Combining Static and Dynamic Contract Checking for Curry

Michael Hanus

University of Kiel Programming Languages and Compiler Construction

LOPSTR 2017

Michael Hanus (CAU Kiel)

Combining Static and Dynamic Contract Checking for Curry

LOPSTR 2017

1

Developing Reliable Software Systems

Program verification ... perfect but not practical:

- difficult proofs, no fully automatic tools
- exact proof obligations / specifications

Declarative programming ... good but not perfect:

- run-time errors exist
- objective: avoid possible run-time errors

Pragmatic approach: combine static and dynamic checks

- strong typing ~→ static detection of some run-time errors
- more complex conditions ~> dynamic assertions

Our approach:

Move boundaries by static verification of dynamic assertions

Michael Hanus (CAU Kiel)

Combining Static and Dynamic Contract Checking for Curry

Combining Static and Dynamic Checking

Advantages

- fully automatic approach
- more efficient reliable software

```
fac :: Int \rightarrow Int
fac n = if n==0 then 1
else n * fac (n-1)
```

- fac "Hello": statically rejected
- fac (2-5): still possible \rightsquigarrow infinite loop

Add contracts (pre/postconditions) [PADL'12]:

```
fac'pre n = n \geq 0
fac'post n f = f \geq 0
```

• fac (x-2-x): rejected at run time

Contract Verification

Dynamic contract checking

- requires additional execution time
- often turned off in production systems

Our approach

- try to verify contracts at compile time
- if successful: remove dynamic contract checks
- otherwise: leave dynamic checks

Advantages

- reliable program execution
- more efficient (if successful)
- practical (if fully automatic)

Programming language: Curry

- declarative (functional logic) language
- results applicable to functional as well as logic languages

Verification: SMT solver

- fully automatic prover
- quite powerful for integers and algebraic types

Functional Logic Programming with Curry

Curry: Haskell syntax, logic features (non-determinism)

Functions: concatenating lists

[] ++ ys = ys (x:xs) ++ ys = x : (xs ++ ys)

Non-determinism: list insertion + permutation

```
ins x ys = x : ys
ins x (y:ys) = y : ins x ys
> ins 0 [1,2] → [0,1,2] ? [1,0,2] ? [1,2,0]
perm [] = []
perm (x:xs) = ins x (perm xs)
```


Given: $f :: \tau \to \tau'$

Contract for f: pre- and postcondition

Precondition:	
f'pre :: $ au$ $ ightarrow$ Bool	
Postcondition:	
f'post :: $ au o au' o$ Bool	

Dynamic contract checking

Curry preprocessor transforms contracts into dynamic checks:

- precondition ~> check arguments before each call
- o postcondition ~> check arguments/result after evaluation

Factorial operation with contract:

```
fac :: Int \rightarrow Int
fac n = if n==0 then 1
else n * fac (n-1)
fac'pre n = n >= 0
fac'post n f = f > 0
```

Consider evaluation of f n:

- without contract checking: n calls
- with contract checking: *n* calls + 2 * *n* contract calls

Verifying precondition

```
fac n = if n==0 then 1
else n \star fac (n-1)
fac'pre n = n >= 0
```

Consider recursive fac call:

```
n>=0 (by precondition)
```

 \neg (n==0) (since else branch is chosen)

 $n \ge 0 \land \neg (n = 0) \implies (n-1) \ge 0$ (by SMT solver)

 \rightsquigarrow precondition of recursive call always satisfied, omit at run-time

Verifying postcondition

fac n = if n==0 then 1 else n * fac (n-1) fac'post n f = f > 0

Consider value of right-hand side:

```
• then branch: 1 > 0 \rightsquigarrow postcondition satisfied
```

```
③ else branch:
n>=0 (by precondition)
¬ (n==0) (since else branch is chosen)
fac (n-1)>0 (by postcondition)
n>=0 ∧ ¬ (n==0) ∧ fac (n-1)>0 ⇒ n*fac (n-1)>0 (by SMT)
→ postcondition satisfied
```

Altogether: postcondition always satisfied, omit at run-time

Michael Hanus (CAU Kiel)

Combining pre- and postcondition verification

```
fac :: Int \rightarrow Int
fac n = if n==0 then 1
else n * fac (n-1)
fac'pre n = n >= 0
fac'post n f = f > 0
g n = fac (fac n)
```

Consider outermost call to fac in g:

(fac n) > 0 (by postcondition) $(fac n) > 0 \implies (fac n) >= 0$ (by SMT) \rightsquigarrow omit precondition check for this call

For simplicity: use normalized FlatCurry representation

Abstract assertion-collecting semantics

- compute with symbolic values instead of concrete ones
- Ollect properties that are known to be valid
- o do not evaluate functions (termination!) but collect their pre- and postconditions

