
Combining Static and Dynamic Contract Checking
for Curry

Michael Hanus

University of Kiel
Programming Languages and Compiler Construction

LOPSTR 2017

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 1

Developing Reliable Software Systems

Program verification . . . perfect but not practical:
difficult proofs, no fully automatic tools
exact proof obligations / specifications

Declarative programming . . . good but not perfect:
run-time errors exist
objective: avoid possible run-time errors

Pragmatic approach: combine static and dynamic checks
strong typing static detection of some run-time errors
more complex conditions dynamic assertions

Our approach:
Move boundaries by static verification of dynamic assertions

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 2

Combining Static and Dynamic Checking

Advantages
fully automatic approach
more efficient reliable software

fac :: Int → Int
fac n = if n==0 then 1

else n * fac (n-1)

fac"Hello": statically rejected
fac(2-5): still possible infinite loop

Add contracts (pre/postconditions) [PADL’12]:
fac’pre n = n >= 0
fac’post n f = f > 0

fac(x-2-x): rejected at run time

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 3

Contract Verification

Dynamic contract checking
requires additional execution time
often turned off in production systems

Our approach
try to verify contracts at compile time
if successful: remove dynamic contract checks
otherwise: leave dynamic checks

Advantages
reliable program execution
more efficient (if successful)
practical (if fully automatic)

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 4

Proof of Concept

Programming language: Curry
declarative (functional logic) language
results applicable to functional as well as logic languages

Verification: SMT solver
fully automatic prover
quite powerful for integers and algebraic types

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 5

Functional Logic Programming with Curry

Curry: Haskell syntax, logic features (non-determinism)

Functions: concatenating lists

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Non-determinism: list insertion + permutation

ins x ys = x : ys
ins x (y:ys) = y : ins x ys

> ins 0 [1,2] [0,1,2] ? [1,0,2] ? [1,2,0]

perm [] = []
perm (x:xs) = ins x (perm xs)

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 6

Contracts for Curry [PADL’12]

Given: f :: τ → τ ′

Contract for f : pre- and postcondition

Precondition:
f’pre :: τ → Bool

Postcondition:
f’post :: τ → τ ′ → Bool

Dynamic contract checking
Curry preprocessor transforms contracts into dynamic checks:

precondition check arguments before each call
postcondition check arguments/result after evaluation

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 7

Contract Verification: Motivation

Factorial operation with contract:

fac :: Int → Int
fac n = if n==0 then 1

else n * fac (n-1)

fac’pre n = n >= 0
fac’post n f = f > 0

Consider evaluation of f n:
without contract checking: n calls
with contract checking: n calls + 2 ∗ n contract calls

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 8

Contract Verification

Verifying precondition

fac n = if n==0 then 1
else n * fac (n-1)

fac’pre n = n >= 0

Consider recursive fac call:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
n>=0 ∧ ¬(n==0) =⇒ (n-1)>=0 (by SMT solver)

 precondition of recursive call always satisfied, omit at run-time

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 9

Contract Verification

Verifying postcondition

fac n = if n==0 then 1
else n * fac (n-1)

fac’post n f = f > 0

Consider value of right-hand side:
1 then branch: 1 > 0 postcondition satisfied
2 else branch:
n>=0 (by precondition)
¬(n==0) (since else branch is chosen)
fac(n-1)>0 (by postcondition)
n>=0 ∧ ¬(n==0) ∧ fac(n-1)>0 =⇒ n*fac(n-1)>0 (by SMT)
 postcondition satisfied

Altogether: postcondition always satisfied, omit at run-time

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 10

Contract Verification

Combining pre- and postcondition verification

fac :: Int → Int
fac n = if n==0 then 1

else n * fac (n-1)

fac’pre n = n >= 0
fac’post n f = f > 0

g n = fac (fac n)

Consider outermost call to fac in g:
(fac n)>0 (by postcondition)
(fac n)>0 =⇒ (fac n)>=0 (by SMT)
 omit precondition check for this call

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 11

Formalization

For simplicity: use normalized FlatCurry representation

fac(n) = let x = 0
y = n==x

in case y of True → 1
False → let n1 = n - 1

f = fac n1
in n * f

 natural semantics for Curry [Albert et al. JSC’05]
 paper: include contract checking

Abstract assertion-collecting semantics
1 compute with symbolic values instead of concrete ones
2 collect properties that are known to be valid
3 do not evaluate functions (termination!)

