAyD>z=x>z (18)
(Wy) (ko y S ) s cly)  (14) () <) B x (19)

a — c(b) (15)

b — c(b) (16)

The following structure over NU {—1}:

e = il bA =1 cA(x) = x
x=Ayex<lAy>1 x(=)yex<y xbAyex<y

satisfies R U Hy U {—¢100pt } Where

Ploopt < (Ix,y) a = xAx =2 y Ay a.

Therefore, a is non-looping.

v
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Examples of use Non-cycling TRSs

Example (A non-cycling TRS)

Although b is a looping term (for R = {a — ¢(b),b — ¢(b)}), we can
prove it non-cycling (i.e., it does not rewrite into itself in at least one step).

Actually, we can prove R non-cycling (i.e., no term rewrites into itself in
at least one step) with the following structure over NU {—1}

g = =1 bA = —1 cAx)=2x+2
x=sAyesx<y x(=Hyex<y

which is a model of R U {—=¢cycr} where

Ocyel & (X, y) x =y Ay =" x.
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Conclusions and future work

We have presented a semantic approach to disprove properties of Horn
theories which can be expressed as the satisfability of the existential
closure of a positive boolean combination of atoms.

We can apply this approach to rewriting-based systems with
e many-sorted signatures,
e alternative satisfiability notions for the conditions (e.g., joinability), or

e more general components there (e.g., memberships).

We could handle many examples coming from papers developing different
specific techniques to deal with these problems.
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Conclusions and future work

We have presented a semantic approach to disprove properties of Horn
theories which can be expressed as the satisfability of the existential
closure of a positive boolean combination of atoms.

We can apply this approach to rewriting-based systems with
e many-sorted signatures,
e alternative satisfiability notions for the conditions (e.g., joinability), or

e more general components there (e.g., memberships).

We could handle many examples coming from papers developing different
specific techniques to deal with these problems.

Future work

o Use other preservation results for FOL.

e Use these techniques in tools for proving computational properties of
rewriting-based systems (e.g., confluence, termination, etc.)
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A Semantic Approach to the Analysis of Rewriting-Based Systems

Thanks!
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