Val
$$\Gamma: C \mid z \leftarrow v \Downarrow C \land z = v$$
where v constructor-rooted or
 v variable not bound in Γ VarExp $\frac{\Gamma: C \mid z \leftarrow e \Downarrow D}{\Gamma[x \mapsto e]: C \mid z \leftarrow x \Downarrow D}$ Fun $\Gamma: C \mid z \leftarrow f(\overline{x_n}) \Downarrow C \land f' \operatorname{pre}(\overline{x_n}) \land f' \operatorname{post}(\overline{x_n}, z)$ Let $\frac{\Gamma[\overline{y_k \mapsto \rho(e_k)}]: C \mid z \leftarrow \rho(e) \Downarrow D}{\Gamma: C \mid z \leftarrow let \{\overline{x_k = e_k}\} in e \Downarrow D}$ where $\rho = \{\overline{x_k \mapsto y_k}\}$
and $\overline{y_k}$ freshOr $\frac{\Gamma: C \mid z \leftarrow e_1 \Downarrow D_1 \qquad \Gamma: C \mid z \leftarrow e_2 \Downarrow D_2}{\Gamma: C \mid z \leftarrow e_1 \text{ or } e_2 \Downarrow D_1 \lor D_2}$ Select $\frac{\Gamma: C \mid x \leftarrow x \Downarrow D \qquad \Gamma: D_1 \mid z \leftarrow e_1 \Downarrow E_1 \dots \ \Gamma: D_k \mid z \leftarrow e_k \Downarrow \Gamma: C \mid z \leftarrow case x \text{ of } \{\overline{p_k \to e_k}\} \Downarrow E_1 \lor \dots \lor E_k$

where
$$D_i = D \land x = p_i$$
 $(i = 1, \ldots, k)$

 E_k

Collected assertions for right-hand side:

```
\begin{array}{l} n \geq 0 \land x=0 \land y=(n=x) \land \\ ((y=True \land z=1) \lor (y=False \land n1=n-1 \land f>0 \land z=n*f)) \\ \Longrightarrow z \geq 0 \text{ (by SMT solver)} \\ \rightsquigarrow \text{ postcondition verified} \end{array}
```


The correctness of our approach is justified by

Theorem (Correctness of abstract assertion collection)

Let e be an expression. If

- e evaluates to v and
- the abstract semantics collects, for z = e, the assertion C,

then $z = v \Rightarrow C$.

last [x] = x last (_:x:xs) = last (x:xs) last'pre xs = not (null xs)

Omit precondition of recursive call if

 $not (null xs) \land xs = (y:ys) \land ys = (z:zs) \Longrightarrow not (null (z:zs))$

→ by evaluating right-hand side to true

Select *n*th element of a list

```
nth (x:xs) n | n==0 = x
| n>0 = nth xs (n-1)
```

nth'pre xs n = n>=0 && length (take (n+1) xs) == n+1

Omit precondition of recursive call if

 $n \ge 0 \land length (take (n + 1) xs) = n + 1 \land xs = (y:ys) \land n \ne 0 \land n > 0$

implies

 $(n-1) \ge 0 \land \text{ length } (\text{take } ((n-1)+1) \text{ ys}) = (n-1)+1$

(by SMT solver with axiomatization of operations length and take)

Contract verification tool

- Curry preprocessor performs source-level transformation: add contracts as run-time checks
- Preprocessed program transformed into FlatCurry program
- For each contract: extract proof obligation
- For each proof obligation: translate into SMT-LIB format and send to SMT solver (here: Z3)
- If SMT solver proves validity: remove check from FlatCurry program

Run time in seconds ($0.00 \approx < 10$ ms)

Expression	dynamic	static+dynamic	speedup
fac 20	0.00	0.00	n.a.
sum 1000000	0.84	0.22	3.88
fib 35	1.95	0.60	3.23
last [120000000]	0.63	0.35	1.78
take 200000 [1]	0.31	0.19	1.68
nth [1] 50000	26.33	0.01	2633
allNats 200000	0.27	0.19	1.40
init [110000]	2.78	0.00	>277
[120000] ++ [11000]	4.21	0.00	>420
nrev [11000]	3.50	0.00	>349
rev [110000]	1.88	0.00	>188

init, (++), nrev, rev: postcondition on length of lists

Conclusions

Combining static and dynamic contract checking

- support reliable software by adding contracts (more complex than standard types)
- disadvantage: run-time overhead
- avoid overhead by static verification
- if successful:
 - run time reduction (→ benchmarks)
 - higher confidence in overall quality of application

Future work

- more examples...
- better contract reduction: omit verified parts of contracts
- use counter-examples from verifier to check actual contract violation
- integrate abstract interpretation techniques for better precision