but collect their pre- and postconditions

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 12

Abstract Assertion-Collecting Semantics

Val Γ : C | z ← v ⇓ C ∧ z = v where v constructor-rooted or
v variable not bound in Γ

VarExp
Γ : C | z ← e ⇓ D

Γ[x 7→ e] : C | z ← x ⇓ D

Fun Γ : C | z ← f (xn) ⇓ C ∧ f’pre(xn) ∧ f’post(xn, z)

Let
Γ[yk 7→ ρ(ek)] : C | z ← ρ(e) ⇓ D
Γ : C | z ← let {xk = ek} in e ⇓ D

where ρ = {xk 7→ yk}
and yk fresh

Or
Γ : C | z ← e1 ⇓ D1 Γ : C | z ← e2 ⇓ D2

Γ : C | z ← e1 or e2 ⇓ D1 ∨ D2

Select
Γ : C | x ← x ⇓ D Γ : D1 | z ← e1 ⇓ E1 . . . Γ : Dk | z ← ek ⇓ Ek

Γ : C | z ← case x of {pk → ek} ⇓ E1 ∨ . . . ∨ Ek

where Di = D ∧ x = pi (i = 1, . . . , k)

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 13

Assertion-Collecting Semantics: Example

fac(n) = let x = 0
y = n==x

in case y of True → 1
False → let n1 = n - 1

f = fac n1
in n * f

Collected assertions for right-hand side:
n>=0 ∧ x=0 ∧ y=(n=x) ∧
((y=True ∧ z=1) ∨ (y=False ∧ n1=n-1 ∧ f>0 ∧ z=n*f))

=⇒ z>0 (by SMT solver)

 postcondition verified

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 14

Assertion-Collecting Semantics: Main Result

The correctness of our approach is justified by

Theorem (Correctness of abstract assertion collection)
Let e be an expression. If

e evaluates to v and
the abstract semantics collects, for z = e, the assertion C,

then z = v ⇒ C.

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 15

More Examples

last [x] = x
last (_:x:xs) = last (x:xs)

last’pre xs = not (null xs)

Omit precondition of recursive call if

not (null xs) ∧ xs = (y :ys) ∧ ys = (z:zs) =⇒ not (null (z:zs))

 by evaluating right-hand side to true

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 16

More Examples

Select nth element of a list

nth (x:xs) n | n==0 = x
| n>0 = nth xs (n-1)

nth’pre xs n = n>=0 && length (take (n+1) xs) == n+1

Omit precondition of recursive call if

n ≥ 0 ∧ length (take (n + 1) xs) = n + 1 ∧ xs = (y :ys) ∧ n 6= 0 ∧ n > 0

implies

(n − 1) ≥ 0 ∧ length (take ((n − 1) + 1) ys) = (n − 1) + 1

(by SMT solver with axiomatization of operations length and take)

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 17

Implementation

Contract verification tool

1 Curry preprocessor performs source-level transformation:
add contracts as run-time checks

2 Preprocessed program transformed into FlatCurry program

3 For each contract: extract proof obligation

4 For each proof obligation:
translate into SMT-LIB format and send to SMT solver (here: Z3)

5 If SMT solver proves validity: remove check from FlatCurry program

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 18

Benchmarks

Run time in seconds (0.00 ≈ < 10ms)
Expression dynamic static+dynamic speedup
fac 20 0.00 0.00 n.a.
sum 1000000 0.84 0.22 3.88
fib 35 1.95 0.60 3.23
last [1..20000000] 0.63 0.35 1.78
take 200000 [1..] 0.31 0.19 1.68
nth [1..] 50000 26.33 0.01 2633
allNats 200000 0.27 0.19 1.40
init [1..10000] 2.78 0.00 >277
[1..20000] ++ [1..1000] 4.21 0.00 >420
nrev [1..1000] 3.50 0.00 >349
rev [1..10000] 1.88 0.00 >188

init, (++), nrev, rev: postcondition on length of lists

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 19

Conclusions

Combining static and dynamic contract checking
support reliable software by adding contracts
(more complex than standard types)
disadvantage: run-time overhead
avoid overhead by static verification
if successful:

run time reduction (benchmarks)
higher confidence in overall quality of application

Future work
more examples. . .
better contract reduction: omit verified parts of contracts
use counter-examples from verifier to check actual contract violation
integrate abstract interpretation techniques for better precision

Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 20

